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Review of deep learning models and word embeddings



Today

* Review of basic deep learning building blocks
* CNNs
* RNNs

* Word embeddings



Deep learning models



Neural network architectures
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* All network architectures can be used to model images, text,
3D representations, etc.

* Traditionally:
* CNNs for images — scale/translation invariance
* RNNs for sequences (text)

* Transformers were introduced for machine translation
* Now used for images and 3D shapes as well



Modelling Images



Modelling Images
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Modelling Images

Convolutional Neural Networks

A

g a [ —| — TRUCK
- B ] — VAN
. - L n
(1 .
< . ] [] — BIcYCLE
FULLY
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o rerep SOFTMAX

Or AvgPool

Image Credit: MathWorks

Slide credit: Stefan Lee



E ) ] — CAR
3 B | — TRUCK
® i | — vaN
- - -
:—1 —l e

] [] — BICYCLE

FULLY
CONVOLUTION + RELU  POOLING  CONVOLUTION + RELU POOLING FLATTEN FULLY  SOFTMAX

Or AvgPool

Slide credit: Stefan Lee



CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING
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Modelling Images

Grid-based features
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Modelling Images
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Modelling Images

*Considering receptive field it is actually much more like

Slide credit: Stefan Lee



Modelling Images
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Modelling Images
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Modelling Images

ldea: Switch to object detection models as the backbone for image representation
« Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering arxiv.org/abs/1707.07998

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
https://arxiv.org/abs/1506.01497
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Modelling Images

ldea: Switch to object detection models as the backbone for image representation
« Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering arxiv.org/abs/1707.07998
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https://arxiv.org/abs/1707.07998

Modelling Images
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Modelling Images

Image Level Features Spatial / Conv Features Detection Features

ResNet 101 FasterRCNN - ResNet 101

Trained on ImageNet _Trained on Visual Genome

These are almost never fine-tuned for downstream tasks in vision-and-language.

Slide credit: Stefan Lee



ResNet 101 Pre-training on ImageNet
« 1000 object classes (many fine-grained)

Faster R-CNN Pre-training on Visual Genome
* 1600 object classes
* 400 attribute classes




Modelling Sequences



Modelling Sequences

Recurrent Neural Networks

* Ideal for processing sequential data containing possibly long-term dependencies.
* Various implementations (e.g. simple RNN, LSTM, GRU) expose the same AP!
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Modelling Sequences

Recurrent Neural Networks

* Ideal for processing sequential data containing possibly long-term dependencies.
* Various implementations (e.g. simple RNN, LSTM, GRU) expose the same AP!
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Modelling Sequences

Recurrent Neural Networks

* Ideal for processing sequential data containing possibly long-term dependencies.
* Various implementations (e.g. simple RNN, LSTM, GRU) expose the same AP!
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Multi-layer (stacked) RNNs
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Bidirectional RNNs

This contextual representation of “terribly”
has both left and right context!
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Modelling Sequences

CNNs as a fixed-time horizon alternative:
 Parallel computation!
» Tricky encoding.
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Multimodal seg2seq models

» Video captioning (video frames to text)
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Some Notes on Representing Text

Words and Vocabularies

Words exist in a fixed vocabulary, i.e. w € V

Vocabulary includes an UNK token — any out of
vocabulary tokens get mapped to this.
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Some Notes on Representing Text

Quirks of Common Practice
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Some Notes on Representing Text

What is actually input to represent tokens?

* One-hot vector 2 learned representation
» ForV ={cat,dog, fish}, wgisp =[001].

hq

T fish W

RNN 0.2 1 1.5 08 -0.2 1.2
T [001]|-1.3 2 -2 1.2 056 0.1
. 0.13 0.2 095 0.2 -1.3 0.5
fish

Wrisn * W = [0.13 0.2 0.95 0.2 — 1.3 0.5]

Initialize to random vectors and learn the
embeddings during training



Some Notes on Representing Text

What is actually input to represent tokens?

» Use pretrained word embeddings

cat dog « Word2Vec
GloVE
Wrish = GlLoVE(“fish”)
fish

« Can do a mix of these
initialize learned embeddings with pretrained values



Next time

* Multimodal representations



