CMPT 983

Grounded Natural Language Understanding

March 4, 2021 Speaker listener models

Today

• Bayesian models for color

Rational Speech Acts (RSA)

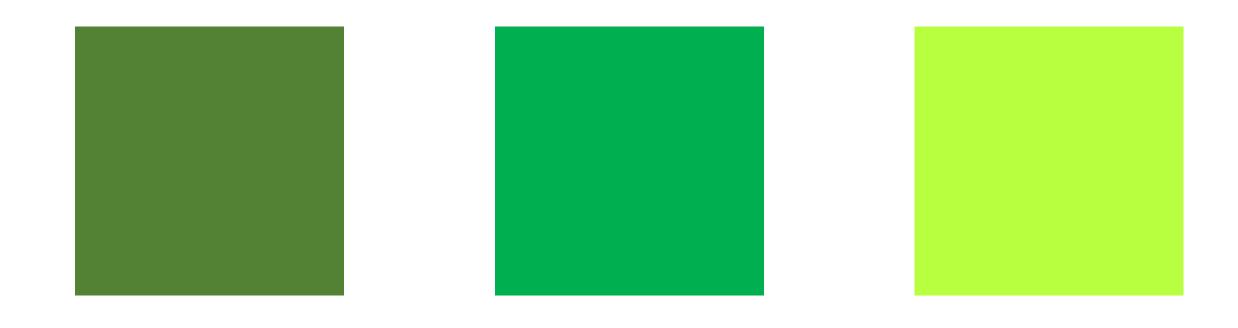
Colors

Color test

• What color is this?

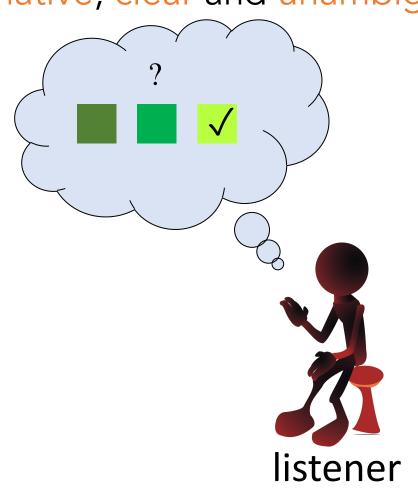
Color test

• What color is this?



Effective communications

- What you say depend on context and what the listener knows.
- Want to select words that are informative, clear and unambiguous.



Gricean Maxims

Guidelines for cooperative, effective communication

- Maxim of quantity: Give as much information as need, and no more
- Maxim of quality: Provide truthful information, supported by evidence
- Maxim of relation: Be relevant, say things pertinent to discussion
- Maxim of manner: Be clear, brief and orderly, avoid obscurity and ambiguity

To communicate clearly, we must have a shared convention of mapping of symbols to meanings.

Is there a true mapping of words to a single meaning?

• Given the same word, will two listeners have the same interpretation?

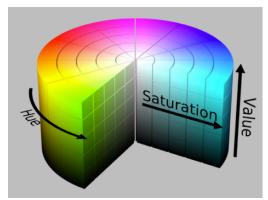
• Given the same stimuli, will two speakers choose to use the same word?

Actual color names if you're a girl ...

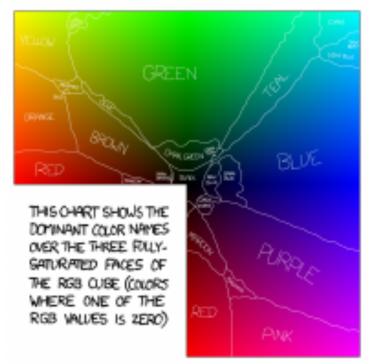
Actual color names if you're a guy ...

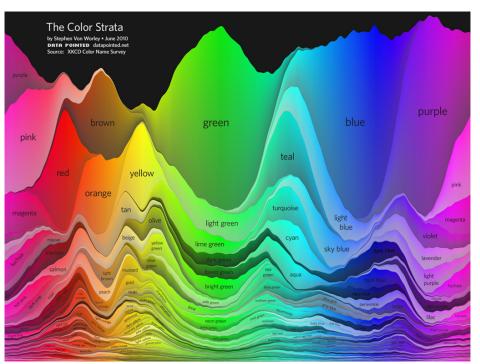
XKCD color survey

- Solicited names >5M random hues
- Got ~2.1M data points from >200K participants, with 829 distinct color names



Hue



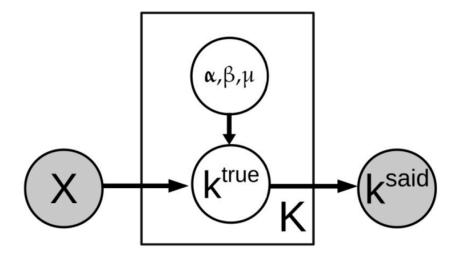


Let's use a probabilistic model!

(XKCD color survey, Randall Munroe, https://blog.xkcd.com/2010/05/03/color-survey-results/)

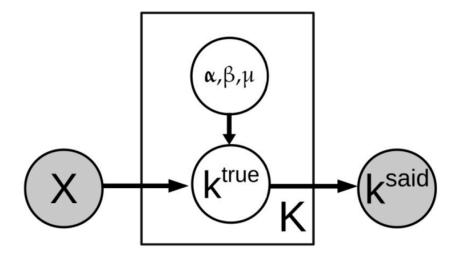
Bayesian model for grounded color semantics

- Model variation in meaning of words
- Given observed HSV color (X) and labels (k^{said}), how to learn a model of how to name colors?
- Speaker model: P(ksaid | X)



Bayesian model for grounded color semantics

- Model variation in meaning of words
- Given observed HSV color (X) and labels (k^{said}), how to learn a model of how to name colors?
- Speaker model: P(ksaid | X)



Bayesian model for grounded color semantics

- Model variation in meaning of words
- Model probability distribution of color being called a given name

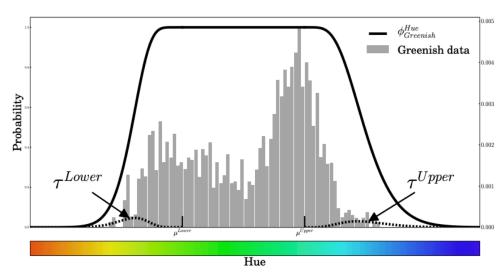
Model color channel (HSV) referred to by a color name k as a noisy box with a lower and upper threshold

Greenish

$$\begin{split} \tau_k^{Lower,d} &\sim \mu_k^{Lower,d} - \Gamma(\alpha_k^{Lower,d}, \beta_k^{Lower,d}) \\ \tau_k^{Upper,d} &\sim \mu_k^{Upper,d} + \Gamma(\alpha_k^{Upper,d}, \beta_k^{Upper,d}) \end{split}$$

Thresholds follow a gamma distribution from the mean for each dimension $d \in \{H, S, V\}$

Parameters estimated to maximize the log-likelihood of the Munroe color data



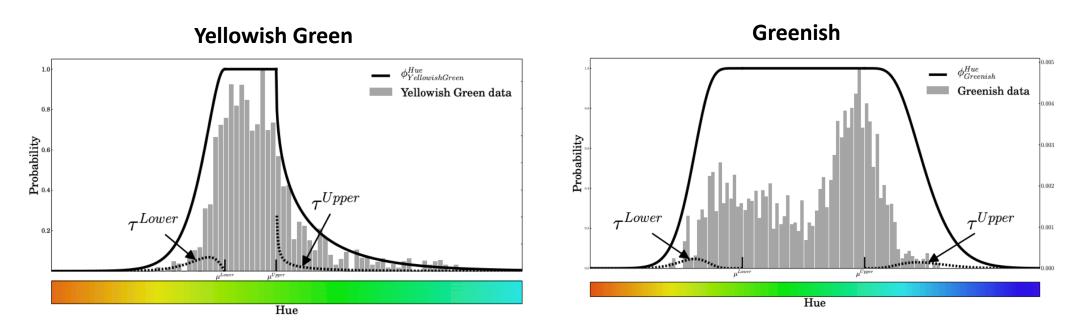
 α,β,μ

(A Bayesian Model of Grounded Color Semantics, McMahan and Stone, TACL 2015)

Lexicon of Uncertain Color Standards (LUX) semantic representations of 827 English color labels

Bayesian model for grounded color semantics

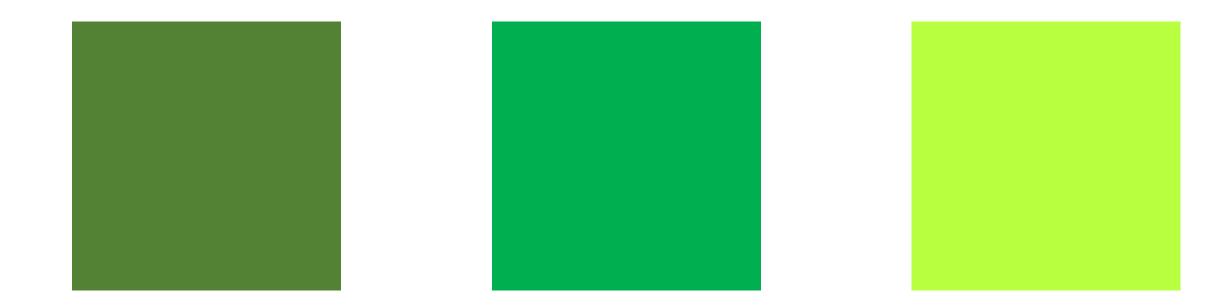
- Model variation in meaning of words
- Probability distribution of denotation for each word



(A Bayesian Model of Grounded Color Semantics, McMahan and Stone, TACL 2015)

Color test

• What color is this?

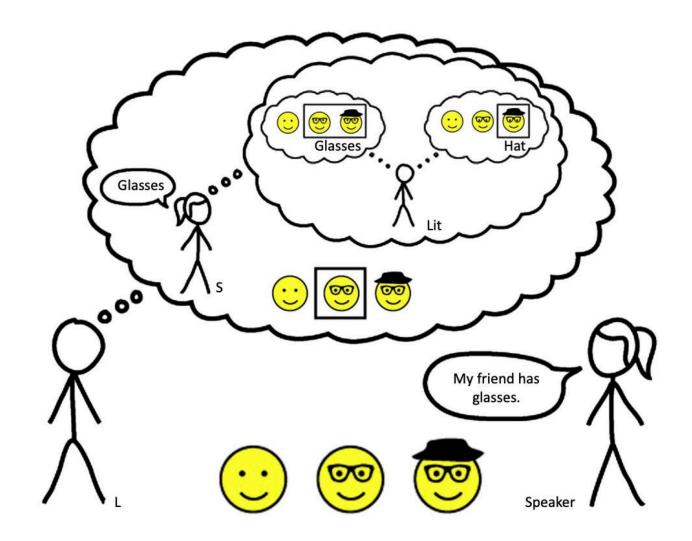


What words would a speaker select to

- indicate each of these colors?
- so that the listener can pick out the correct color given the triplet?

Rational Speech Acts Framework

Probablistic Bayesian view



[Pragmatic Language Interpretation as Probabilistic Inference, Goodman and Frank 2016, http://langcog.stanford.edu/papers_new/goodman-2016-tics.pdf]

Literal speaker and listeners

- Don't think about the other party
- Straightforward interpretation
- A bit of notation

 - u: utterance, t: world state,
 - M(u,t): meaning function connecting utterance u to world state t M(u,t) = 1 if u can be used to describe t, 0 otherwise Assume uniform priors

$$S_0(u|t,M) \propto M(u,t)P(u)$$

$$L_0(t|u,M) \propto M(u,t)P(t)$$

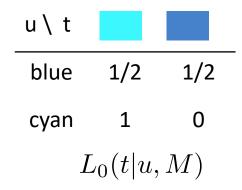
M(u,t)

u\t

blue

cyan

u∖t					
blue	1/2	1			
cyan	1/2	0			
$S_0(u t,M)$					



Example from *Understanding the Rational Speech Act model* [Monroe et al, CogSci 2018]

Pragmatic listener and speaker

- Pragmatics: how context contributes to meaning
 - any non-local meaning phenomena
 "Can you pass the salt?"
 "Is he 21?"
 "Yes, he's 25."

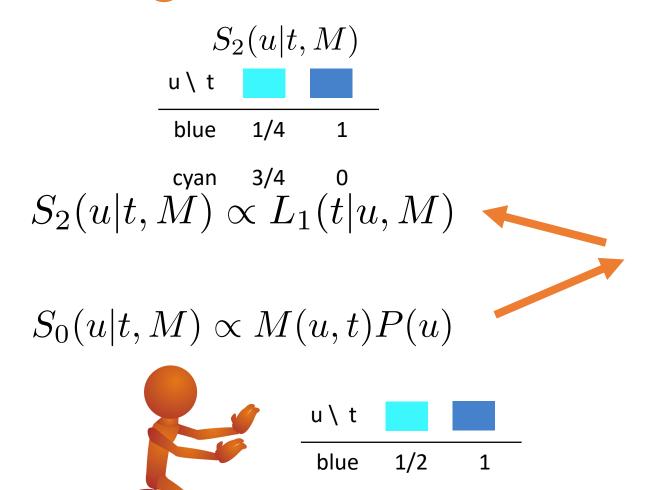
Literal version: "Can you pass the container with the salt in it?"

Model mental state of the other party

Literal version: "Is he older than 21?"

Conversational implicatures

Pragmatic listener and speaker

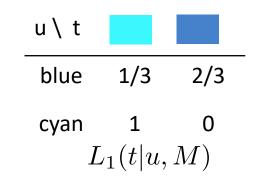


cyan

speaker

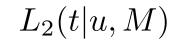
1/2

 $S_0(u|t,M)$



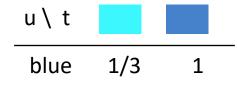
Example from *Understanding the Rational Speech Act model*

Pragmatic speaker and listener



$$L_2(t|u,M) \propto S_1(u|t,M)$$

$$S_1(u|t,M) \propto L_0(t|u,M)$$

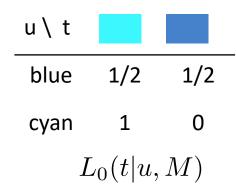


cyan 2/3 0

speaker

 $S_1(u|t,M)$

	L_0	t	[u,M]	$) \propto M$	(u,t)P	(t)
--	-------	---	-------	---------------	--------	-----



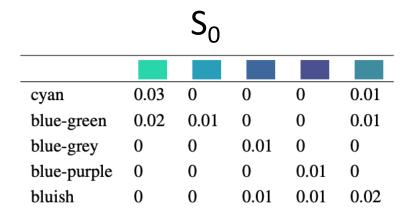
Example from *Understanding the Rational Speech Act model*

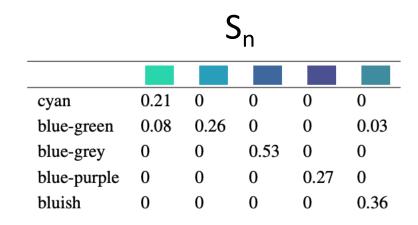
Converged speaker-listener model

After many iterations

u∖t		
blue	0	1
cyan	1	0

A more complex example



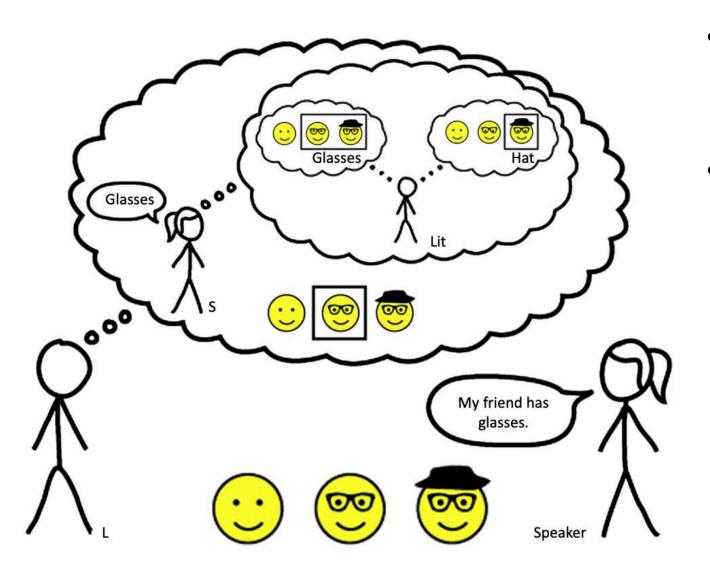


Moustache, Glasses, Hat example

	M(u,t)	
u∖t		00	
moustache	1	1	0
glasses	0	1	1
hat	0	0	1
	$S_0(u)$	u t,M)	
u∖t		00	
moustache	1	1/2	0
glasses	0	1/2	1/2
hat	0	0	1/2

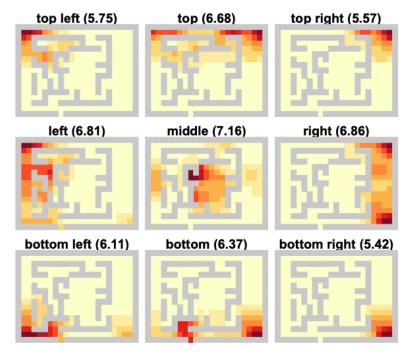
Example from Implicatures and Nested Beliefs in Approximate Decentralized-POMDPs, Vogel et al, ACL 2013

Do we need to keep recursing?

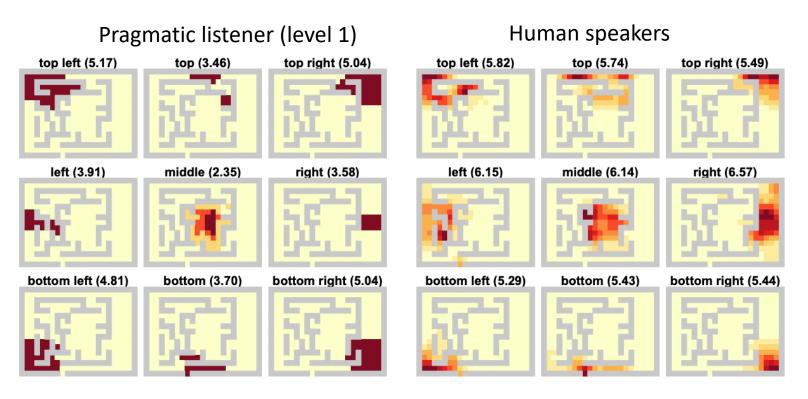


- Can be computationally expensive
- Let's consider basic level 1 speaker and listener models

Spatial references

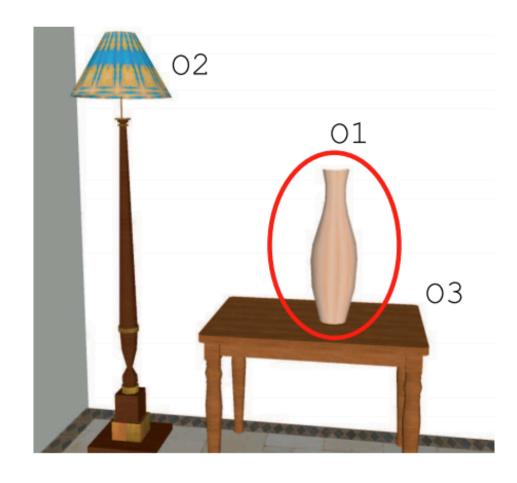


Literal listener (level 0)



Speaker listener in applications (research papers)

Spatial relations



Consider only use spatial relations wrt to other objects to indicate (pick out) an object

 (i.e. do not say it is a vase or mention its color or other inherent properties)

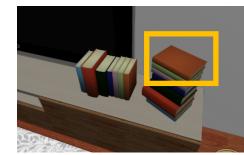
How to indicate O1?

- Requires modeling listener
- "right of O2" is not sufficient to disambiguate the object

Need mental model of the other person

Referring expression generation

- Input: Image I with region R
- Output: Description S^*



orange book on top

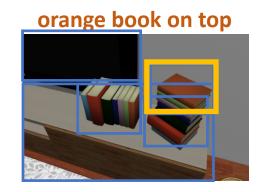
$$S^* = \arg\max_S P(S|R,I) \qquad \text{LO Speaker}$$

Similar to standard image captioning task except input is a region in additional to the full image

• The full image / surrounding objects are used as context

Referring expression comprehension

- Input: Image I with description S Generate candidate regions C
- Output: Region R^*



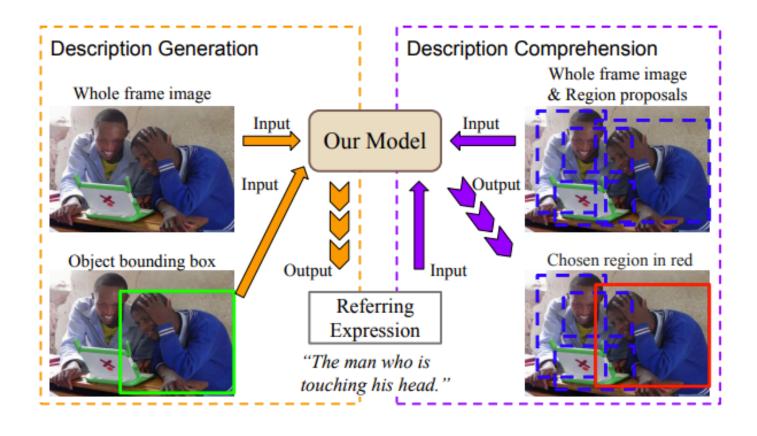
$$R^* = \arg\max_{R \in C} P(R|S, I)$$

Bayes Rule

$$P(R|S,I) = \frac{P(S|R,I)P(R|I)}{\sum_{R' \in C} P(S|R',I)P(R'|I)} \quad \text{L1 Listener}$$

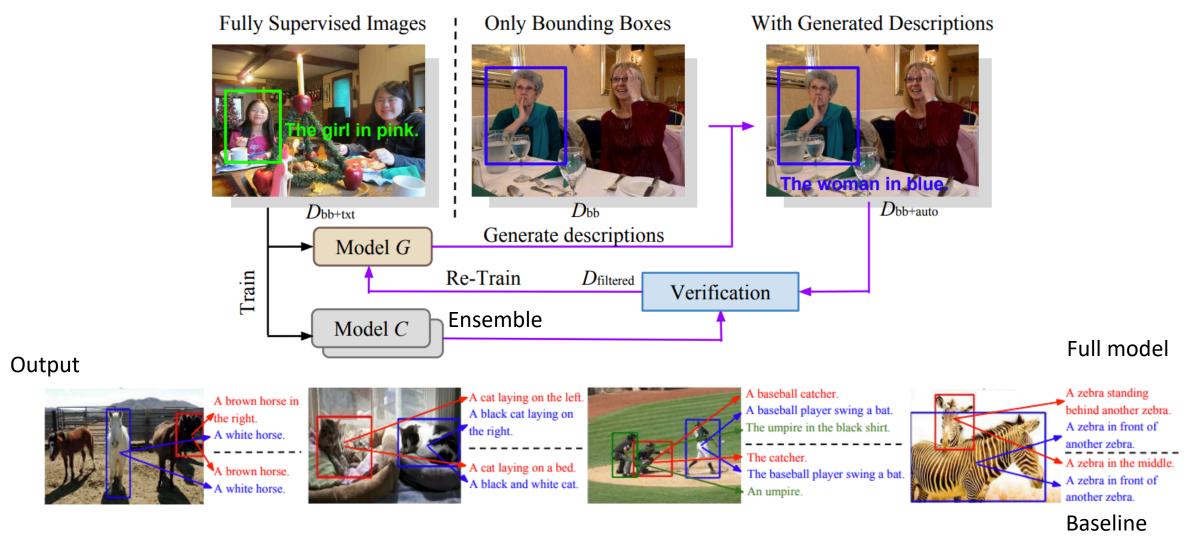
Jointly modeling speakers and listeners for referring expressions

• Will training ioin



 Will training jointly result in more discriminative descriptions?

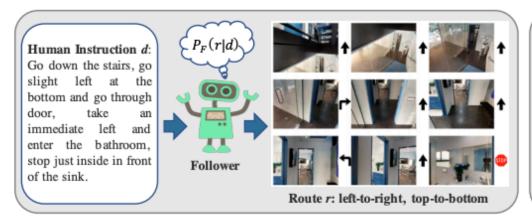
Jointly modeling speakers and listeners for referring expressions

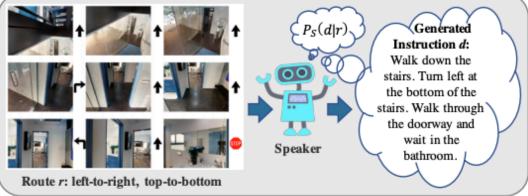


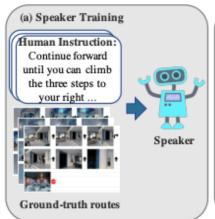
ShapeGlot

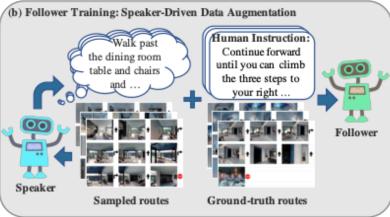
	distractors	target	distractors	target	distractors	target
image-based speakers					是 是	
pragmatic speaker	square arms		knobby legs		no arm rests	
literal speaker	with the tall-est bac	ck and seat	the one with the th	ick-est legs	the one with high-	est back
	distractors	target	distractors	target	distractors	target
point-cloud based speakers			国国	E	* *	PF
pragmatic speaker	most square back		thick-est legs		tall-est back	
literal speaker	thin-est seat		square rack at bott	om of chair	has arms	

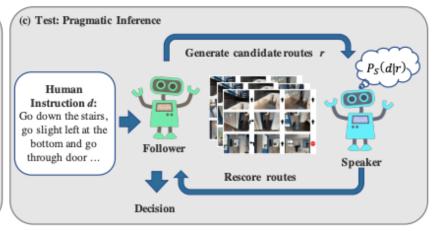
Vision-language navigation





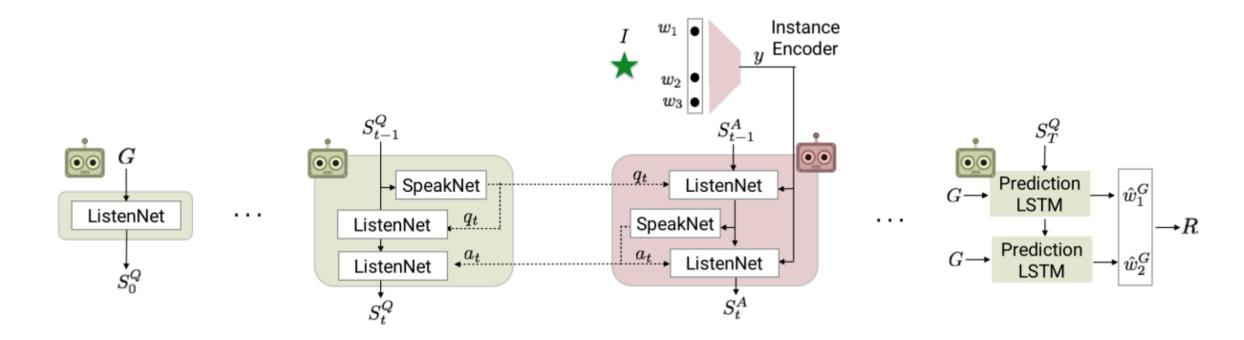






Multi-agent communication

- Simulate speakers and listeners and see what happens
- Emergent communications!



Summary

- Speaker-listener
- RSA: Mental model of the other agent
- Full model computationally expensive and may not be necessary
- Simulate speakers and listener -> emergent communications

Next time

- Paper presentations (3/8)
 - ShapeGlot: Learning Language for Shape Differentiation (Qirui)
 - Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog (Sonia)
- Thursday (3/11): Instruction following review of deep RL