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Multimodal representations



Today

* Multimodal representations
* Joint representations
* Correlated representations

* Applications using multimodal representations
* Retrieval
* Translation



Multimodal
representations



Multimodal Embeddings

(a) Colors (b) Weather

Figure 5: PCA projection of the 300-dimensional word and image representations for (a) cars and
colors and (b) weather and temperature.

“Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models”
[Kiros, Salakhutdinov, Zemel TACL 2015]



Multimodal representations

- Joint (fused) representations ® o900 .

* Single combined representation space BN e sy P —

|[ J[ J ( ."'.‘JI Optional

e Early fusion 99::99/99::99 99::99)) ntermediate

* Can be learned supervised or unsupervised (00--00) (00--00) (00--00) Unimod
» Coordinated representations fi(x1) fa(x2)

* Similarity-based methods (e.g. cosine distance)  (00-:00] ~ (00:-08) coorinsted

« Structure constraints (e.g. orthogonality, if(_._._._.f;_._) _____ @e-—e@) P

sparseness)  TTTTITTTTTTITIIIoAETS
« Examples: CCA, joint embedding (@9:'@@' [O@";'CQ) Unimodal

* Representations can be trained end-to-end
for a task

Adapted from slide by: Louis-Philippe Morency



Joint representation

» Simplest version: modality concatenation (early fusion)
* More complex: Deep multimodal autoencoders

Joint

Optional
termediate

.(00 -00) (00::-00) (00 oo),,n

_______________________________

00---00) (00::-00) (@0::-@@®) Unimodal

X1 X7 Xp




Joint representation: Early fusion

Fusion of features / representation

Bilinear Pooling

Concatenation Element wise |

/ Sum Product
®
I/ / .(/ .{ Outer product
4 VAR :

/ = /} " z=Wlzr® (]|

. “ 3}00 zol43 2&48
12.5 billion 11!

Image credit: Qi Wu

All elements can interact.
More flexible, but lots of weights!
Adapted from slide by: Stefan Lee



Joint representation: Early fusion

Compact Bilinear Pooling

Project outer product to a lower
dimensional space

Visual Vector Count Sketch of Visual Vector
X, (X, |- [ X N 0 x {0 x,[0 |0 [x, o _
s ~ Avoid direct computation of other
c FFT product
o
‘_3 O FFT-
| -
8 /FFT\
. J
d, (95| |9z ¥ -0,/ 0 |...19,]0 [0 |9.,|9
Textual Vector Count Sketch of Textual Vector

Figure 2: Multimodal Compact Bilinear Pooling

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding_https://arxiv.org/pdf/1606.01847.pdf

Slide credit: Stefan Lee


https://arxiv.org/pdf/1606.01847.pdf

Joint representation: Autoencoders

Deep Multimodal Autoencoders | | | |
Audio Reconstruction Video Reconstruction

* Useful for conditioning on one (00 ... 00] (0O - OO]

. . t |
modality at test time (00 -+- 00) (00« 00)

« Can be regarded as a form of ~__

regularization (00 - 00 |2

? Representation

Q@ ++- 00 |

I
(00 +++ 00|

Video Input

Multimodal deep learning
[Ngiam et al, ICML 2011]

Adapted from slide by: Leonid Sigal



Joint representation: Autoencoders

Deep MU|t|mOda| AutoeﬂCOdel’S Audio Reconstruction Video Reconstruction
: : OO eee OO QQ eee OO
* Each modality can be pre-trained [ § ) § |
* using denoising autoencoder (0@ - 0] (@0 - OO |
e To train the model, reconstruct both \/:hued
mOdalitieS USing [OO s OO]Representation

e both Audio & Video /\

(@@ ..- 20 (0@ :-- 0]

* just Audio x 4
e just Video (00 ¢e» OO (00 s+ QO]
Audio Input Video Input

Multimodal deep learning
[Ngiam et al, ICML 2011]

Adapted from slide by: Louis-Philippe Morency



Correlated representations

Canonical correlation analysis (CCA)
* Find representations f1(X1), f2(X2) for each view that
maximize correlation: cov(f1(x1), f2(x2))

corrthiba) 2lxe)) = T ) - var (s (x0))

Joint Embeddings

* Models that minimize distance between ground truth pairs of
samples

ming, s, D (fl (Xgi))a f2 (ng)))



Canonical Correlation Analysis (CCA)

» Goal: Find representations f1(x1), fo(x2) for each view that
maximize correlation:

corr(fi(x1), f2(x2)) = cov (f1(x1), f2(x2))
(f( )af( )) \/Var(f1(X1))°Var(f2(X2))

» Finding correlated representations can be useful for
* Gaining insights into the data
 Detecting of asynchrony in test data
« Removing noise uncorrelated across views
* Translation or retrieval across views




Linear CCA

* Projections of representation

A(XL) =wi Xy f2(Xg) = w3 X
X1 € R2 Xo € R2

Two views of each instance have the same color

Slide credit: Andrew, Arora, Bilmes, Livescu



Linear CCA

» Classical technique to find linear correlated representations

fi(x1) = Wix Wi e R%
where
fa(x2) = W3 xy W, € Rézxk

» Select values for the first columns(wi .1, Wa..1) of the matrices
W and W5 to maximize the correlation of the projections:

(W11, Wo.1) = arg max corr(wleXl, w%jlez)

* Subsequent pairs are constrained to be uncorrelated with
previous components (i.e., for j < 1)

corr(wrf,n-Xl, W{:le) = corr(w%j:in, wg::sz) =0



Linear CCA

1. Estimate covariance matrix with regularization:

N N

1 5 o 1 N a5
Y1 = —N ] izE 1(X§ ) _ Xl)(Xg ) _ Xl)T + 7“11 Yo = —N 1 izg 1(X§ ) _ Xl)(Xg) — X2)T
L . . A .
12 — —N T E_ (ng) — il)(xg) e )_CQ)T 222 — —N 1 E (Xg’) = )_(2)(3(57’) — )_(2)T + 7"2:[

2. Form normalized covariance matrix: T = Z_l/ 22122 12 and its singular
value decomposition T = UDV?®
k

3. Total correlation at k is ) _ Di

1=1
4. The optimal projection matrices are: W7 = 21_11/ 2Uk

Wi = 2%V,

where Uy is the first k columns of U.

Slide credit: Andrew, Arora, Bilmes, Livescu



Kernel CCA

Use non-linear functions for f1(x1), fa(x2)
- Learns functions from any reproducing kernel Hilbert space

- May use different kernels for each view

- Using RBF (Gaussian) kernel in KCCA is akin to finding sets of
instances that form clusters in both views

* Pros:
* Allow for non-linear functions
 Can produce more highly correlated representations

* Cons:
« KCCA is slower to train
« KCCA model is more difficult to interpret
 Training set need to be stored and referenced at test time



Deep CCA

e Use neural network to

represent f;(x1), fa(x2)

e Can be trained end-to-end
for a task

Compared with KCCA

* Training set can be
disregarded once the
model is learned

» Computational speed at
test time is fast

{Canonical Correlation Analysis]

0 0

Q/:%:\C 0%:5%:\0
g

s>

el
" o Q/ O O ¢

View 1 View 2

Slide credit: Andrew, Arora, Bilmes, Livescu



Deep CCA

Training a Deep CCA model: (Canonical Correlation Analysis]

1. Pretrain the layers of each side individually ) )

' A. . .

2. Jointly fine-tune all parameters to maximize / % \ M \

the total correlation of the output layers.
Requires computing correlation gradient: . . o 0 o 0 0 ¢
— Forward propagate activations on both sides. %2
— Compute correlation and its gradient w.r.t. output layers. . . ‘ ‘ ‘ ‘ ‘ ‘
— Backpropagate gradient on both sides. E%Ei %i
Correlation is a population objective, so instead . o . . . . ’ @
of one instance (or minibatch) training, requires \ / \ /
L -BFGS second-order method (with ful-batch) @ @ @ o O ©
View 1 View 2

Extensions: Deep canonically correlated autoencoders (DCCAE)

Slide credit: Andrew, Arora, Bilmes, Livescu



Correlated representations

Canonical correlation analysis (CCA)
* Find representations f1(X1), f2(X2) for each view that
maximize correlation: cov(f1(x1), f2(x2))

corrthiba) 2lxe)) = T ) - var (s (x0))

Joint Embeddings

* Models that minimize distance between ground truth pairs of
samples

ming, s, D (fl (Xgi))a f2 (ng)))



Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding EEEL]

U(I;) = W-CNN(I;;©): R — R?

Label Embedding O]
Uy (word;) =w; : {1,...,L} — R4

Similarity in Embedding Space

u u’

Duu) = = .
(%) = Tl T

Can use different distances

D(u,u) = [Ju—u'[[3

Adapted from slide by: Leonid Sigal



Discriminative Embeddings

Image Embedding L]

U(I;) =W -CNN(;®): RP - R*

Label Embedding CXK]
Uy (word;) =u; : {1,..,L} — R

Similarity in Embedding Space

/

Correct label Other labels
(more similar) (less similar)

Lo =) max(0,o — S(U(L),uy,) + S(U(;), uy,))

Take care with signs depending on if D
represents similarity or distance R4

, u u
DU ) = g ]
N
$i%Z£C(W, U, I;,v:) + MW % + X2||U| % | [ Bengio et al.,, NIPS'10]
’ i [ Weinberger, Chapelle, NIPS'09 ]

Adapted from slide by: Leonid Sigal



Unified Semantic Embeddin

h ) : . : . : ies: bigcat
“A Unified Semantic Embedding: Relating Taxonomies and Attributes’ gwang and Sigal, NIPS 2014) Taxonomies: bigca

Adding regularization from ontology / taxonomy over labels tiger/ }

Image Embedding CEEL]
LsW,U,zi,yi) = Y > [+ Wi —u,3 — [|[Wa; — ulf3]-
U;(I;)=W-CNN(L): RP - R? SEP,, cES, ——

Label Embedding CXOEK]
U (word;) =u; : {1,...,L} — R

Similarity in Embedding Space

D(u,u’) = [[u—u[|3

Objective Function:

N

Slide credit: Leonid Sigal



Unified Semantic Em bedd”’]g Attributes : has(zebra, Stripes)

Attributes embedded as (basis) vectors in the semantic space

Image Embedding LR

U;(;) =W -CNN(IL;) : RP - R?

Label Embedding CXEK]
Uy (word;)) =u; : {1,...,L} — R4

Attribute Embedding
U4 (attr;) = a; : {1,..., A} 5> R% st [|las|[? < 1

\ Ue quus

Wmammalia

Similarity in Embedding Space

D(u,u’) =[lu—u'|l3

Objective Function:

wW,U,B

N
min ZEC(W,U,L,yZ)—I—ﬁs(W,U,I,,yz)-I—EA(W,U,L,yz)—|—R(U,B) +)\1||W||%1—|—)\2||U||%1

Slide credit: Leonid Sigal



Unified Semantic Embedding [ Hwang et al., 2014]

C
R(U,B) =) |luc —up — U*Be||5 + 72/18: + Boll3-

(o

Image Embedding [T each category is a parent + sparse

U;(I;) =W -CNN(IL;) : RP —» R subset of attribute bases R

Label Embedding CXJEK]
U (word;) =u; : {1,...,L} — R

Attribute Embedding
Ua(attr;) = a; : {1,..., A} - R s.t. [|lai]]* < 1

Similarity in Embedding Space

Wmammalia

D(u,u') = [lu—v'[[3

Objective Function:

N
WmIiJnB ZEC(W7 UaIwyl) + ﬁs(w’ U7 Iwyl) + EA(W7 U7 IZayz) + R(U7 B) + )‘1||W||%’ + )‘2||U||%7

Slide credit: Leonid Sigal



Animals with attributes

(we assume no association between classes and attributes)

Labeled Images Semantic Attributes

blue

brown 4 % %

oo Wy N 0 Class Ontology
Orr&;dg W g
yellow

. ¢ ; — patches WordNet _
Polar Bear 1 ‘ ; , A lexical database for English

Paws 50 Animal Classes
longlegs
longneck are Leaves
tail
chew teeth
meat teeth
buck teeth
horns
claws
tusks

30,475 Images 85 Attributes

50 Animal Classes [ Lampert, Nickisch, Harmeling, CVPR’09 |

Slide credit: Leonid Sigal



Interpretable representations

Results with AWA (with latent attributes)

Model benefits:
* highly interpretable

e efficient in learning

zebra
giant panda

I
| i

I-‘II'I.
inm

polar bear

X oO0E2VD VNUODSHNCO=nc Vununady —ccccuunuy
u_-g:; Oﬁmgﬂ-"‘swtm‘:‘gmzmabwbg CHBEBUL C3zN
©c= CL—-CQ_Q.Dq)w E0o0 c > 0O =00V 7]
3;-09 S TESFSFEFTc So—8coca vLLYols
2 5 >©m B ®O 5 =c. 0 gEXECVYF

o c > el = < wmu-—

] _CCUDE

alternative attribute-based representations

quadrapedal
flippers
furry
ocean

l stripes \

spots
nests
longneck
yellow
hooves )

Musteline Mammal

muscle

arctic
stripes
black

Slide credit: Leonid Sigal



From words to sentences

Sentence embedding

:
U (word;) =u; : {1,...,L} — R? \IJL(wl, « .oy wk;)
Shared Embedding Space
e ke Composition
words —_— P ,
Function
(characters)
Average
BoW (FCN) — , Py
RNN Lf"’f ‘ o —.-"” ¢ S=oW)TW¥(t)
C N N ‘ ; > Sap > San + margin
Transformers
GraphNN (i, c) : matching

Triplet based ranking loss:

(i, ¢), (i, ¢): not matching

lsy(i,c) = Z[a —s(i,c)+s(i,6)]+ + Z[a —s(i,c) +s(i,0)]+



Applications



Retrieval MS COCO

e Text to image/video retrieval
* Image/video to text retrieval

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.

Flicker 8k, Flicker 30k

A biker in red rides in the countryside.
A biker on a dirt path.
A person rides a bike off the top of a hill and is airborne.

A person riding a bmx bike on a dirt course.

The person on the bicycle is wearing red.




Retrieval

Accumulate
matching score L8'56
S| i T w523

o

-t The beak is yellow and pointe@ 0.03

Top-1 Acc (%) AP@50 (%)
Embedding DA-SJE | DS-SJE | DA-SJE | DS-SJE
ATTRIBUTES 50.9 50.4 20.4 50.0
WORD2VEC 38.7 38.6 D 33.5
BAG-OF-WORDS 43.4 44.1 24.6 39.6
CHAR CNN 47.2 48.2 2.9 42.7
CHAR LSTM 22.6 21.6 11.6 22.3
CHAR CNN-RNN 54.0 54.0 6.9 45.6
WORD CNN 50.5 51.0 3.4 43.3
WORD LSTM 52.2 53.0 36.8 46.8
WORD CNN-RNN 54.3 56.8 4.8 48.7
CUB Birds

“Learning Deep Representations of Fine-Grained Visual Descriptions” (Reed et al, CVPR 2016)




Retrieval

Match image region to

language

A

/ input image \ /~ candidate ™\
& j e location set
R, 3 - 3 object
“ g ok : proposal E
f I
natural language query: iy
white car on the right | global spatial local
context || configuration || descriptor

/ output object retrieval result \
2t s v ] -

Natural Language Object Retrieval

Spatial Context Recurrent ConvNet

/ candidate
scores

0.2

top score
candidate

(Hu et al, CVPR 2016)

0.1

0.4

0.0

LU CER

=]

(3]

N

i

g

Match video frames to language

Input Video
llllllllllllllllllllllllllllllllllllllll

BT

Base Moment Proposed Proposed Proposed

Context Context Context
Y
Visual Feature
Embedding (f,) o
»  Similarity (f,) —» Score
Language Feature
Embedding (f, )

Input Query: The girl talks before she bends down.

Localizing moments in video with temporal language
(Hendricks et al, EMNLP, 2018)



Retrieval: Phrase localization

A group of eight campers sit around
a fire pit trying to roast marshmallows
on their sticks.

X: regions

R

positive regions

negative regions

Y: “afire pit”

Embedding Network

d( , “afire pit”) + m < d( , “a fire pit”)
d( E.’ , “afire pit”) + m < d( , “campers”)

Embedding Loss
b 4 A\ N

_’H >I

= 3
) H % »H’I

= Hﬂ—%Iﬁi»l
= ,
< D> >
=

X
m

=
c

I*

Similarity Network
, “a fire pit”: +1
, “afire pit”: -1

FC layer

?

Element-wise product

RelU

v

Learning Two-Branch Neural Networks for Image-Text Matching Tasks

(Wang et al, TPAMI 2018)

‘—.

L2 norm

Vi



Translation (image to text)

Recurrent Neural Network
“straw” “hat” END

® ® O

Won
: Whn '
| (O)—(O e

‘thz:

O O O

START “Straw" “hat"

Convolutional Neural Network

“Deep Visual-Semantic Alignments for Generating Image Descriptions” (Karpathy and Fei-Fei, CVPR 2015)

33



Translation (text to image)

this small bird has
a yellow breast,

brown crown, and
black superciliary

an all black bird
GT with a distinct

thick, rounded bill.
wer has small, round violet

ith a dark purple center

This flower has small, round viole
petals with a dark purple center

PG R
I )

Generator Ne i-riminator Network

“Generative Adversarial Text to Image Synthesis” (Reed et al, ICML 2016) 34



Translation (text to image)

this small bird has
an all black bird
; e a yellow breast,
GT with a distinct
. . brown crown, and
thick, rounded bill. i
black superciliary

“Generative Adversarial Text to Image Synthesis” (Reed et al, ICML 2016)

35



Text and shape

a) 3D shapes and natural language descriptions

)

3 B¢

®

Circular glass coffee table with
two sets of wooden legs that
clasp over the round glass edge.

@

A brown wooden moon shaped @
table with three decorative legs
with a wooden vine shaped
decoration base connecting

the legs.

Dark brown wooden chair
with adjustable back rest and
gold printed upholestry.
Designed for comfort.

®

b) Joint embedding of text and 3D shapes

-

/~ Learning by association "\

o—20

% ®@\@@

Metric learning

=

@

c1) Text-to-shape retrieval

@o

- J
~

“brown wooden”

\“round table”

3

fCombined multimodal association modeI\

® 60

.

(It’s a dark brown,

upholstered chair
with arms and ==l
a curved )

rectangular back

c2) Text-to-shape generation

(

A dark brown wooden
dining chair with red
padded seat and
round red pad back

Text2shape: Generating shapes from natural language by learning joint embeddings

Chen et al, ACCV 2018




Words and actions Lrn=min Y 3 (1 - a(a, )+

maz{0, s(az,v;)} + max{0, s(a;,v:)}

Pairwiie Ranking Lpual = Lpr+A*xLoE
oss

->

fully
connected
weights

Action Embedding
1
1

Word Embedding

Lstm1  LSTM2

\

e 11
i '

1 T
Nearest Neighbor
Action2Vec Word2Vec Word2Vec from videgos
f T 1 :

“piano” “violin”

Action2Vec: A Crossmodal Embedding Approach to Action
Learning (Hahn,et al, CVPR Deep Vision Workshop 2018)




Next time

« Paper presentations and discussion (Monday 1/25)
o (Ke) DeVISE: A Deep Visual-Semantic Embedding Model

- Deep Multimodal Embedding: Manipulating Novel Objects with Point-
clouds, Language and Trajectories

« Paper critiques due by midnight Sunday 1/24

38



