CMPT 983

Grounded Natural Language Understanding

January 21, 2021 Multimodal representations

Today

- Multimodal representations
 - Joint representations
 - Correlated representations
- Applications using multimodal representations
 - Retrieval
 - Translation

Multimodal representations

Multimodal Embeddings

Figure 5: PCA projection of the 300-dimensional word and image representations for (a) cars and colors and (b) weather and temperature.

"Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models" [Kiros, Salakhutdinov, Zemel TACL 2015]

Multimodal representations

- Joint (fused) representations
 - Single combined representation space
 - Early fusion
 - Can be learned supervised or unsupervised
- Coordinated representations
 - Similarity-based methods (e.g. cosine distance)
 - Structure constraints (e.g. orthogonality, sparseness)
 - Examples: CCA, joint embedding
- Representations can be trained end-to-end for a task

Joint representation

- Simplest version: modality concatenation (early fusion)
- More complex: Deep multimodal autoencoders

Joint representation: Early fusion

Fusion of features / representation

Concatenation

Image credit: Qi Wu

Element wise

Bilinear Pooling

All elements can interact.

More flexible, but lots of weights!

Joint representation: Early fusion

Compact Bilinear Pooling

Project outer product to a lower dimensional space

Avoid direct computation of other product

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding https://arxiv.org/pdf/1606.01847.pdf

Joint representation: Autoencoders

Deep Multimodal Autoencoders

- Useful for conditioning on one modality at test time
- Can be regarded as a form of regularization

Multimodal deep learning [Ngiam et al, ICML 2011]

Joint representation: Autoencoders

Deep Multimodal Autoencoders

- Each modality can be pre-trained
 - using denoising autoencoder
- To train the model, reconstruct both modalities using
 - both Audio & Video
 - just Audio
 - just Video

Multimodal deep learning [Ngiam et al, ICML 2011]

Correlated representations

Canonical correlation analysis (CCA)

• Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation: $\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$

Joint Embeddings

 Models that minimize distance between ground truth pairs of samples

$$min_{f_1,f_2}D\left(f_1(\mathbf{x}_1^{(i)}),f_2(\mathbf{x}_2^{(i)})\right)$$

Canonical Correlation Analysis (CCA)

• Goal: Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation:

$$\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$$

- Finding correlated representations can be useful for
 - Gaining insights into the data
 - Detecting of asynchrony in test data
 - Removing noise uncorrelated across views
 - Translation or retrieval across views

Linear CCA

• Projections of representation

Two views of each instance have the same color

Linear CCA

Classical technique to find linear correlated representations

$$f_1(\mathbf{x}_1) = \mathbf{W}_1^T \mathbf{x}_1 \qquad \mathbf{W}_1 \in \mathbb{R}^{d_1 imes k} \ f_2(\mathbf{x}_2) = \mathbf{W}_2^T \mathbf{x}_2 \qquad \mathbf{W}_2 \in \mathbb{R}^{d_2 imes k}$$

• Select values for the first columns $(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1})$ of the matrices \mathbf{W}_1 and \mathbf{W}_2 to maximize the **correlation of the projections**:

$$(\mathbf{w}_{1,:1}, \mathbf{w}_{2,:1}) = \arg\max\mathbf{corr}(\mathbf{w}_{1,:1}^T\mathbf{X}_1, \mathbf{w}_{2,:1}^T\mathbf{X}_2)$$

• Subsequent pairs are constrained to be uncorrelated with previous components (i.e., for j < i)

$$\mathbf{corr}(\mathbf{w}_{1,:i}^T\mathbf{X}_1, \mathbf{w}_{1,:i}^T\mathbf{X}_1) = \mathbf{corr}(\mathbf{w}_{2,:i}^T\mathbf{X}_2, \mathbf{w}_{2,:i}^T\mathbf{X}_2) = 0$$

Linear CCA

1. Estimate **covariance matrix** with regularization:

$$\Sigma_{11} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1})^{T} + r_{1} \mathbf{I}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{12} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T}$$

$$\Sigma_{22} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2}^{(i)} - \bar{\mathbf{x}}_{2})^{T} + r_{2} \mathbf{I}$$

- 2. Form **normalized covariance** matrix: $\mathbf{T} = \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$ and its singular value decomposition $\mathbf{T} = \mathbf{U} \mathbf{D} \mathbf{V}^T$
- 3. Total correlation at k is $\sum_{i=1}^k D_{ii}$
- 4. The optimal projection matrices are: $\mathbf{W}_1^* = \Sigma_{11}^{-1/2} \mathbf{U}_k$ $\mathbf{W}_2^* = \Sigma_{11}^{-1/2} \mathbf{V}_k$

where \mathbf{U}_k is the first k columns of \mathbf{U} .

Kernel CCA

Use non-linear functions for $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ - Learns functions from any reproducing kernel Hilbert space

- May use different kernels for each view
- Using RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that form clusters in both views
- Pros:
 - Allow for non-linear functions
 - Can produce more highly correlated representations

• Cons:

- KCCA is slower to train
- KCCA model is more difficult to interpret
- Training set need to be stored and referenced at test time

Deep CCA

- Use neural network to represent $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$
- Can be trained end-to-end for a task

Compared with KCCA

- Training set can be disregarded once the model is learned
- Computational speed at test time is fast

Deep CCA

Training a Deep CCA model:

- 1. **Pretrain** the layers of **each side** individually
- 2. **Jointly fine-tune** all parameters to maximize the total correlation of the output layers. Requires computing correlation gradient:
 - Forward propagate activations on both sides.
 - Compute correlation and its gradient w.r.t. output layers.
 - Backpropagate gradient on both sides.

Correlation is a population objective, so instead of one instance (or minibatch) training, requires L-BFGS second-order method (with full-batch)

Canonical Correlation Analysis

Extensions: Deep canonically correlated autoencoders (DCCAE)

Correlated representations

Canonical correlation analysis (CCA)

• Find representations $f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)$ for each view that maximize correlation: $\mathbf{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2)) = \frac{\mathbf{cov}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))}{\sqrt{\mathbf{var}(f_1(\mathbf{x}_1)) \cdot \mathbf{var}(f_2(\mathbf{x}_2))}}$

Joint Embeddings

 Models that minimize distance between ground truth pairs of samples

$$min_{f_1,f_2}D\left(f_1(\mathbf{x}_1^{(i)}),f_2(\mathbf{x}_2^{(i)})\right)$$

Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{||\mathbf{u}||} \cdot \frac{\mathbf{u}'}{||\mathbf{u}'||}$$

Can use different distances

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Discriminative Embeddings

Train network to minimize distance directly!

Correct label (more similar) Other labels (less similar)

Image Embedding

$$\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \mathbf{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

$\mathcal{L}_{C} = \sum \max(0, \alpha - S(\Psi(I_i), \mathbf{u}_{y_i}) + S(\Psi(I_i), \mathbf{u}_{y_c}))$

Take care with signs depending on if D represents similarity or distance

 \mathbb{R}^d

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{||\mathbf{u}||} \cdot \frac{\mathbf{u}'}{||\mathbf{u}'||}$$

Objective Function:

$$\min_{\mathbf{W},\mathbf{U}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W},\mathbf{U},I_{i},y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

[Bengio *et al.*., NIPS'10]

[Weinberger, Chapelle, NIPS'09]

Unified Semantic Embedding

"A Unified Semantic Embedding: Relating Taxonomies and Attributes" (Hwang and Sigal, NIPS 2014)

Adding regularization from ontology / taxonomy over labels

Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

$\mathcal{L}_{S}(m{W},m{U},m{x}_{i},y_{i}) = \sum_{i} \sum_{j=1}^{n} [1+\|m{W}m{x}_{i}-m{u}_{s}\|_{2}^{2}-\|m{W}m{x}_{i}-m{u}_{c}\|_{2}^{2}]_{-i}$

Label Embedding

$$I((n) \cap I) = I \cap I$$

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$
Slide credit: Leonid Sigal

Unified Semantic Embedding

Attributes: has(zebra, Stripes)

Attributes embedded as (basis) vectors in the semantic space

Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding

Attribute Embedding

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{R}(\mathbf{U}, \mathcal{B}) + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Unified Semantic Embedding

Image Embedding

$$\Psi_I(I_i) = \mathbf{W} \cdot CNN(I_i) : \mathbb{R}^D \to \mathbb{R}^d$$

Label Embedding ••••

$$\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$$

Attribute Embedding

$$\Psi_A(attr_i) = \mathbf{a}_i : \{1, ..., A\} \to \mathbb{R}^d, s.t. ||\mathbf{a}_i||^2 \le 1$$

Similarity in Embedding Space

$$D(\mathbf{u}, \mathbf{u}') = ||\mathbf{u} - \mathbf{u}'||_2^2$$

Objective Function:

$$\mathcal{R}(oldsymbol{U},oldsymbol{B}) = \sum_c^\mathsf{C} \|oldsymbol{u}_c - oldsymbol{u}_p - oldsymbol{U}^A oldsymbol{eta}_c\|_2^2 + \gamma_2 \|oldsymbol{eta}_c + oldsymbol{eta}_o\|_2^2.$$

each category is a parent + sparse subset of attribute bases

$$\min_{\mathbf{W}, \mathbf{U}, \mathbf{B}} \sum_{i}^{N} \mathcal{L}_{C}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{S}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \mathcal{L}_{A}(\mathbf{W}, \mathbf{U}, I_{i}, y_{i}) + \frac{\mathcal{R}(\mathbf{U}, \mathcal{B})}{\mathcal{R}(\mathbf{U}, \mathcal{B})} + \lambda_{1} ||\mathbf{W}||_{F}^{2} + \lambda_{2} ||\mathbf{U}||_{F}^{2}$$

Slide credit: Leonid Sigal

Animals with attributes

(we assume no association between classes and attributes)

[Lampert, Nickisch, Harmeling, CVPR'09]

Interpretable representations

Results with AWA (with latent attributes)

Model benefits:

- highly interpretable
- efficient in learning

Otter quadrapedal flippers furry Musteline Mammal ocean Skunk stripes Deer spots nests longneck yellow Deer hooves muscle Moose arctic stripes black

alternative attribute-based representations

From words to sentences

(i,c): matching

 $(\hat{i}, c), (i, \hat{c})$: not matching

Triplet based ranking loss:

$$\ell_{SH}(i,c) = \sum_{\hat{c}} [\alpha - s(i,c) + s(i,\hat{c})]_{+} + \sum_{\hat{i}} [\alpha - s(i,c) + s(\hat{i},c)]_{+}$$

GraphNN

Applications

Retrieval

- Text to image/video retrieval
- Image/video to text retrieval

MS COCO

A large bus sitting next to a very tall building.

Flicker 8k, Flicker 30k

- A biker in red rides in the countryside.
- A biker on a dirt path.
- A person rides a bike off the top of a hill and is airborne.
- A person riding a bmx bike on a dirt course.
- The person on the bicycle is wearing red.

Retrieval

"This is a large black bird with a pointy black beak."

	Top-1 Acc (%)		AP@50 (%)	
Embedding	DA-SJE	DS-SJE	DA-SJE	DS-SJE
ATTRIBUTES	50.9	50.4	20.4	50.0
WORD2VEC	38.7	38.6	7.5	33.5
BAG-OF-WORDS	43.4	44.1	24.6	39.6
CHAR CNN	47.2	48.2	2.9	42.7
CHAR LSTM	22.6	21.6	11.6	22.3
CHAR CNN-RNN	54.0	54.0	6.9	45.6
WORD CNN	50.5	51.0	3.4	43.3
WORD LSTM	52.2	53.0	36.8	46.8
Word Cnn-Rnn	54.3	56.8	4.8	48.7

CUB Birds

"Learning Deep Representations of Fine-Grained Visual Descriptions" (Reed et al, CVPR 2016)

Retrieval

Match image region to language

Natural Language Object Retrieval (Hu et al, CVPR 2016)

Match video frames to language

Input Query: The girl talks before she bends down.

Localizing moments in video with temporal language (Hendricks et al, EMNLP, 2018)

Retrieval: Phrase localization

Learning Two-Branch Neural Networks for Image-Text Matching Tasks (Wang et al, TPAMI 2018)

Translation (image to text)

Recurrent Neural Network

Convolutional Neural Network

Translation (text to image)

This flower has small, round viole petals with a dark purple center

Generator Ne

Translation (text to image)

Text and shape

Text2shape: Generating shapes from natural language by learning joint embeddings Chen et al, ACCV 2018

Words and actions

Next time

- Paper presentations and discussion (Monday 1/25)
 - (Ke) DeVISE: A Deep Visual-Semantic Embedding Model
 - Deep Multimodal Embedding: Manipulating Novel Objects with Pointclouds, Language and Trajectories
- Paper critiques due by midnight Sunday 1/24