CMPT 983

Grounded Natural Language Understanding

February 28, 2021 Pretraining with transformers

Today

- Pretraining with transformers
 - Review of transformers
 - Review of language pretraining with transformers (BERT)
 - Multimodal transformers

Review of Transformers

Transformers are hot!

10 Novel Applications using Transformers [DL]

Transformers have had a lot of success in training neural language models. In the past few weeks, we've seen several trending papers with code applying Transformers to new types of task:

- **Image Synthesis ⊗** Esser et al. (2020)
- Transformer for Multi-Object Tracking Sun et al. (2020)
- Transformer for Music Generation & Hsiao et al. (2021)
- Transformer for Dance Generation with Music & Huang et al. (2021)
- Transformer for 3D Object Detection & Bhattacharyya et al. (2021)
- Transformer for Point-Cloud Processing & Guo et al. (2020)
- Transformer for Time-Series Forecasting & Lim et al. (2020)
- Transformer for Vision-Language Modeling Thang et al. (2021)
- Transformer for Lane Shape Prediction & Liu et al. (2020)
- **Image:** Transformer for End-to-End Object Detection **⊘** Zhu et al. (2021)

PapersWithCode newsletter (1/20/2021) https://paperswithcode.com/newsletter/3

Transformers

- NIPS'17: Attention is All You Need
- Originally proposed for NMT (encoderdecoder framework)
- Key idea: Multi-head self-attention
- No recurrence structure so training can be parallelized

Modelling Sequences -- Transformers

Scaled Dot-Product Attention

self-attention

Self-attention

• Attention (correlation) with different parts of itself

• Transformers: modules with scaled dot-product self-attention

Types of attention scores

Attention function, *f*

$$a_{i} = g(\mathbf{c}_{i}, \mathbf{z})$$

$$\alpha = \operatorname{softmax}(\mathbf{a})$$

$$\hat{\mathbf{c}} = \sum_{i=1}^{k} \alpha_{i} \mathbf{c}_{i}$$

• Dot-product attention:

$$g(c_i, z) = z^{\top} c_i$$

Scaled dot-product attention:

$$g(\mathbf{c}_i, z) = z^{\top} \mathbf{c}_i / \sqrt{d}$$

- Bilinear / multiplicative attention: $g(c_i, z) = z^\top W c_i \in \mathbb{R}$
 - where W is a weight matrix
- Additive attention (essentially MLP): $g(c_i, z) = v^{\top} \tanh (W_1 c_i + W_2 z)$ where W_1 , W_2 are weight matrices and v is a weight vector

Query-key-value view of attention

Attention function, f $a_i = g(\mathbf{c}_i, \mathbf{z})$ $\alpha = \operatorname{softmax}(\mathbf{a})$ $\hat{\mathbf{c}} = \sum_{i=1}^k \alpha_i \mathbf{c}_i$ Attention function, f $\alpha_i = g(\mathbf{k}_i, \mathbf{q})$ $\alpha = \operatorname{softmax}(\mathbf{a})$ $\hat{\mathbf{v}} = \sum_{i=1}^k \alpha_i \mathbf{v}_i$

Projected query, key, value

$$\begin{array}{cccc}
\boldsymbol{q} &= W_{Q} \mathbf{z} & \boldsymbol{Q} &= W_{Q} \mathbf{Z}^{T} \\
\boldsymbol{k}_{i} &= W_{K} \mathbf{c}_{i} & \longrightarrow & K &= W_{K} \mathbf{C}^{T} \\
\boldsymbol{v}_{i} &= W_{V} \mathbf{c}_{i} & V &= W_{V} \mathbf{C}^{T}
\end{array}$$

Matrix form

Scaled Dot Product Attention

Scaled Dot-Product Attention

Let $X \in \mathbb{R}^{M \times d_X}$ be a matrix of context vector Let $Y \in \mathbb{R}^{N \times d_Y}$ be a matrix of input vectors

SDPAttention(X,Y):

$$Q = W_{Q} X^{T} \qquad W_{Q} \in \mathbb{R}^{d_{h} \times d_{X}}$$

$$K = W_{K} Y^{T} \qquad W_{K} \in \mathbb{R}^{d_{h} \times d_{Y}}$$

$$V = W_{V} Y^{T} \qquad W_{K} \in \mathbb{R}^{d_{V} \times d_{Y}}$$

$$Return \quad \hat{V} = softmax \left(\frac{Q^{T} K}{\sqrt{d_{h}}}\right) V$$

 $\hat{V} \in \mathbb{R}^{M \times d_V}$ be a matrix of attended values

Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf

Modelling Sequences -- Transformers

Scaled Dot-Product Attention

self-attention

SDPAttention(Y, Y):

Transformers: Encoding position

SDPAttention(Y, Y):

Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf

Transformers

- Encoder: Multi-headed self-attention
- Decoder
 - Masked self-attention

- Cross attention
 - queries: previous decoder layer
 - keys/values: output of encoder
- Autoregressive decoding

Transformers

- Stacked into multi-layers
- Byte-pair encoding (BPE) / Word pieces
 - Subwords:
- Learning rate with warmup and decay

 Label smoothing: one-hot vector + noise The Annotated Transformer http://nlp.seas.harvard.edu/2018/04/03/attention.html A Jupyter notebook which explains how Transformer works line by line in PyTorch!

Encoder Layer 6 Encoder Layer 5 Encoder Layer 4 Encoder Layer 3 Encoder Layer 2 Encoder Layer 1

Other useful resources

Pytorch (https://pytorch.org/docs/stable/nn.html#transformer-layers

nn.Transformer:

```
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
```

nn.TransformerEncoder:

```
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
```


RNNs vs CNNs vs Transformers

Complexity of transformers

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\grave{k}\cdot n\cdot \acute{d^2})$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

n: sequence length, d: representation dimensionality, k: kernel width, r: neighborhood size

Language modeling with transformers

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

Trained on large text corpus with self-supervised objectives and then transferred.

 BERT (built on Transformer encoders) • GPT-2 (built on Transformer decoders)

Pretraining

Task-specific fine-tuning

Pretraining

- Big pile of data!
- Lots of resources to train!

Task-specific fine-tuning

- Small amount of annotated data specific to a task
- Start with pre-trained model

Pretraining

- Pretraining using classification
 - Vision backbones on ImageNet
 - Great but requires labeled images!
- Pretraining with autoencoders
 - Just find lots of data online
- Pretraining by masking this is what we will look at

Pretraining for language

Recall: How are word embeddings learned?

Word2Vec:

- Skip gram: predict context words given center word
- CBOW: predict center word given context words

Pretraining for language

Goggle

- how is the weather in new
- Q how is the weather in new york
- A how is the weather in new orleans
- Q how is the weather in new orleans in october
- Q how is the weather in new jersey
- Q how is the weather in new york in october
- A how is the weather in new orleans in november
- Q how is the weather in new orleans in december
- Q how is the weather in new orleans in september
- A how is the weather in new mexico
 - how is the weather in new york in september

Language modeling

Predict probability of a sequence (of tokens)

$$P(w_1w_2\dots w_n) = \prod P(w_i|w_1\dots w_{i-1})$$

• Traditionally used statistical n-grams

$$P(w_i|w_1...w_{i-1}) \approx P(w_i|w_{i-k}...w_{i-1})$$

Now with neural models

$$P(w_i|w_1...w_{i-1}) \approx f(w_i|\phi(w_1...w_{i-1}))$$

Can mask out any word

$$P(w_i|w_1...w_{i-1}w_{i+1}...w_n)$$

 $\approx f(w_i|\phi(w_1...w_{i-1}w_{i+1}...w_n))$

Like Word2Vec's CBOW

Masked Language Modeling

Example: my dog is hairy, we replace the word hairy

80% of time: replace word with [MASK] token

```
my dog is [MASK]
```

10% of time: replace word with random word

```
my dog is apple
```

 10% of time: keep word unchanged to bias representation toward actual observed word

```
my dog is hairy
```

Modelling Sequences -- Transformers

- Two training objectives:
 - Masked Language Modelling
 - Next Sentence Prediction

Pre-training

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/pdf/1810.04805.pdf

BERT performance

Two model sizes

- BERT_{BASE} (L=12, H=768, A=12, Total Parameters=110M) BERT_{LARGE} (L=24, H=1024, A=16, Total Parameters=340M)
- Does well for several tasks!

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

All of these models are Transformer models

ELMo Oct 2017 Training: 800M words 42 GPU days

GPT June 2018 **Training** 800M words 240 GPU days

OpenAI

BERT Oct 2018 **Training** 3.3B words 256 TPU days ~320-560 **GPU days**

GPT-2 Feb 2019 **Training**

40B words ~2048 TPU v3 days according to a reddit thread

XL-Net, ERNIE, Grover RoBERTa, T5 July 2019—

GTP (Generative pretrained transformer)

Improving language understanding by generative pre-training (Radford et al, 2018)

GTP

Machine Translation

I	am	а	student	<to-fr></to-fr>	je	suis	étudiant
let	them	eat	cake	<to-fr></to-fr>	Qu'ils	mangent	de
good	morning	<to-fr></to-fr>	Bonjour				

GTP models

• GTP

- Improving language understanding by generative pre-training (Radford et al, 2018)
- Large language model with transformers with fine-tuning!
- Trained on BooksCorpus (800M words), 117M parameters (12 layers)

• GTP-2

- Language Models are Unsupervised Multitask Learner (Radford et al, 2019)
- Trained on WebText (40B words), 1.5B parameters (48 layers)
- No fine-tuning, few-shot learning

• GTP-3

- Language Models are Few-Shot Learners (Brown et al, 2020)
- Trained on Web+Books+Wikipedia (300B words), 175B parameters (96 layers)

Few-shot learning

- Few-shot
 - A few examples are provided at test time
- One-shot (1 training example)
- Zero-shot (0 training examples)

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
Translate English to French: ← task description

cheese => ← prompt
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer 
examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 
prompt
```


Pretraining with transformers for vision and language

Pretraining for images

- Image generation as autoregressive sequence modeling Use Transformers! $\log p(x) = \sum_{t=1}^{h \cdot w \cdot 3} \log p(x_t \mid x_{< t})$

Image Transformer, Parmar et al, ICML 2018

Pretraining for images

- Image generation as autoregressive sequence modeling
 - Use Transformers!
- RGB values modeled as categorical or ordinal values
 - Each channel is embedded
 - Position is embedded
- Local attention

Query Block

Local 2D Attention

Image Transformer, Parmar et al, ICML 2018

Image GPT

an intermediate or Autoregressive Masked final layer 2 3 (a) Autoregressive (b) BERT (a) Linear Probe Cat (b) Finetune **Target Target** Dog Cat

Classify using

features from

Generative Pretraining from Pixels, Chen et al, ICML 2020 https://openai.com/blog/image-gpt/

Pretraining for 3D shapes

- Mesh generation as autoregressive sequence modeling
 - Use Transformers!
- Model 3D shapes as n-gons (polygons)
- Decompose mesh-generation into generating vertices and then faces

PolyGen: An Autoregressive Generative Model of 3D Meshes, Nash et al, ICML 2020

Pretraining for shapes

Vertex Model

$$p(\mathcal{V}^{ ext{seq}}; heta) = \prod_{n=1}^{N_V} p(v_n|v_{< n}; heta)$$

Face Model

$$p(\mathcal{F}^{ ext{seq}}|\mathcal{V}; heta) = \prod_{n=1}^{N_F} p(f_n|f_{< n},\mathcal{V}; heta)$$

PolyGen: An Autoregressive Generative Model of 3D Meshes, Nash et al, ICML 2020

Pretraining for shapes

• Mesh pointer network for predicting vertex for a face

(n = end of face, s = stop)Pointer **Embedding** Vertex Vertex **Embeddings** Scores e_n Softmax e_2 e_4 Dot Product

PolyGen: An Autoregressive Generative Model of 3D Meshes, Nash et al, ICML 2020

Pretrained representations for vision and language

Image represented as

- series of image region features (extracted from pre-trained object detection network)
- Region position encoded as 5d vector

Pretrained representations for vision and language

Predict semantic class distribution

Trained on

- Conceptual captions (~3.3M images with captions cleaned from alt-text labels)
- Two tasks to predict:
 - masked out words and semantic class distribution for masked out image regions
 - Is the image/description aligned?

Pretrained representations for vision and language

	VQA [3]	VCR [25]			RefCOCO+ [32]			Image Retrieval [26]			ZS Image Retrieval		
Method	test-dev (test-std)	Q → A	QA→R	Q→AR	val	testA	testB	R1	R5	R10	R1	R5	R10
DFAF [36]	70.22 (70.34)	-	-	-	-	-	-	-	-	-	-	-	-
≦ R2C [25]	-	63.8 (65.1)	67.2 (67.3)	43.1 (44.0)	-	-	-	-	-	-	-	-	-
MAttNet [33]	-	-	-	-	65.33	71.62	56.02	-	-	-	-	-	-
SCAN [35]	-	-	-	-	-	-	-	48.60	77.70	85.20	-	-	-
Single-Stream [†]	65.90	68.15	68.89	47.27	65.64	72.02	56.04	-	-	-	-	-	-
Single-Stream	68.85	71.09	73.93	52.73	69.21	75.32	61.02	-	-	-	-	-	-
Õ _{ViLBERT†}	68.93	69.26	71.01	49.48	68.61	75.97	58.44	45.50	76.78	85.02	0.00	0.00	0.00
ViLBERT	70.55 (70.92)	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	72.34	78.52	62.61	58.20	84.90	91.52	31.86	61.12	72.80

Pretraining improves performance on variety of vision+language tasks!

Multi-task learning

- One model, several tasks
- Task conditioning
 - Predict output given input + task
- Common parameters and taskspecific parameters
- Two extremes:
 - Single model with shared parameters
 - Independent models with gating

Multi-task learning with vision+language

Tasks		SOTA	Vilbert	VLBERT	Unicoder-VL	VisualBERT	LXMERT	BASE UN	NITER LARGE	Oursst	Ours _{AT->ST}
	Pretraining Data		CC	CC + Wiki Corpus	CC	CC + COCO	COCO + VG	CC+SUB	+COCO+VG	CC	CC
VQA	test-dev	70.63	70.55	70.50	-	70.80	72.42	72.27	73.24	71.82	73.15
VG QA	val	-	-	-	-	-	-	-	-	34.38	36.64
GQA	test-dev	-	-	-	-	-	60.00	-	-	58.19	60.65
IR COCO	R1 R5 R10	61.60 89.6 95.2	- - -	- - -	68.50 92.70 96.90	- - -	- - -	- - -	- - -	65.28 91.02 96.18	68.00 92.38 96.52
IR Flickr	R1 R5 R10	48.60 77.70 85.20	58.20 84.90 91.52	- - -	68.30 90.30 94.60	- - -	- - -	71.50 91.16 95.20	73.66 93.06 95.98	61.14 87.16 92.30	67.90 89.60 94.18
Visual 7W	test	72.53	-	-	-	-	-	-	-	80.51	83.35
Ref-COCO	test	77.12	-	-	-	-	-	80.48	80.88	78.63	81.20
Ref-COCO+	test	67.17	70.93	69.47	-	-	-	73.26	73.73	71.11	74.22
Ref-COCOg	test	69.46	-	-	-	-	-	74.51	75.77	72.24	76.35
GuessWhat	test	61.30	-	-	-	-	-	-	-	62.81	65.69
NLVR ²	test-P	53.50	_	-	_	67.00	74.50	77.87	79.50	74.25	78.87
SNLI-VE	test	71.16	-	-	-	-	-	78.02	78.98	76.72	76.95

Oscar: Pre-training with object-semantic alignment

- Pretrained on 6.5 million pairs of vision+language data
 (MSCOCO, Conceptual Captions (CC), SBU captions, flicker30k, GQA)
- Fine tuned on 7 tasks

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, Li et al, ECCV 2020

Oscar: Pre-training with object-semantic alignment

• Use detected object tags as anchors

A dog is sitting on a couch

(a) Image-text pair

(b) Objects as anchor points

(c) Semantics spaces

Oscar: Pre-training with object-semantic alignment

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, Li et al, ECCV 2020

Pretraining for videos

Pretraining for videos

Next week

- Monday: Paper presentations and discussions
 - ViLBERT (Qirui)
 - CLIP (open discussion)
- Thursday: Compositionality and structure