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• Policy-based (REINFORCE, Actor-Critic)
• Value-based  (Q-Learning)
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A General Embodied Agent
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Exit the bedroom. Turn 
left down the hall and 

stop in the kitchen.

Instructions



A General Embodied Agent
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Some Notation
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Markov Decision Process (MDP)

Defined as 𝒮,𝒜,ℛ, ℙ, 𝛾
• 𝒮 Set of possible states
• 𝒜 Set of possible actions
• R: 𝒮×𝒜 → Ωℝ Distribution of reward given state-action pair
• ℙ: 𝒮×𝒜 → Ω𝒮 Transition function – distribution over next states
• 𝛾 Discount factor

Life looks like (𝑠$, 𝑎$, 𝑟$, 𝑠% , 𝑎%, 𝑟%, … )
where 𝑠&'% ∼ ℙ(𝑠&'%|𝑠& , 𝑎&) and 𝑟& ∼ 𝑅(𝑟&|𝑠& , 𝑎&)

state, action, reward 
at each time step



Some Notation
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Markov Decision Process (MDP)

Action

State

Observation

Image Credit: Sergey LevinePOMDP: Partially observed MDP 
• Often we don’t know what the states are!



Examples MDPs
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Robot Locomotion

Make the robot move forward

State Space: Angle and position of the joints
Action Space: Torques applied on joints
Reward Function: 1 at each time step upright + forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson - CS 231n



Examples MDPs
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Atari Games

Complete the game with the highest score 

Observation Space: Raw pixel inputs of the game state
Action Space: Game controls e.g. Left, Right, Up, Down
Reward Function: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson - CS 231n



Examples MDPs
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PointGoal Visual Navigation

Navigate to the specified point

Observation Space: Raw pixel inputs 
Action Space: Forward, Turn Left, Turn Right
Reward Function: Distance increase/decrease per time step 

+ “It hurts to be alive” penalty

Slide Credit: Stefan Lee
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Common Terminology and Definitions

Policy – How should the agent act?
• Stochastic policy         𝜋: 𝒮 → Ω𝒜 𝑎& ∼ 𝜋(𝑠&)
• Deterministic policy    𝜋: 𝒮 → 𝒜 𝑎& = 𝜋(𝑠&)

Value – How good is each state? Or state-action pair?
• (State) Value Function    𝑉) 𝑠& = 𝔼),ℙ ∑,-&. 𝛾,/%𝑟,
• Q Function   Q) 𝑠& , 𝑎 = 𝑅 𝑠& , 𝑎 + 𝛾𝔼0!"# 𝑉)(𝑠&'%)
• Advantage A) 𝑠& , 𝑎 = 𝑄) 𝑠& , 𝑎 − 𝑉) 𝑠&

• Optimal policy 𝝅∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝝅 𝔼𝒔𝟎 𝑽𝝅 𝒔𝒐

Slide Credit: Stefan Lee

Expected 
discounted 

return

How much better is taking the action a 
than the average? 
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Model – What will happen when the agent acts?
• Learn to mimic the transition function 𝑀: 𝒮×𝒜 → Ω𝒮

Rollout – What happens if we let the policy act for a while?
• Trajectory 𝜏 = (𝑠& , 𝑎& , 𝑠&'% , 𝑎&'%, … )
• 𝝉 ∼ ∏ℙ 𝑠&'% 𝑠& , 𝑎& 𝜋(𝑎&|𝑠&) 𝑃 𝑠5 often written 𝜏 ∼ 𝜋
• Can also consider states visited by policy: 𝑃 𝑠 𝜋 or s ∼ 𝜋

Common Terminology and Definitions

Slide Credit: Stefan Lee
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Policy

Slide Credit: David Silver
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Value

Slide Credit: David Silver
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Model

Slide Credit: David Silver



Getting a Handle on These Definitions
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1.  If we have a policy 𝜋 and know the true 𝑄) 𝑠, 𝑎 -- can we derive 
a new policy 𝜋′ that is as good or better than 𝜋? 

2.  Fill in a simple algorithm to improve a policy:

Increase the probability 𝜋(𝑎|𝑠) if ____________________. 

Decrease the probability 𝜋(𝑎|𝑠) if ____________________. 

Set 𝜋 𝑎′ 𝑠 = 1 if a′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄) 𝑠, 𝑎

Recall that 𝑄! 𝑠, 𝑎 is the expected reward of taking action a in state s

𝑟 𝑠, 𝑎 > 0 ?

𝑟 𝑠, 𝑎 < 0 ?

Slide Credit: Sergey Levine



Getting a Handle on These Definitions

Slide Credit: Stefan Lee 19

Immediate reward is not a particularly useful signal
in many task settings.

Doesn’t matter if 
you got one 
apple if you got 
eaten by a tiger



Getting a Handle on These Definitions
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1.  If we have a policy 𝜋 and know the true 𝑄) 𝑠, 𝑎 -- can we derive 
a new policy 𝜋′ that is as good or better than 𝜋? 

2.  Fill in a simple algorithm to improve a policy:

Increase the probability 𝜋(𝑎|𝑠) if ____________________. 

Decrease the probability 𝜋(𝑎|𝑠) if ____________________. 

𝑄) 𝑠, 𝑎 > 𝑉)(𝑠)

𝑄) 𝑠, 𝑎 < 𝑉)(𝑠)

Set 𝜋 𝑎′ 𝑠 = 1 if a′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄) 𝑠, 𝑎

Recall that 𝑄! 𝑠, 𝑎 is the expected reward of taking action a in state s

Recall that 𝑉! 𝑠 is the expected reward of following 𝜋 from state 𝑠

Slide Credit: Sergey Levine



Getting a Handle on These Definitions
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1.  If we have a policy 𝜋 and know the true 𝑄) 𝑠, 𝑎 -- can we derive 
a new policy 𝜋′ that is as good or better than 𝜋? 

2.  Fill in a simple algorithm to improve a policy:

Increase the probability 𝜋(𝑎|𝑠) if ____________________. 

Decrease the probability 𝜋(𝑎|𝑠) if ____________________. 

𝐴) 𝑠, 𝑎 > 0

𝐴) 𝑠, 𝑎 < 0
Recall A! 𝑠", 𝑎 = 𝑄! 𝑠", 𝑎 − 𝑉! 𝑠"

Set 𝜋 𝑎′ 𝑠 = 1 if a′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄) 𝑠, 𝑎

Recall that 𝑄! 𝑠, 𝑎 is the expected reward of taking action a in state s

Slide Credit: Sergey Levine



Getting a Handle on These Definitions
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3. Given an accurate deterministic world model s='% = 𝑀(𝑠& , 𝑎&)
and value function 𝑉) 𝑠& , how should an agent act in state 𝑠&?

For each possible action 𝑎,
Compute 𝑉) 𝑠&'% for 𝑠&'% = 𝑀(𝑠& , 𝑎)

Select action with highest value. 

Slide Credit: Sergey Levine

Relies on having a 
model of the 
transition probabilities



Markov Decision Processes
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Challenges of Markov Decision Processes

Reward is very often discontinuous

𝑟 𝑠, 𝑎 − not smooth

𝜋' 𝑎 = 𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡 = 𝜃

Turn Right
Turn Left

𝑟 𝑠, 𝑎

𝔼)! 𝑟 𝑠, 𝑎 − smooth in 𝜃

Slide Credit: Stefan Lee



Markov Decision Processes
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Challenges of Markov Decision Processes

Reward is often sparse and delayed

Taking an action at time t 
Doesn’t pay off till time t+k

Slide Credit: Stefan Lee
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Challenges of Markov Decision Processes

Reward is often sparse and delayed

Taking an action at time t 
Doesn’t pay off till time t+k

Slide Credit: Stefan Lee



Markov Decision Processes
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Challenges of Markov Decision Processes

State and action spaces can be huge 
(or infinite)

2.08×10170 Legal Board Configurations

Slide Credit: Stefan Lee
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Agent

Environment

Action

Observation

Goal

Reward
Agent

Environment

Action

Observation

Goal

Reinforcement Learning

• Environment provides feedback
• No examples of optimal policy

Imitation Learning

• Have expert demonstrations
(possibly interactive)

Slide Credit: Stefan Lee
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Model-free vs Model-based RL
• Do you know the world model of how actions affect state?

𝑀: 𝒮×𝒜 → Ω𝒮

On-policy vs Off-policy 
• On-policy: Use samples from the target policy for training
• Off-policy: Train on a distribution of trajectories 
(set of interaction sequences / episodes) that comes from a 
different policy than the target policy

Common Terminology and Definitions
(for categorizing RL algorithms)



A General Embodied Agent
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Agent

Environment

Action

Observation

Goal

Reward
Agent

Environment

Action

Observation

Goal

Reinforcement Learning

• Environment provides feedback
• No examples of optimal policy

Imitation Learning

• Have expert demonstrations
(possibly interactive)

Slide Credit: Stefan Lee



Imitation Learning



Imitation Learning
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Imitation Learning

• Assume access to an expert demonstrator 𝝅∗ at some point or another and 
to varying levels of interactivity Does not assume reward function is given!

Slide Credit: Stefan Lee



Imitation Learning
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Imitation Learning

• Assume access to an expert demonstrator 𝝅∗ at some point or another 
and to varying levels of interactivity

• Does not assume reward function is given!

• Behavior Cloning / Inverse Reinforcement Learning
• Given dataset of expert trajectories 𝐷 = 𝑠+, 𝑎+, 𝑠,, 𝑎,, … , 𝑠-, 𝑎- . ./,

0

• Direct Policy Learning / Interactive Expert
• Assume queryable expert 𝝅∗ during training

Slide Credit: Stefan Lee



Imitation Learning
Behavior Cloning



Imitation Learning – Behavior Cloning

Slide Credit: Yisong Yue 34



Imitation Learning – Behavior Cloning
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Behavior Cloning

• Given dataset of trajectories 𝐷 = 𝑠+, 𝑎+, 𝑠,, 𝑎,, … , 𝑠-, 𝑎- . ./,
0 from an 

expert demonstration policy 𝜋∗
• Break things down to individual state-action pairs 𝑠1, 𝑎1 and directly train a 

policy 3𝑎1 = 𝜋 𝑠1 using supervised learning:

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛> ]
,

𝐿 𝜋>(𝑎& 𝑠& , 𝜋∗(𝑎&|𝑠&))

• Interpretations:
• Assuming perfect imitation so far, learn to continue imitating perfectly
• Minimize 1-step deviation for states the expert visits

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛>𝔼0∼)∗ 𝐿 𝜋> 𝑠 , 𝜋∗(𝑠)

Slide Credit: Yisong Yue



Imitation Learning – Behavior Cloning

Slide Credit: Katerina Fragkiadaki 36

Data Distribution Mis-match

Supervised Learning Behavior Cloning

Train 𝒙, 𝒚 ~𝑫 𝒔, 𝒂 ~𝝅∗

Test 𝒙, 𝒚 ~𝑫 𝒔, 𝒂 ~𝝅𝜽

Distributions of states the agent will encounter during test may differ from training!



Imitation Learning – Behavior Cloning
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Behavior Cloning: Use set of demonstrations as targets for a 
supervised learning task while minimizing 1-step error

• Strengths:
• Dead simple. Seriously. It is just supervised learning.
• Works well when minimizing 1-step deviation is sufficient.

• Weaknesses:
• Compounding errors.
• Data distribution mis-match.

Slide Credit: Stefan Lee



Imitation Learning – Behavior Cloning
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Data Distribution Mis-match

Image Credit: Yisong Yue

Worse: errors compound!
Suppose 𝜋! achieves an error rate of 𝜖 for states induced by 𝜋∗, 
then over a T length trajectory the expected number of errors is 

𝐸# 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠 = 𝑂(𝑇$𝜖)



Imitation Learning – Behavior Cloning
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Behavior Cloning: Use set of demonstrations as targets for a 
supervised learning task while minimizing 1-step error

• Strengths:
• Dead simple. Seriously. It is just supervised learning.
• Works well when minimizing 1-step deviation is sufficient.

• Weaknesses:
• Compounding errors.
• Data distribution mis-match.

• When to use this?
• When the state space is well-covered by the demonstrator.
• When recovering from 1-step deviations is easy.
• To pre-train before doing a full RL approach.

Slide Credit: Stefan Lee



Imitation Learning
Direct Policy Learning



Imitation Learning – Direct Policy Learning
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Data Distribution Mis-match

Slide Credit: Yisong Yue



Imitation Learning – Interactive Direct Policy Learning
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Why is this a problem for Behavior Cloning?

Train a policy that behaves the same in states the demonstrations visit.

What if we had a demonstration policy we could query?

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛"𝔼𝒔∼𝝅∗ 𝐿 𝜋" 𝑠 , 𝜋∗(𝑠)

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛"𝔼𝒔∼𝝅𝜽 𝐿 𝜋" 𝑠 , 𝜋∗(𝑠)

Removes state mis-match, but requires us to evaluate 𝜋∗ 𝑠 for arbitrary states.

Slide Credit: Stefan Lee
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A Naïve Algorithm

Estimate state space 𝐬 ∼ 𝝅𝜽 and collect 
demonstrations

Rollout 𝜋'
. to generate a set of states, query 

𝜋∗ to generate a new dataset 𝐷.3,

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛"𝔼𝒔∼𝝅𝜽 𝐿 𝜋" 𝑠 , 𝜋∗(𝑠)

Estimate policy 𝜋' parameters
Train a policy 𝜋'

. using behavior cloning 𝐷.

Not guaranteed to converge / might oscillate.

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee
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A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Collect Data

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee
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A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Behavior
Cloning

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee
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A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Not an actual convex combination. 
Expert chooses controls with probability 𝜷𝒊

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee
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DAGGER is a Dataset Aggregation based approach.

Alternative approaches do Policy Aggregation

SMILe from Efficient Reductions for Imitation Learning, 2010
SEARN from Search-based Structured Prediction, 2009

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee
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Interactive Direct Policy Learning

Iteratively perform behavior cloning and then query an expert 
demonstrator to label newly entered states. 

• When to use this?
• When querying the expert is cheap!
• Why not just use that expert? Some cases “expert actions” are easy 

to compute, but their relation to the observed state may not be.
• When executing a possibly bad policy is safe.

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee



Imitation Learning
Inverse Reinforcement Learning



Imitation Learning – Inverse Reinforcement Learning
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Inverse Reinforcement Learning

Given dataset of trajectories 𝐷 = 𝑠+, 𝑎+, 𝑠,, 𝑎,, … , 𝑠-, 𝑎- . ./,
0 from an 

expert policy 𝜋∗, find a reward function 𝑟 𝑠, 𝑎 such that:  

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥) 𝔼0,A∼)& 𝑟(𝑠, 𝑎)

Learn 
Reward 
Function

Run RL 
to Learn 
Policy

Compare 
Policy 
with 

Expert

Slide Credit: Stefan Lee
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Inverse Reinforcement Learning

Given dataset of trajectories 𝐷 = 𝑠+, 𝑎+, 𝑠,, 𝑎,, … , 𝑠-, 𝑎- . ./,
0 from an 

expert policy 𝜋∗, find a reward function 𝑟 𝑠, 𝑎 such that:  

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥) 𝔼0,A∼)& 𝑟(𝑠, 𝑎)

Learn 
Reward 
Function

Run RL 
to Learn 
Policy

Compare 
Policy 
with 

Expert

Imitation Learning – Inverse Reinforcement Learning

Slide Credit: Stefan Lee



Reinforcement Learning
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Agent

Environment

Action

Observation

Goal

Reward
Agent

Environment

Action

Observation

Goal

Reinforcement Learning

• Environment provides feedback
• No examples of optimal policy

Imitation Learning

• Have expert demonstrations
(possibly interactive)

Slide Credit: Stefan Lee



Reinforcement Learning

54

Approaches to Reinforcement Learning

• Policy-based RL
• Search directly for the optimal policy 𝜋∗

• Value-based RL
• Estimate the optimal action-value function 𝑄∗(𝑠, 𝑎)

• Under some fixed policy (e.g. epsilon-greedy)

• Model-based RL
• Build a model of the world

• State transition, reward probabilities
• Plan (e.g. by look-ahead) using model

Slide Credit: Dhruv Batra



Taxonomy
Model-Free RL: Don’t know how 
our action will affect the state

Figure Credit: David Silver

Model-Based RL: Need to build a 
model of how our action will 
affect the state



Reinforcement Learning
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Deep Reinforcement Learning

• Policy-based RL
• Learn a policy network 𝜋 𝑠; 𝜃∗ ≈ 𝜋∗(𝑠) parameterized by 𝜃

• Value-based RL
• Learn a network 𝑄 𝑠, 𝑎; 𝜃∗ ≈ 𝑄∗(𝑠, 𝑎) parameterized by 𝜃

• Under some fixed policy (e.g. epsilon-greedy)

• Model-based RL
• Learn a transition function 𝑀 𝑠; 𝜃∗ ≈ ℙ(𝑠)
• Plan (e.g. by look-ahead) using model

Slide Credit: Dhruv Batra



Policy-Based RL
REINFORCE



Policy-Based Reinforcement Learning

Slide Credit: Dhruv Batra 58

Goal: Learn a policy network 𝜋 𝑠; 𝜃∗ such that:

𝜃∗ = argmax& 𝔼'#,ℙ 6
*

𝛾*+,𝑟(𝑠* , 𝑎*)

𝐽(𝜃)

How to optimize 𝜃 to maximize 𝐽 𝜃 ?

Gradient Ascent!  𝜃! = 𝜃 + 𝛼𝛻" 𝐽 𝜃



Policy Gradient Methods
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Let’s write 𝐽 𝜃 = 𝔼-∼'# 𝑟(𝜏)

Where 𝑟(𝜏) is the reward of trajectory 𝜏 = (s+, a+, s,, a,, s4, … )

𝑝 𝜏; 𝜃 = ∏𝑝 𝑠./, 𝑠. , 𝑎. 𝜋"(𝑎. , 𝑠.)

= <
-

𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏

Slide Credit: Dhruv Batra

Model and optimize 
the policy directly



Policy Gradient Methods
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𝐽 𝜃 = <
-

𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏Expected rewards of policy 𝜋 ⋅ ⋅ ; 𝜃 :

Let’s differentiate with respect to 𝜃: 𝛻"𝐽 𝜃 = <
-

𝛻"𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏

Intractable

Slide Credit: Dhruv Batra



REINFORCE Algorithm
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Let’s differentiate with respect to 𝜃: 𝛻"𝐽 𝜃 = <
-

𝛻"𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏

𝛻"𝑝 𝜏; 𝜃

1

𝑝 𝜏; 𝜃
𝑝 𝜏; 𝜃

= 𝑝 𝜏; 𝜃
𝛻"𝑝 𝜏; 𝜃
𝑝 𝜏; 𝜃

= 𝑝 𝜏; 𝜃 𝛻"log 𝑝 𝜏; 𝜃

A useful identity/trick:

(Williams, 1992)

Slide Credit: Dhruv Batra
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Let’s differentiate with respect to 𝜃:

𝛻"𝐽 𝜃 = <
-

𝑝 𝜏; 𝜃 𝛻"log 𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏

𝛻"𝐽 𝜃 = <
-

𝛻"𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏

Slide Credit: Dhruv Batra

(Williams, 1992)
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Let’s differentiate with respect to 𝜃:

𝛻"𝐽 𝜃 = <
-

𝑝 𝜏; 𝜃 𝛻"log 𝑝 𝜏; 𝜃 𝑟(𝜏) 𝑑𝜏

𝛻"𝐽 𝜃 = 𝔼-∼'# 𝑟(𝜏) 𝛻"log 𝑝 𝜏; 𝜃

𝛻"𝐽 𝜃 = <
-

𝛻"𝑝 𝜏; 𝜃 𝑟 𝜏 𝑑𝜏

Slide Credit: Dhruv Batra

(Williams, 1992)



REINFORCE Algorithm

Slide Credit: Stefan Lee 64

𝛻"𝐽 𝜃 = 𝔼-∼'# 𝑟(𝜏) 𝛻"log 𝑝 𝜏; 𝜃

𝛻"𝐽 𝜃 = 𝛻"𝔼-∼'# 𝑟(𝜏)

Transformed the gradient of an expectation
into the expectation of a gradient

(Williams, 1992)
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𝛻"𝐽 𝜃 = 𝔼-∼'# 𝑟(𝜏) 𝛻"log 𝑝 𝜏; 𝜃

Computing 𝛻'log 𝑝 𝜏; 𝜃 :

𝑝 𝜏; 𝜃 = ∏𝑝 𝑠./, 𝑠. , 𝑎. 𝜋"(𝑎. , 𝑠.)

log 𝑝 𝜏; 𝜃 =6log 𝑝 𝑠./, 𝑠. , 𝑎. + log 𝜋"(𝑎. , 𝑠.)

𝛻"log 𝑝 𝜏; 𝜃 =6𝛻" log 𝜋"(𝑎. , 𝑠.)

No model needed! Model-free RL.

Slide Credit: Stefan Lee

(Williams, 1992)

does not depend on θ
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𝛻"𝐽 𝜃 = 𝔼-∼'# 6
0$,1$ ∈-

𝛻"log 𝜋(𝑎*|𝑠*; 𝜃) 𝑟(𝜏)

𝛻"𝐽 𝜃 ≈6
3

6
0$,1$ ∈-%

𝛻" log 𝜋 𝑎* 𝑠*; 𝜃 𝑟(𝜏3)

Monte Carlo Approximation:

Slide Credit: Stefan Lee

(Williams, 1992)

sample some trajectories
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𝛻"𝐽 𝜃 ≈6
3

6
0$,1$ ∈-%

𝛻" log 𝜋 𝑎* 𝑠*; 𝜃 𝑟(𝜏3)

Intuition:

• If trajectory reward is positive, push up the probabilities of the action
• If trajectory reward is negative, push down the probabilities of the action

All actions in trajectory move in same direction based on reward?!?

I know it seems too simple but it averages out.

Slide Credit: Dhruv Batra

(Williams, 1992)
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1. Perform rollout to collect trajectory 𝜏 = (s+, a+, s,, a,, s4, … ) and reward r 𝜏
2. Compute gradient estimate 𝛻'𝐽 𝜃 ≈ ∑6∑ 7!,8! ∈:" 𝛻' log 𝜋 𝑎. 𝑠.; 𝜃 𝑟(𝜏6)
3. Update policy parameters 𝜃; = 𝜃 + 𝛼𝛻' 𝐽 𝜃

While not converged:

REINFORCE Algorithm (Williams, 1992)

Slide Credit: Stefan Lee

(Williams, 1992)
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Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from Pixels
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Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from Pixels
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Image Credit: http://karpathy.github.io/2016/05/31/rl/
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𝛻"𝐽 𝜃 ≈6
3

6
0$,1$ ∈-%

𝛻" log 𝜋 𝑎* 𝑠*; 𝜃 𝑟(𝜏3)

High variance! Trajectories are long samples.
Rewards are often sparse and for the whole trajectory.

Slide Credit: Stefan Lee
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𝛻>𝐽 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 𝑟(𝜏B)

Causality: 
Policy at time 𝑡4can’t affect rewards at time 𝑡 < 𝑡4

𝛻>𝐽′ 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 ]
&-,

𝛾,/&𝑟 𝑠& , 𝑎&
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Baselines: 
What happens if the reward of “good samples” is negative?

Slide Credit: David Silver
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Baselines: 
What if the variance in reward is huge?

𝛻>𝐽 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 𝑟(𝜏B)

-0.01 1000

Slide Credit: Stefan Lee
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Baselines: 

𝛻>𝐽 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 𝑟 𝜏B − 𝑏
Baseline

𝑏 =
1
𝑁
E𝑟(𝜏)Average reward:

Are we allowed to do this? Still solving the same problem?

Unbiased in Expectation!

Slide Credit: Sergey Levine
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REINFORCE Recap:

Simple algorithm that formalizes the notion ”repeat actions that lead to 
high rewards, avoid actions that lead to low rewards”. The approach is 
model-free. Big problems are with variance of the estimate, applying 

causality and baselines can help.

• When to use this?
• When reward functions are well-defined and simulation is cheap.
• If you don’t have time to implement the next thing we will talk about.

Slide Credit: Stefan Lee



Policy-Based RL
Actor-Critic Methods
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1. Perform rollout to collect trajectory 𝜏 = (s+, a+, s,, a,, s4, … ) and reward r 𝜏
2. Compute gradient estimate 𝛻'𝐽 𝜃 ≈ ∑6∑ 7!,8! ∈:" 𝛻' log 𝜋 𝑎. 𝑠.; 𝜃 𝑟(𝜏6)
3. Update policy parameters 𝜃; = 𝜃 + 𝛼𝛻' 𝐽 𝜃

While not converged:

REINFORCE Algorithm (Williams, 1992)

Slide Credit: Stefan Lee

(Williams, 1992)
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𝛻>𝐽 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 ]
&-,

𝛾,/&𝑟 𝑠& , 𝑎&

“reward from here”

Causality: 

Better estimate of expected rewards from a state-action pair?

𝑄' 𝑠. , 𝑎. = 𝑟 𝑠. , 𝑎. + 𝛾𝔼0&'(~ℙ 𝑉'(𝑠./,)

Slide Credit: Sergey Levine
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𝛻>𝐽 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 𝑄) 𝑠& , 𝑎&

What about a baseline?

𝑉) 𝑠& = 𝔼) ]
,-&

𝛾,/& 𝑟(𝑠, , 𝑎,)

𝐴) 𝑠& , 𝑎& = 𝑄) 𝑠& , 𝑎& − 𝑉) 𝑠&Advantage:

How much better than average is this action?

Slide Credit: Stefan Lee
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𝛻>𝐽 𝜃 ≈]
B

]
0',A' ∈D(

𝛻> log 𝜋 𝑎, 𝑠,; 𝜃 𝐴) 𝑠& , 𝑎&

𝐴) 𝑠& , 𝑎& = 𝑟 𝑠& , 𝑎& + 𝛾𝔼0!"#~ℙ 𝑉)(𝑠&'%) − 𝑉)(𝑠&)

𝑄) 𝑠& , 𝑎&

Just need to estimate the value function!
Let’s throw a neural network at it!

𝐴) 𝑠& , 𝑎& = 𝑟 𝑠& , 𝑎& + 𝛾𝑉)(𝑠&'%) − 𝑉)(𝑠&)

Slide Credit: Stefan Lee
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𝒔𝒕

𝝅(𝒂𝒕|𝒔𝒕) J𝑽 (𝒔𝒕)

Agent
Agent predicts both action 

probabilities and value estimates

Slide Credit: Stefan Lee

Critic: estimate how good the state (or state-action) is
by estimating the value (or Q) function

Actor: models the 
policy (what to do)
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𝛻'𝐽 𝜃 ≈E
6

E
7!,8! ∈:"

𝛻' log 𝜋 𝑎. 𝑠.; 𝜃 G𝐴) 𝑠1, 𝑎1

Gradient step for parameters with respect to policy parameters:

How to train the value estimator?

𝑉!∗ 𝑠" = 𝔼! M
&'"

𝛾&(" 𝑟(𝑠&, 𝑎&) ≈ M
)

M
&'"

𝛾&(" 𝑟(𝑠&, 𝑎&)

ℒQ 𝜃 = h𝑉 𝑠& − 𝑉)∗ 𝑠&
R

𝒔𝒕

𝝅(𝒂𝒕|𝒔𝒕) J𝑽 (𝒔𝒕)

Agent

Slide Credit: Stefan Lee
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𝛻'𝐽 𝜃 ≈E
6

E
7!,8! ∈:"

𝛻' log 𝜋 𝑎. 𝑠.; 𝜃 G𝐴) 𝑠1, 𝑎1

Gradient step for parameters with respect to policy parameters:

How to train the value estimator?

ℒQ 𝜃 = h𝑉 𝑠& −]
,-&

𝛾,/& 𝑟(𝑠, , 𝑎,)
R

Just supervised regression with data 𝒔𝒕, ∑𝒊-𝒕𝜸𝒊/𝒕 𝒓 𝒔𝒊, 𝒂𝒊

𝒔𝒕

𝝅(𝒂𝒕|𝒔𝒕) J𝑽 (𝒔𝒕)

Agent

𝑉!∗ 𝑠" = 𝔼! M
&'"

𝛾&(" 𝑟(𝑠&, 𝑎&) ≈ M
)

M
&'"

𝛾&(" 𝑟(𝑠&, 𝑎&)

Slide Credit: Stefan Lee
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1. Perform rollout to collect trajectory 𝜏 = (s+, a+, s,, a,, s4, … ) and reward r 𝜏
2. Fit I𝑉) 𝑠 to sampled rewards
3. Evaluate G𝐴) 𝑠1, 𝑎1 = 𝑟 𝑠1, 𝑎1 + I𝑉)(𝑠13,) − I𝑉)(𝑠1)
4. Compute gradient estimate 𝛻'𝐽 𝜃 ≈ ∑6∑ 7!,8! ∈:" 𝛻' log 𝜋 𝑎. 𝑠.; 𝜃 G𝐴) 𝑠1, 𝑎1
5. Update policy parameters 𝜃; = 𝜃 + 𝛼𝛻' 𝐽 𝜃

While not converged:

Advantage Actor-Critic (A2C) Algorithm

Slide Credit: Stefan Lee
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𝒔𝒕

𝝅(𝒂𝒕|𝒔𝒕) J𝑽 (𝒔𝒕)

Agent
𝑉!∗ 𝑠" = 𝔼! M

&'"

𝛾&(" 𝑟(𝑠&, 𝑎&) ≈ M
)

M
&'"

𝛾&(" 𝑟(𝑠&, 𝑎&)

ℒQ 𝜃 = h𝑉 𝑠& − 𝑉)∗ 𝑠&
R

ℒQ 𝜃 = h𝑉 𝑠& −]
,-&

𝛾,/& 𝑟(𝑠, , 𝑎,)
R

high variance!

Slide Credit: Stefan Lee

Actor-Critic Methods – Bootstrap Targets / Temporal Differences
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𝒔𝒕

𝝅(𝒂𝒕|𝒔𝒕) J𝑽 (𝒔𝒕)

Agent

Bootstrap target:

ℒQ 𝜃 = h𝑉 𝑠& − 𝑉)∗ 𝑠&
R

𝑉)∗ 𝑠& = 𝔼) 𝑟 𝑠., 𝑎. + 𝛾𝑉'∗ 𝑠./,

”biased bootstrap estimate”

This is a temporal difference target. Biased but lower variance.

≈ 𝑟 𝑠. , 𝑎. + 𝛾𝑉'∗ 𝑠./,
≈ 𝑟 𝑠. , 𝑎. + 𝛾 H𝑉' 𝑠./,

Monte Carlo

Value Estimate

Slide Credit: Stefan Lee

Actor-Critic Methods – Bootstrap Targets / Temporal Differences
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𝒔𝒕

𝝅(𝒂𝒕|𝒔𝒕) J𝑽 (𝒔𝒕)

Agent

Bootstrap target:

ℒQ 𝜃 = h𝑉 𝑠& − 𝑟 𝑠& , 𝑎& + 𝛾 h𝑉) 𝑠&'%
R

Just supervised regression with data 𝒔𝒕, 𝒓 𝒔𝒊, 𝒂𝒊 + 𝜸j𝑽𝝅 𝒔𝒊'𝟏

𝑉)∗ 𝑠1 = 𝔼! 𝑟 𝑠&, 𝑎& + 𝛾𝑉)∗ 𝑠&'%

”biased bootstrap estimate”

≈ 𝑟 𝑠& , 𝑎& + 𝛾 h𝑉) 𝑠&'%

Slide Credit: Stefan Lee

Actor-Critic Methods – Bootstrap Targets / Temporal Differences
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Actor-Critic Recap:

Policy gradient method that trades off variance for bias in gradient 
estimates by using a simultaneously learned value function. With clever 
choices of baselines, we repeat actions that are better than average and 

avoid those that are worse (through advantage estimate).   

• When to use this?
• When reward functions are well-defined and simulation is cheap.
• Any time you are doing policy gradients, might as well do this.

Slide Credit: Stefan Lee
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Deep Q-Learning
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1.  If we have a policy 𝜋 and know the true 𝑄) 𝑠, 𝑎 -- can we derive 
a new policy 𝜋′ that is as good or better than 𝜋? 

Set 𝜋 𝑎′ 𝑠 = 1 if a′ = 𝑎𝑟𝑔𝑚𝑎𝑥 h𝑄) 𝑠, 𝑎

Recall that 𝑄! 𝑠, 𝑎 is the expected reward of taking action a in state s

Earlier today….

If we can estimate 𝐐𝛑 𝐬, 𝐚 why do we even need an explicit policy?

Slide Credit: Stefan Lee
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If we can estimate 𝐐𝛑∗ 𝐬, 𝐚 why do we even need an explicit policy?

𝒔𝒕

J𝑸𝝅 (𝒔𝒕)

Deep
Net

𝑄)∗ 𝑠& = 𝑟 𝑠& , 𝑎& + 𝛾𝑉)∗(𝑠&'%)

ℒW 𝜃 = h𝑄) 𝑠& , 𝑎& − 𝑄)∗ 𝑠& , 𝑎&
R

Recall our implicit policy is a′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄) 𝑠, 𝑎

𝑉)∗ 𝑠& = 𝔼) 𝑄)∗ (𝑠& , 𝑎&) = max
A
𝑄)∗ (𝑠& , 𝑎&)

ℒW 𝜃 ≈ h𝑄) 𝑠& , 𝑎& − 𝑟 𝑠& , 𝑎& +max
A

h𝑄)(𝑠&'%, 𝑎&'%)
R

Slide Credit: Stefan Lee
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1. Perform rollout to collect trajectory 𝜏 = (s+, a+, s,, a,, s4, … ) and reward r 𝜏
2. Compute loss from samples ℒ+ 𝜃 ≈ Z𝑄! 𝑠", 𝑎" − 𝑟 𝑠", 𝑎" +max

,
M𝑄)(𝑠"-., 𝑎"-.)

/

3. Update Q-network parameters 𝜃; = 𝜃 + 𝛼𝛻'ℒ= 𝜃 with gradient decent

While not converged:

Simplest DQN Algorithm

Slide Credit: Stefan Lee
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Weaknesses in our Simple DQN:

Limited exploration:

1. Perform rollout to collect trajectory 𝜏 = (s", a", s#, a#, s$, … ) and reward r 𝜏

Recall our implicit policy 𝜋> is a′ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄)& 𝑠, 𝑎

1 1 1 1 1S00010

ℒW 𝜃 ≈ h𝑄) 𝑠& , 𝑎& − 𝑟 𝑠& , 𝑎& +max
A

h𝑄) (𝑠&'%, 𝑎&'%)
R

Slide Credit: Stefan Lee
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𝝐-greedy policy:

𝜋6(𝑠.) = Iargmax7
H𝑄'# s8, a with probability ϵ

~ uniform over A with probabiliy 1 − ϵ

Slide Credit: Stefan Lee
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Off-policy DQN:

Exploration policy is 𝜋_, but we evaluate based on 𝜋>

1. Rollout 𝝅𝝐 to collect trajectory 𝜏 = (s+, a+, s,, a,, s4, … ) and reward r 𝜏

2. Compute loss from samples ℒ= 𝜃 ≈ M𝑸𝝅𝜽 𝒔𝒕, 𝒂𝒕 − 𝑟 𝑠1, 𝑎1 +max
8

M𝑸𝝅𝜽(𝒔𝒕3𝟏, 𝒂𝒕3𝟏)
4

3. Update Q-network parameters 𝜃; = 𝜃 + 𝛼𝛻'ℒ= 𝜃 with gradient decent

While not converged:

On-policy: Exploration policy == evaluation policy

Off-policy: Exploration policy != evaluation policy

Slide Credit: Stefan Lee
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𝝐-greedy vs. argmax:

-1 -1 -1 -1 -1-1-1-1-1-1

-1 -1 -1 -1 -1-1-1-1-1-1

-100 -100 -100 -100 Goal-100-100-100-10010

Consider the cliff-walking game:

Slide Credit: Stefan Lee
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Weaknesses in our Simple DQN:

Examples in a trajectory are correlated

𝜏 = (s+, a+, 𝑟+, s,, a,, r,, s4, a4, r4, … )

…

Gradient updates are highly correlated and can lead to oscillation.

Slide Credit: Stefan Lee
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Experience Replay:

𝑅𝑒𝑝𝑙𝑎𝑦 𝐵𝑢𝑓𝑓𝑒𝑟 = 𝑠1
I, 𝑎1

I, 𝑟1
I, 𝑠13,

I
I

Idea: collect a buffer of trajectories and then randomly sample transitions 
to perform our update

𝑏𝑎𝑡𝑐ℎ ~ 𝑅𝑒𝑝𝑙𝑎𝑦 𝐵𝑢𝑓𝑓𝑒𝑟

Slide Credit: Stefan Lee
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Off-policy DQN with Experience Replay:

1. Rollout 𝜋J to collect trajectory 𝜏 = (𝑠+, 𝑎+, 𝑠,, 𝑎,, 𝑠4, … ) and reward r 𝜏
2. Store transitions (𝑠K, 𝑎K, rK, 𝑠K3,) in replay buffer 𝐵
3. Sample N transitions from 𝐵 and compute 

ℒ= 𝜃 ≈ E
6/,

0

I𝑄)$ 𝑠1
6, 𝑎16 − 𝑟 𝑠16, 𝑎16 +𝑚𝑎𝑥

8
I𝑄)$(𝑠13,

6 , 𝑎13,6 )
4

4. Update Q-network parameters 𝜃; = 𝜃 + 𝛼𝛻'ℒ= 𝜃 with gradient decent

While not converged:

Tends to be more sample efficient than policy-gradient methods 
because transitions are valid targets forever.

Slide Credit: Stefan Lee
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ℒ= 𝜃 ≈ E
6/,

0

M𝑸𝝅𝜽 𝒔𝒕
𝒏, 𝒂𝒕𝒏 − 𝑟 𝑠16, 𝑎16 +max

8
M𝑸𝝅𝜽(𝒔𝒕3𝟏

𝒏 , 𝒂𝒕3𝟏𝒏 )
4

Weaknesses in our Simple DQN:

Chasing a non-stationary target:

Same network producing both.
Each update changes the targets.

Slide Credit: Stefan Lee
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Target networks:

Idea: Keep an old version of parameters around to estimate targets 

𝒔𝒕

J𝑸𝝅 (𝒔𝒕; 𝜽)

Deep
Net

𝒔𝒕

J𝑸𝝅 (𝒔𝒕; 𝜽𝒐𝒍𝒅)

Deep
Net (copy)

Fixed Target Network

ℒ+ 𝜃 ≈ M
)'.

3

J𝑸𝝅𝜽 𝒔𝒕
𝒏, 𝒂𝒕𝒏 − 𝑟 𝑠"), 𝑎") +max

,
J𝑸𝝅𝜽(𝒔𝒕-𝟏

𝒏 , 𝒂𝒕-𝟏𝒏 )
/

Re-copy the target network 
weights periodically.

Slide Credit: Stefan Lee



Value-Based RL – Double Q-Learning

104

Weaknesses in DQN:

ℒW 𝜃 ≈ h𝑄) 𝑠& , 𝑎& − 𝑟 𝑠& , 𝑎& +max
A
𝑄)∗ (𝑠&'%, 𝑎&'%)

R
Tends to overestimates action values:

DQN Estimate

DQN True Value

Slide Credit: Stefan Lee
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Deep Q-Learning:

Assume an implicit greedy policy and just learn its action-value function. 
The approach is model-free and fairly general but does require some 

tricks to overcome a few problems during training.

• When to use this?
• When reward functions are well-defined but rollouts are more expensive.
• Worried about sample efficiency and have strong exploration policy.
• … don’t mind trying to get it stable … which is a challenge sometimes

Bonus Concept: Experience replay to reduce correlation in 
examples is broadly applicable. 

Slide Credit: Stefan Lee
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All the previous RL methods we discussed are model-free algorithms: 

If we can estimate a model 𝒔𝒕'𝟏~𝒇 𝐬𝐭, 𝐚𝐭 , can we be more efficient?

Agent

Environment

Action

Observation

Goal

Reward ?

Slide Credit: Stefan Lee
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If we can estimate a model 𝒔𝒕'𝟏~𝒇 𝐬𝐭, 𝐚𝐭 , can we be more efficient?

Dynamics are reward independent – changing 
reward function isn’t a problem!
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Model-based Control Algorithm

1. Run base policy (possibly random or human) to collect samples
2. Fit a model 𝒇 𝐬𝐭, 𝐚𝐭 using least squares or some other loss
3. Backprop through 𝒇 𝐬𝐭, 𝐚𝐭 to optimize policy parameters

As with Behavior Cloning, we may suffer 
from state distribution mis-match.

Slide Credit: Sergey Levine
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Model-based Control Algorithm (Iterative)

Run base policy (possibly random or human) to collect samples

While not converged:
1. Fit a model 𝒇 𝐬𝐭, 𝐚𝐭 using least squares or some other loss
2. Backprop through 𝒇 𝐬𝐭, 𝐚𝐭 to optimize policy parameters
3. Run this backprop derived policy and add samples to training set

Luckily, the world is an oracle with respect to the 
model! No need to worry about querying an expert.

Slide Credit: Sergey Levine



Model-based RL
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Model Predictive Control Algorithm (Iterative)

Run base policy (possibly random or human) to collect samples

While not converged:
1. Fit a model 𝒇 𝐬𝐭, 𝐚𝐭 using least squares or some other loss

1. Backprop through 𝒇 𝐬𝐭, 𝐚𝐭 to optimize policy parameters
2. Run this backprop derived policy and add samples to training set
3. Take a step with this policy then refit based on current state

A bit expensive to run this optimization every step.

Slide Credit: Sergey Levine



Value-Based RL – Deep Q-Learning
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https://bair.berkeley.edu/blog/2019/05/20/solar/

Model-Based Reinforcement Learning from Pixels 
with Structured Latent Variable Models 2019

Slide Credit: Stefan Lee

https://bair.berkeley.edu/blog/2019/05/20/solar/


Value-Based RL – Deep Q-Learning
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https://planetrl.github.io

Learning Latent Dynamics for
Planning from Pixels 2019

Slide Credit: Stefan Lee

https://planetrl.github.io/


Model-based RL:
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Model-based Recap:

Learn the dynamics model and then optimize for long-term rewards through 
it (aka plan!). Very sample efficient and can be self-supervised. Some initial 

work does it directly in pixel space (including goal specification). 

• When to use this?
• When dynamics are unknown (e.g. physical systems) but modelable
• Very worried about sample efficiency (e.g. robotics)
• Want to transfer to different goals

Slide Credit: Stefan Lee



Next time

• Paper presentations (3/15)
• Mapping Instructions and Visual Observations to Actions with 

Reinforcement Learning (Atmika)
• Learning Interpretable Spatial Operations in a Rich 3D Blocks World 

(Discussion)

• Thursday (3/18): Instruction following – VLN


