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ABSTRACT

This article discusses the fractal geometry of the boundary of the dragon
curves by analyzing the boundary’s structure, calculating its Hausdorff
dimension, and computing the area enclosed within the boundary. The algo-
rithms for generating computer graphics for the boundary curves have also
been included.

Introduction

Fractals are everywhere in this world. From clouds, coastlines, leaves, to biologi-
cal organs, many scientists can use fractal geometry to describe complex natural
objects and processes [1-3]. Opening several new research areas in mathematics,
geometry, and computer graphics, fractal geometry seems to describe natural
shapes and forms more gracefully and succinctly than does Euclidean geometry.
The concept of scale invariance or self-similarity is an underlying theme in all
fractal structures, with many examples going back to the classical mathematicians.
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a)

Figure 1. The dragon curve: a) after seven folds; b) after eleven folds.

What we know so well as the Cantor set, the Koch curve, and the Hilbert curve,
are among these classical irregular curves, along with the dragon curve.

The dragon curve is a space filling curve with dimension 2 which originally
came from the repeated folding of a long strip of paper in the same direction [4].
After pleating the paper, it is then unfolded with each adjacent segments of paper
formed into a right angle. The dragon curve emerges slowly with striking com-
plexity and beauty. As shown in Figure 1, it is a construction that fills a finite area
in a plane but has a fractal boundary. This same curve can also be constructed by
a computer algorithm using IFS (Iterated Function Systems) or the chaos game
[3].

Although the dragon curve has already been investigated in several articles, its
boundary has remained unexplored. To alleviate this neglect, it is the purpose of
this article to study the boundary of the dragon curve. We first partition the
boundary into several pieces to find its IFS structure. From the IFS structure we
then calculated its Hausdorff dimension. Included in this article are also several
algorithms to generate the boundary using a computer. Finally, we computed the
area enclosed by the border of the dragon curve.

IFS Structure of the Boundary

While it is evident that the boundary of the dragon curve is a fractal with
recurring self-similarity, its exact structure remains elusive. To discover its hidden
pattern, we partition the complete boundary of the dragon curve into four similar
pieces, as shown in Figure 2. Figure 3 shows one section of the border to which we
will now focus our attention. Upon observation, it is apparent that this piece can
be constructed with an infinite number of self-similar copies of itself with dif-
ferent sizes and rotated at various angles.
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Figure 2. The four self-similar pieces of the boundary of the dragon curve.

To analyze the curve in Figure 3, let its size be represented by the length of line
segment AjA. as shown in Figure 4. Placed in opposite directions, the first two

copies and their sizes can be represented by the line segments A1B; and B1A; with
A1By = BiA; = 2732 A|A. (1

The rest of the infinite number of copies can be grouped into pairs with each pair
containing two exact duplicates placed in the opposite directions. All pairs form
an infinite sequence such that each element in the sequence is reduced by a factor
of 21/2, and rotated by an angle of —45° with respect to the previous one, i.e.,

Apr1But1 = Bpp1Ansz = 27V2A,B, for n=1,2,...,00 )

Hausdorff Dimension of the Boundary

The fractal dimension d of a self-similar curve constructed by N similar pieces
with reduction factors Cq, Cy, . . . , Cy can be calculated by solving the equation

[5]:
A+ +...+Ch=1. 3)

For the curve as shown in Figure 3, it is easy to show that
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Figure 3. One section of the boundary of the dragon curve.

Cj =Gyl = 2683
and
Coni1l = Copyp = 201D Gy for n=1,2,...,00
By substituting (4) and (5) into (3), the equation for d can be rewritten as
2% 2(3/2d (1 4 2C1/2d 1 (2C-1/dy2 4 4 (2C1/DaWNy = |
When N — o, formula (6) results in

2 % 2(-3/2)d -
1 —2(-1/2yd ~ L,

4

®)

(6)

)
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Figure 4. The size of the curve in Figure 3 can be represented by
the line segment A1A~. The total curve can be partitioned to the pairs
of the reduced copies.

¥-x2-2=0 where x =242, (8)

Solving equation (8) for x yields a real solution and two conjugated complex
solutions. From the real solution, the fractal dimension d of the curve in Figure 3
can be expressed as

1 1

2In( D173 + — D173+
e 9 3 ©)
B In2 i
28 1
where D = 27 + 9 V29%3 |

the numerical value of d is calculated to be approximately 1.523627085.
An alternative method to computer 4 is to partition the curve in Figure 3 into
three similar pieces, as shown in Figure 5. Then the equation for d is:
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Level=1 Level =2

Iy

Level=3 Level =4

Figure 5. Another method to do MRCM for the curve in Figure 3.
Figure 6. Development of a piece of the boundary of the
it dragon curve using Algorithm 1.

2x203/2d 4 2(-1/2d = 1, (10) i

which can be reduced to the same algebraic equation as (8) to yield the same Algorithm 1:
solution for the fractal dimension d .

z : . PROCEDURE DragonBorderl (Start; n; Degree; Level);
Since the boundary of the dragon curve is composed of four copies of the curve g ‘ ,

: . . . BEGIN
we just examined, the fractal dimension of the entire boundary is also d = If n > 0.25 Then
1.523627085. Begin

If (level > 1) Then
DragonBorderl (Start,n/ (2*SQRT (2) ) ,Degree+45, Level-1)
Else DrawTriangle(Start,n,Angle);
Algorithms to Generate the Boundary of the Dragon Curve a.x:=Start.x+Cos(Degree) *2*n;
a.y:=Start.y-Sin(Degree) *2*n;
Degree:=Degree+180;

In accordance with the two different methods for determining the dimension of If Level > 1 Then

the boundary of the dragon curve, we present two different algorithms for generat- DragonBorderl (a,n/ (2*SQRT (2)),Degree, Level-1)
ing the four sections making up the boundary. Like the first method for calculating Else DrawTriangle(Start,n,Angle)

d, Algorithm 1 uses the idea of separating the boundary into an infinite number of , DegieeprRagupa vl o5y

copies, while Algorithm 2 corresponds with the second method by viewing the i EndDragonBorderl oakadon RS e

boundary as three similar pieces. From Figures 6 and 7, we see that Algorithm 1 is . Else PutPixel (Start.x,Start.y,12);

quicker to converge and aesthetically more pleasing than Algorithm 2. i END;
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Level = 1 Level =2 Level =3
3
Level =4 Level=6 Level =9

Figure 7. Development of the one piece of the border of a
dragon curve using Algorithm 2.

Algorithm 2:

PROCEDURE DragonBorder2(Start; n; Degree; Level);
BEGIN
If Level > 0 Then
Begin
Degree:=Degree+45;
DragonBorder2 (Start,n/ (2*SQRT(2)),Degree, Level-1) ;
NewPoint (n/SQRT(2) ,Degree, Start,a) ;
a.x:=Start.x+Cos (Degree) *n/SQRT (2) ;
a.y:=Start.y-Sin(Degree) *n/SQRT (2) ;
Degree:=Degree+180;
DragonBorder2(a,n/ (2*SQRT(2) ) ,Degree, Level-1) ;
Degree:=Degree+90;
DragonBorder2 (a,n/SQRT(2) ,Degree, Level-1)
End
Else DrawTriangle(Start,n,Angle)
END;

To Produce the entire boundary of the dragon curve, four similar pieces of the
border, generated by the above algorithms, have to be arranged as shown in Figure
8. With a suitable scaling of n and the orientation of the curve, the pieces should
fit together to form the boundary dragon curve.

The boundary of the dragon curve can also be generated using the chaos game.
For the generation of the boundary of the dragon curve using the chaos game, we
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4

a) b)

d) ©)

Figure 8. Computer generated boundary of the dragon curve.

utilize the IFS structure that we had analyzed earlier in Figure 5. According to the
theory of the chaos game [2], the boundary as shown in Figure 5 can be generated
by a random iterated system which corresponds to these three linear affine trans-
formations:

Ti(x,y) = ((x=y)/4-1/2,(x+y)/4+1)
Ta(x,y) = ((y—x)/4+1/2,~(x+y)/4+1)
T3(x,y) = ((x+y)/2+1/2,(y—x)/2)

Because the complete boundary is pieced together from four similar fractals, the
computer is required to “play” four similar chaos games at the same time to
generate the entire border. Figure 9 shows the progress of the boundary of the
dragon curve as generated by the chaos game.

The Area within the Boundary

We now turn our attention to the area enclosed by the boundary of the dragon
curve. To determine the area, let us consider the generation of the dragon curve by
iteration as shown in Figure 10.
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Figure 9. Development of the boundary of the dragon curve using the chaos
game: a) the boundary with a few pixels; b) the boundary with more pixels.

n1=2
Level=0 Level=1 Level=2
HE
n =2 [ 10
A
wilaw
di =2
T 21
Level=7

Figure 10. The generation of the dragon curve for different levels. The area at
each level can be calculated by the summation of the areas of squares with a

side of length dj= a2’

The area at any level i can be approximated by adding up the number of squares
that are enclosed by the segments. Because each square is formed by four seg-
ments and each segment is shared by two squares, the number of squares is equal
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Level=0

Se=4b? S=AB+BY 204

Si=4b2+b712

Figure 11. The area enclosed by the border of the
dragon curve at different levels.

to the number of segments multiplied by 2/4. Then, at level i, the total area, S;, can
be represented by the following equation:

S;i=d? x ni/2, (11)

where d; is the length of the segment and n; is the number of segments at level i.
If the initial segment length at level O is equal to a, then d; and n; can be
expressed as follows:

i
d,-=[g]a and n; = 2¢. (12)

From equations (11) and (12) we can compute the area of the dragon curve,
represented by S, the limit of S; as i approaches infinity.

2i
i
§ = lim § = lim M-\@J a22—}=

2

a
2 (13)

i— o0 [ — o0 2 2

Therefore, the area of the dragon curve is a2/2 .
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-

3b

Figure 12. The relationship between a and b.

An alternate method to compute the area enclosed within the boundary of the
dragon curve involves the second IFS boundary structure discussed. Letting b be
the length shown in Figure 11 and §; be the area enclosed by the border at any
level i, we can calculate the area of the dragon curve by observing the changes in
area from one level to the next. Notice that the starting area, S, is equal to 4b? .

From Figure 11 it can be seen that as the level of generation increases, the
boundary of the dragon curve folds in and out, increasing the area at one point and
decreasing at another. Upon closer observation we notice from one level to the
next all these areas cancel with the exception of the areas of P1; and P2;. Because

P1; increases the areas of the dragon curve and P2; decreases it, the total area
increases by Pl;—P2; from level i to level i+1. Since Pl; = b2/2! and
P2; = b2/2i*1, the relation between S;;1 and S; is as follows:

Sisp = Si+(Pli—P2) = S;+b2/21 - p2/2"1 = S; +b2/21 (14)

From this equation we realize that from level i to level i + 1, the area enclosed by
the curve increases by b2/21 .

Using (14), we get that the area enclosed by the boundary of the dragon curve
is:
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Figure 13. The relationship between the linear dimension of the
shapes making up the dragon curve.

S = lim §; = So+b2/2+b%/4+b2/8+b2/16+... = 5b2. (15)
i — o0

To reconcile this answer for the area with our first solution in equation (13),
recall that the first solution uses the length a as shown in Figure 12. From the
Pythagorean Theorem we know that a? = 962 + b2 so that b2 = a%/10. From here
it becomes apparent that the two solutions from equations (13) and (15) are one
and the same, since S = 5b2 = a2/2.

In addition we can also calculate the area of each small shape of which the
dragon curve is composed. Since it is self-evident that these shapes are similar, we
can determine the relationship between their size as shown in Figure 13. Using the
relationship between their linear dimension, we can determine the relationship
between their areas and we find that T = 21T} = 22T, = 23T3 = .. . = 2T},

From Figure 13 it is apparent that

S=To+T1+2(Ta+T3+...+Tw)

Ty
2

T T T
=To+ +2(—ZQ+—89+...+2T(1)=%T0.

Solving for Ty, we get Tp = 04S .
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ABSTRACT

Using a computer, counts have been made of the number of TMSs of orders 2
through 15. TMSs, or triangles of modular sums, are related to TADs. TADs
are triangles of absolute differences discussed by Martin Gardner in his book
Penrose Tiles to Trapdoor Ciphers. TMS triangles contain N copies of each
of the integers O, 1, ..., M — 1 arranged in K rows [M xN =K(K + 1)/2],
where each integer above those in the bottom row is the sum (mod M) of the
two integers below it. Among other items presented are the two primitive
solutions for N = 4, M = 30, K = 15. The authors explain aspects of the
counting procedure and some of the underlying mathematics.

Can the integers 1, 2, and 3 be arranged in a triangle (two on the top, one on the
bottom) in such a way that the lower number is the (absolute) difference of the
other two? Of course, and in only the four ways illustrated below, with some being
reflections of others.

3 2 2 3 3 1 1 3
1 1 2 2

These demonstrate a type of “pool ball” triangle or TAD (triangle of absolute
differences). The order-2 (two rows) problem just considered is the beginning of
an investigation suggested by Col. George Sicherman. In Martin Gardner’s words
[1, p. 128], one may ask “For what orders is it possible to form a TAD, where m is
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