CMPT 983

Grounded Natural Language Understanding

March 11, 2021
Instruction Following

(review of RL)

How to Train Your Agent

(A Crash Course in Sequential Decision Making with Deep Nets)
Stefan Lee — OSU, CS539 - Fall 2019

Today

 |ntro and Notation

* Imitation Learning
« Behavior Cloning
* Direct Policy Learning
« Sketch of Inverse Reinforcement Learning

« Reinforcement Learning
* Policy-based (REINFORCE, Actor-Ciritic)
* Value-based (Q-Learning)
« Model-based

Intro and Notation

A General Embodied Agent

Instructions
Exit the bedroom. Turn

left down the hall and .
stop in the kitchen. Action
Goal
é 1
Reward
Agent
\. J

Environment

Observation

A General Embodied Agent

a;
g Action

| 0, = f(St) Environment

Observation

Some Notation
Markov Decision Process (MDP)

Defined as (S, A, R, P,y)
» § Set of possible
* A Set of possible

* R:SXA - Qg Distribution of given state-action pair
e P:SXA - Qg function — distribution over next states
Y factor

state, action, reward
at each time step

Life looks like (s, ao/, 10, S1,0q1,7q,)
where s¢1 ~ P(St11lSe, a) and 1p ~ R(1¢|se, ar)

Some Notation
Decision Process (MDP)

Markov property
independent of s;_

POMDP: Partially observed MDP
 Often we don't know what the states are!

Slide Credit: Stefan Lee

Examples MDPs

Robot Locomotion

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Make the robot move forward

State Space: Angle and position of the joints

Action Space: Torques applied on joints
Reward Function: 1 at each time step upright + forward movement

Slide Credit: Fei-Fei Li, Justin Johnson - CS 231n

Examples MDPs

Atari Games

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Complete the game with the highest score
Observation Space: Raw pixel inputs of the game state

Action Space: Game controls e.g. Left, Right, Up, Down
Reward Function: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson - CS 231n

Examples MDPs

PointGoal Visual Navigation

Navigate to the specified point

Observation Space: Raw pixel inputs

Action Space: Forward, Turn Left, Turn Right

Reward Function: Distance increase/decrease per time step
+ "It hurts to be alive” penalty

Slide Credit: Stefan Lee

Some Notation

Common Terminology and Definitions

Policy — How should the agent act?

* Stochastic policy m:§ - 0y a; ~ m(s;)

* Deterministic policy m:§ = A a, = mw(sy)

Value — How is each state? Or state-action pair? [xpected

« (State) Value Function Vie(se) = Epp|Xi2, vy] return

« Q Function Qr(se,a) = R(sp,a) + vEg, [Vi(Se+1)]
e Advantage A (sq,a) =Q,(s,a) —V (sy)

How much better is taking the action a
than the average?

Some Notation

Common Terminology and Definitions

Model — What will happen when the agent acts?
* Learn to mimic the transition function M: §XA - Qg

Rollout — What happens it we let the policy act for a while?
* Trajectory T = (S¢, Aty Spaq) Apgqy on)

o T~ [IP(s¢s1l5s ap)m(ag|sy) P(s,) often written 7 ~ 1

* Can also consider states visited by policy: P(s|r) ors ~ &

Some Notation

Start

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location

Goal

Some Notation

m Arrows represent policy m(s) for each state s

Some Notation
Value

DEDDDES
B
nE

Start | -16

m Numbers represent value v, (s) of each state s

Some Notation
Model

m Agent may have an internal
model of the environment

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m [he model may be imperfect

m Grid layout represents transition model P2,

m Numbers represent immediate reward R2 from each state s
(same for all a)

Getting a Handle on These Definitions

1. If we have a policy m and know the true @ (s, a) -- can we derive
a new policy ' that is as good or better than ©?

Recall that Q, (s, a) is the expected reward of taking action a in state s

2. Fill in a simple algorithm to improve a policy:

Increase the probability m(a|s) if

Decrease the probability m(a|s) if

Getting a Handle on These Definitions

Doesn’t matter if
you got one
apple if you got
eaten by a tiger

is not a particularly useful signal
in many task settings.

Slide Credit: Stefan Lee

Getting a Handle on These Definitions

1. If we have a policy m and know the true @ (s, a) -- can we derive
a new policy ' that is as good or better than ©?

Recall that Q. (s, a) is the expected reward of taking action a in state s

2. Fill in a simple algorithm to improve a policy:

the probability m(a|s) if
the probability m(a|s) if

Recall that V. (s) is the expected reward of following m from state s

Getting a Handle on These Definitions

1. If we have a policy m and know the true @ (s, a) -- can we derive
a new policy ' that is as good or better than ©?

Recall that Q. (s, a) is the expected reward of taking action a in state s

2. Fill in a simple algorithm to improve a policy:

Increase the probability m(a|s) if

Decrease the probability m(a|s) if
Recall A (st,a) = Q(s¢, a) — V. (s¢)

Getting a Handle on These Definitions

3. Given an accurate deterministic world model sy, = M(s;, a;)
and value function V_(s;), how should an agent act in state 5,7

For each possible action a,
Compute V(s¢41) for sppq = M(s¢, @)
Select action with highest value.

Slide Credit: Sergey Levine

Markov Decision Processes

Challenges of Markov Decision Processes

Reward is very often discontinuous

r(s, a)] Turn Right
Turn Left

r(s,a) — not smooth

mg(a = turnright) = 6

Er,[r(s,a)] — smooth in 6

Slide Credit: Stefan Lee

Markov Decision Processes

Challenges of Markov Decision Processes

Bitcoin Price History (USD)

$4.000 Reward is often and
(8/13/2017)
$3,000
11%%%23 Ll Taking an action at time t @
() $2.,000 Doesn’t pay off till time t+k O
(5/20/2017)
$100.00
0 (4/3/2013)

11)

Slide Credit: Stefan Lee

Markov Decision Processes

Challenges of Markov Decision Processes

Reward is often and

Taking an action at time t @
Doesn't pay off till time t+k O

Markov Decision Processes

Challenges of Markov Decision Processes

2.08x10"70 Legal Board Configurations State and action spaces can be huge
(or infinite)

ABCDEFGHJKLMNOPQRST

. ' l!~ f wv”')“‘

@ 1@

19

ih-
I
ah-
s
4
B
2
1

Slide Credit: Stefan Lee

A General Embodied Agent

Imitation Learning

« Have expert demonstrations
(possibly interactive)

Action

Goal

|—} Agent
| Environment

Observation

Reinforcement Learning

* Environment provides feedback
* No examples of optimal policy

Action

Goal

Reward
L} Agent
| Environment

Observation

Some Notation

Common Terminology and Definitions
(for categorizing RL algorithms)

Model-free vs Model-based RL
* Do you know the world model of how actions affect state?
M: §XA — ‘Q‘S

On-policy vs Off-policy

* On-policy: Use samples from the target policy for training
+ Oft-policy: Train on a distribution of trajectories

(set of interaction sequences / episodes) that comes from a
different policy than the target policy

A General Embodied Agent

Imitation Learning

« Have expert demonstrations
(possibly interactive)

Action

Goal

|—} Agent
| Environment

Observation

Reinforcement Learning

* Environment provides feedback
* No examples of optimal policy

Action

Goal

Reward
L} Agent
| Environment

Observation

Imitation Learning

Imitation Learning

Imitation Learning

« Assume access to an expert demonstrator T* at some point or another and
to varying levels of interactivity Does not assume reward function is given!

Imitation Learning

Imitation Learning

Assume access to an expert demonstrator T* at some point or another
and to varying levels of interactivity

* Does not assume reward function is given!

Behavior Cloning |/ Inverse Reinforcement Learning
- Given dataset of expert trajectories D = { (sq, ag, S1, Ay, -, ST, A7) Heq

* Direct Policy Learning / Interactive Expert
« Assume queryable expert m* during training

Imitation Learning
Behavior Cloning

Imitation Learning — Behavior Cloning

— \

Example #1: Racing Game
(Super Tux Kart)

S = game screen

a = turning angle

Training set: D={r:=(s,a)} from *
e s =sequenceofs
e a =sequence of a

Goal: learn me(s)—a

Slide Credit: Yisong Yue

Images from Stephane Ross

Imitation Learning — Behavior Cloning

Behavior Cloning

 Qiven D = {(sg,a9,51,a1, ..., ST,A7); }Iivzl from an
expert demonstration policy *
* Break things down to individual state-action pairs s, a; and

0*

argmingEs | L(mg(s), m*(s)) |

0* = argming ZL(ﬂe(adSt)ﬂT*(adSt))
L
* Interpretations:

« Assuming perfect imitation so far, learn to continue imitating perfectly
* Minimize 1-step deviation for states the expert visits

Imitation Learning — Behavior Cloning

Data Distribution Mis-match

Supervised Learning Behavior Cloning

(x,y)~D (s,a)~m"

(x,y)~D (s,a)~Trg

Distributions of states the agent will encounter during test may differ from training!

Slide Credit: Katerina Fragkiadaki

Imitation Learning — Behavior Cloning

Behavior Cloning: Use set of demonstrations as targets for a
supervised learning task while minimizing 1-step error

 Strengths:
* Dead simple. Seriously. It is just supervised learning.
* Works well when minimizing 1-step deviation is sufficient.

« Weaknesses:

« Compounding errors.
e Data distribution mis-match.

Imitation Learning — Behavior Cloning

Data Distribution Mis-match Expert trajectory

No data on
how to recover

Image Credit: Yisong Yue
Worse: errors compound!

Suppose 1y achieves an error rate of € for states induced by ©*,
then over a T length trajectory the expected number of errors is
E. [mistakes] = O(T?%¢)

Imitation Learning — Behavior Cloning

Behavior Cloning: Use set of demonstrations as targets for a
supervised learning task while minimizing 1-step error

 Strengths:
* Dead simple. Seriously. It is just supervised learning.
* Works well when minimizing 1-step deviation is sufficient.

« Weaknesses:

« Compounding errors.
e Data distribution mis-match.

* When to use this?
* When the state space is well-covered by the demonstrator.
* When recovering from 1-step deviations is easy.
* To pre-train before doing a full RL approach.

Imitation Learning
Direct Policy Learning

Imitation Learning — Direct Policy Learning

Data Distribution Mis-match
Expert trajectory

Learned Policy >/

No data on
how to recover Pt ("-..I

Slide Credit: Yisong Yue

Imitation Learning — Interactive Direct Policy Learning

Why is this a problem for Behavior Cloning?

0* = argminglE | L(mg(s), m*(s)) |

Train a policy that behaves the same in states the demonstrations visit.
What if we had a demonstration policy we could query?

0* = argmingE. . [L(mg(s),m*(s))]

Removes state mis-match, but requires us to evaluate ©*(s) for arbitrary states.

Imitation Learning — Interactive Direct Policy Learning

0* = argminglE | L(mg(s), m*(s)) |

A Naive Algorithm

Steering \
Estimate policy my parameters from txm rt \
Train a policy my using behavior cloning D; g (
Estimate state space s ~ my and collect 4§
demonstrations \ >

Rollout 7}, to generate a set of states, query
n* to generate a new dataset D; 4

Not guaranteed to converge / might oscillate.

Slide Credit: Stefan Lee

Imitation Learning — Interactive Direct Policy Learning

Initialize D < 0.

Initialize 7r1 to any policy in I1I.

for:=1to N do
Let m; = B;m* + (1 — B;)7;.
Sample 7'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by m;
and actions given by expert.
Aggregate datasets: D < D] D;.
Train classifier ;4.1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Slide Credit: Stefan Lee

Imitation Learning — Interactive Direct Policy Learning

Initialize D < 0.

Initialize 7r1 to any policy in I1I.

for:=1to N do
Let m; = B;7* + (1 —_ 52)7%
Sample 7'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by m;
and actions given by expert.
Aggregate datasets: D < D | | D;.
Train classifier ;4.1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Slide Credit: Stefan Lee

Imitation Learning — Interactive Direct Policy Learning

Initialize D < 0. |
Initialize 7r1 to any policy in I1.
for:=1to N do
Let m; = B;7* + (1 — ﬂz)ﬁ'z
Sample 1'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by 7;
and actions given by expert.
Aggregate datasets: D < D D;.
Train classifier ;4.1 on D.
end for
Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Slide Credit: Stefan Lee

Imitation Learning — Interactive Direct Policy Learning

DAGGER is a based approach.

Aggregate datasets: D < D D;.

Alternative approaches do

™ =(1-—a)r* + a2;=1(1 — o)l ta,

SMiILe from Efficient Reductions for Imitation Learning, 2010
SEARN from Search-based Structured Prediction, 2009

Imitation Learning — Interactive Direct Policy Learning

Interactive Direct Policy Learning

lteratively perform behavior cloning and then query an expert
demonstrator to label newly entered states.

* When to use this?
* When querying the expert is cheap!
* Why not just use that expert? Some cases “expert actions” are easy
to compute, but their relation to the observed state may not be.
* When executing a possibly bad policy is safe.

Imitation Learning
Inverse Reinforcement Learning

Imitation Learning — Inverse Reinforcement Learning

Inverse Reinforcement Learning

Given dataset of trajectories D = { (sg, ag, S1, a1, -, ST, AT){ }{Vzl from an
expert policy ¥, such that:

n* = argmaxy Bg g n,[r(s,a)l

Compare
Policy
with
Expert

Run RL
to Learn
Policy

Learn
Reward
Function

Imitation Learning — Inverse Reinforcement Learning

Inverse Reinforcement Learning

Given dataset of trajectories D = { (sg, ag, S1, a1, -, ST, AT){ }{Vzl from an
expert policy n*, find a reward function r(s, a) such that:

n* = argmaxy Bg g n,[r(s,a)l

Compare
Policy
with
Expert

Learn
Reward
Function

Reinforcement Learning

A General Embodied Agent

Imitation Learning

« Have expert demonstrations
(possibly interactive)

Action

Goal

|—} Agent
| Environment

Observation

Reinforcement Learning

* Environment provides feedback
* No examples of optimal policy

Action

Goal

Reward
L} Agent
| Environment

Observation

Reinforcement Learning

Approaches to Reinforcement Learning

* Policy-based RL
* Search directly for the

* Value-based RL
* Estimate the Q*(s,a)
 Under some fixed policy (e.g. epsilon-greedy)

* Model-based RL

* Build a model of the world
* State transition, reward probabilities

* Plan (e.g. by look-ahead) using model

Taxonomy

Model-Free RL: Don’t know how
our action will affect the state

value/policy

alue
unction

acting

planning direct
RL

model experience

> 7

model
learning

Model-Based RL: Need to build a

model of how our action will
affect the state

Figure Credit: David Silver

Reinforcement Learning
Deep Reinforcement Learning

* Policy-based RL

* Learn a policy network m(s; 8*) = m*(s) parameterized by 8

* Value-based RL

* Learn a network Q(s,a; 0") = Q*(s,a) parameterized by 6
 Under some fixed policy (e.g. epsilon-greedy)

* Model-based RL

 Learn a transition function M(s;0%) =~ IP(s)
* Plan (e.g. by look-ahead) using model

Policy-Based RL
REINFORCE

Policy-Based Reinforcement Learning
Goal: Learn a policy network m(s; 8*) such that:

0" = drgmaxg IETL'@,P Eyi_lr(si, Cli)
L i

J(0)

How to optimize 8 to maximize J(0)7

Policy Gradient Methods Model and optimize

the policy directly
Let's write J(0) = Epop, ()]

f p(t; 0)r(t) dt

T

Where r(7) is the reward of trajectory T = (sg,aq,S1,a1, S, ---)

p(7;0) = [Ip(ses1lse ar) mo(ae, s¢)

Slide Credit: Dhruv Batra

Policy Gradient Methods

Expected rewards of policy (- | -; 0):](0) = j p(’[; 0)r(t)drt

T

Let's differentiate with respect to 6: Vg](@) = f Vgp(’[; 0)r(t)drt

T

REINFORCE Algorlth M (williams, 1992)

Let's differentiate with respect to 6: Vg](@) = f T(T) dt

T

A useful identity/trick:

p(t;)

\p(T; 9)}
|
1

REINFORCE Algorlth M (williams, 1992)

Let's differentiate with respect to 6: Vg](@) = f T(T) dt
T

Vo] (0) = f r(7) dt

REINFORCE Algorlth M (williams, 1992)

Let's differentiate with respect to 6: Vg](@) = f T(T) dt
T

Vel (0) = Velogp(z; 6) r(7)

Vo] (6) = [r(7) Velogp(z; 6)]

RE'NFORCE Algorlthm (Williams, 1992)
Vol (0) = VgE; r,[r (D))

Transformed the
into the

NS

Vel (0) = Er rylr(7) Vglogp(r; 0)]

RE'NFORCE Algorlthm (Williams, 1992)
Vo] (8) = [ET~7T9 [r(7)]
Computing
p(t;0) = [1p(sey1lse ar) mo(as, s¢)

logp(7;0) = 2 log p(st41lse, ar) +logmg(ay, s¢)

does not depend on 6

mp Vglogp(z;0) = 2 Vo log g (as, s¢)

REINFORCE Algorlth M (williams, 1992)

76)0) = Ereny | ¥ Valogm(ails;) 7(1)

L S;,a; €T

Monte Carlo Approximation:

7] (0) ~)) Vglogm(aylsi; 0)(ry)

n S;a; €Ty

sample some trajectories

REINFORCE A\gorlth M (williams, 1992)

Intuition:

7] (6) =)) Vglogm(ailsi; 0)

n S;a; €Ty

* If trajectory is positive, push up the probabilities of the action
* |f trajectory is negative, push down the probabilities of the action

All actions in trajectory move in same direction based on reward?!?

Slide Credit: Dhruv Batra

REINFORCE Algorlth M (williams, 1992)

REINFORCE Algorlthm (Williams, 1992)

While not converged:
1. Perform rollout to collect trajectory T = (sg,ag,S1,a1, S, ...) and reward r(t)
2. Compute gradient estimate Vg/(0) = X X 5, a; er,, Vo log m(a;|s;; 0) r(Ty)
3. Update policy parameters 8’ = 8 + aVy J(6)

REINFORCE In Action

Pong from Pixels

Image Credit: http://karpathy.github.io/2016/05/31/rl/

REINFORCE In Action

Pong from Pixels

raw pixels hidden layer

| . probability of
S ’0;; moving UP
A":‘.‘Y»‘A.
L
=
SZIH O
H)
VaVs

Image Credit: http://karpathy.github.io/2016/05/31/rl/

REINFORCE In Action

forward pass

» |og probabilities

Supervised Learning
(correct label is provided)

-1.2 | -0.36
. block of differentiable compute .
image (e.g. neural net) gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» log probabilities
-12 |-0.36 | —— sample an action:
. block of differentiable compute di
'mage (e.g. neural net) gradients
0 -1.0

A

backward pass

Image Credit: http://karpathy.github.io/2016/05/31/rl/

eventual reward -1.0

What's wrong with policy gradients?

7o) (©)~)) Vylogm(ails;) (zn)

n S;a; €ty

Trajectories are long samples.
Rewards are often sparse and for the whole trajectory.

Reducing Variance

Causality:
Policy at time t'can’t affect rewards at time t < t’

7ol ©)~)) Vylogm(alsi6)7(ry)

n Siai €ty

$
7o))~) > Tylogn(a, |sl,e><zyl tr(st,aa)

n s;aj €ty

Reducing Variance

Baselines:
What happens if the reward of “good samples” is negative?

Start
m Rewards: -1 per time-step

m Actions: N, E, S, W

m States: Agent's location

Goal

Reducing Variance

Baselines:
What if the variance in reward is huge?

7ol ®)~)) Vylogm(alsi6)7(ry)

n Siai €ty

Reducing Variance

Baselines:

7o) ©) %) D TVplogm(ails; 6) [r(zy) — /]

n s;,ai €Ty
1
Average reward: 0 = Nz r(7)

Are we allowed to do this? Still solving the same problem?

E[Vglogmg(T)b] = /W@(T)V@ log mg(7)bdr = /Vgﬂ'g(T)de = ng/T(‘g(T)dT =bVyl =0

Policy Gradient Methods
REINFORCE Recap:

Simple algorithm that formalizes the notion “repeat actions that lead to
high rewards, avoid actions that lead to low rewards”. The approach is
model-free. Big problems are with variance of the estimate, applying
causality and baselines can help.

* When to use this?
* When reward functions are well-defined and simulation is cheap.
* If you don't have time to implement the next thing we will talk about.

Policy-Based RL

Actor-Critic Methods

REINFORCE Algorlth M (williams, 1992)

REINFORCE Algorlthm (Williams, 1992)

While not converged:
1. Perform rollout to collect trajectory T = (sg,ag,S1,a1, S, ...) and reward r(t)
2. Compute gradient estimate Vg/(0) = Xn X s, a, er,, Vo log m(a;|s;; 0) r(ty)
3. Update policy parameters 8’ = 8 + aVy J(6)

Actor-Critic Methods
Causality:

7o) ©) =)) Vplogn(a, |sl,e><zyl tr(st,aa)

n s;aj €ty

Better estimate of expected rewards from a state-action pair?

Qr(se,ar) = 1(se, ag) VIESt+1~IP>[VTc(St+1)]

Actor-Critic Methods
7)) =) > TVglogm(alsi; 0) (

n S;a;i €Tn

What about a baseline?

Ve(s0) = Ex|) ¥~ r(sp,0:)
Li=t i

Advantage: A.(s;a;) = Q (s, ar) — Vi (sg)

Actor-Critic Methods

Tl @)~) D Tplogmlalsi;0) (4, (s, a,)

n S;ai €ty

QT[(Si, at)

[|
Ap(se,ar) =1(se, ar) + YV (Set1) — Vie(se)
A (s, ar) =1(se,ar) + VIESt+1~IP[Vn(St+1)] — Ve (St)

Just need to estimate the value function!
L et's throw a neural network at it!

Slide Credit: Stefan Lee

Actor-Critic Methods

Actor: models the Critic: estimate how good the state (or state-action) is
policy (whatto do) by estimating the value (or Q) function

m(ays) V (st)

i -
Agent predicts both

Agent and

Slide Credit: Stefan Lee

Actor-Critic Methods

m(alse) V (se) Gradient step for parameters with respect to policy parameters:

,—1 L Vo] (0) = Z ‘ Vo logm(a;|s;; 0) (An(st: at))

n Ss;a; €Ty

Agent How to train the value estimator?
\ J ~ 2
* Ly(0) = HV (s¢) — VT[*(St)H
St

V(s = Er lz yitr(ss, ao] ~) > ytrispa)
=t

n i=t

Actor-Critic Methods

m(alse) V (se) Gradient step for parameters with respect to policy parameters:

,—1 L Vo] (0) = Z ‘ Vo logm(a;|s;; 0) (An(st: at))

n Ss;a; €Ty

Agent

How to train the value estimator?

4 Ly(6) = ||V (sp) —

Vi (se) = Enlzyi-trm,ao] > D vitrisya
=t n

=t

Just with data { s;, Y, ¥'" 'r(s;a)) }

Actor-Critic Methods

Advantage Actor-Critic (A2C) Algorithm

While not converged:
1. Perform rollout to collect trajectory T = (sg,ag,S1,a1, S, ...) and reward r(t)
2. Fit V7.(s) to sampled rewards
3. Evaluate A,(s;, ar) = r(se, ap) + Vo (Sp01) — Vo (S¢)
4. Compute gradient estimate VgJ(0) = X X 5, a, ez, Vo logm(a;|s;; 6) A (s¢ ap)
5. Update policy parameters 8’ = 0 + aVy J(6)

Actor-Critic Methods — Bootstrap Targets / Temporal Difterences

m(aelsy) V (s¢)

t t Ly(©) = |7 Gs) = Vi Gl
V(s = Er lz yitr(ss, ao] ~) > ytrispa)
=t

n i=t

Agent

L £,(0) = |7 (s =) ¥ ~r(suan

Actor-Critic Methods — Bootstrap Targets / Temporal Difterences

. Bootstrap target:
w(acs;) V(sp) P J

1t £,(0) = ||V Gs0) = v (s

VTC* (St) — En[r(sb at) + VV;; (St+1)]

Agent
=~ 1(Se, ar) + YVi (S¢41)
4 ~ 1(se, ar) + YV (Ses1)
St

This is a target. Biased but lower variance.

Actor-Critic Methods — Bootstrap Targets / Temporal Difterences

m(as) V(s) Bootstrap target:

1

~ 2
Ly(©) = |V (sp) - [
Agent
Vi (se) = E lr(Se, ar) + ¥YVE(Se+1)]
) * ’ ~ 1(Se, ap) + YV (Ses1)
St

Just supervised regression with data { s;, r(s;, @;) + YV (sis1)}

Policy Gradient Methods
Actor-Critic Recap:

Policy gradient method that trades off variance for bias in gradient
estimates by using a simultaneously learned value function. With clever
choices of baselines, we repeat actions that are better than average and

avoid those that are worse (through advantage estimate).

* When to use this?
* When reward functions are well-defined and simulation is cheap.
* Any time you are doing policy gradients, might as well do this.

Value-Based RL
Deep Q-Learning

Value-Based RL — Deep Q-Learning

Earlier today....

1. If we have a policy m and know the true @ (s, a) -- can we derive
a new policy ' that is as good or better than ©?

Recall that Q; (s, a) is the expected reward of taking action a in state s

If we can estimate Q. (s,a) why do we even need an explicit policy?

Value-Based RL — Deep Q-Learning

If we can estimate Q;.(s,a) why do we even need an explicit policy?

LQ (0) = Hén(st» a;) — Qr (s, at)Hz

Qn (St)
1 . Qrn(st) = r(sp, ar) + vV (Se+1)
Deep
Net
J Ve (s¢) = Ex|Qr(se ar)]

t

2
St LQ(H) ~ ||Qn(5t: ar) — H

Value-Based RL — Deep Q-Learning

Simplest DQN Algorithm

While not converged:

1. Perform rollout to collect trajectory T = (s, a9, 51,21, Sy, ...) and reward r(7)
2. Compute loss from samples £,(6) ~ H()n(st, a;) — ”2

3. Update Q-network parameters 8’ = 6 + aVyL,(8) with gradient decent

Value-Based RL — Deep Q-Learning

Weaknesses in our Simple DQN:

Limited exploration:

1. Perform rollout to collect trajectory T = (sy, ag, S1,a1, S2, ...) and reward r(7)

10 0 0 0 . 1 1 1 1

Lg (6) =~ Qn(st' a) —

Value-Based RL — Deep Q-Learning

e-greedy policy:

argmax, 0, , (Sya) with probability €

T (Sp) =
e(5¢) ~ uniform over A with probabiliy 1 — €

Value-Based RL — Deep Q-Learning

Off-policy DQN:

While not converged:
1. Rollout 7z, to collect trajectory T = (s, ag, S1,a1, Sz, ...) and reward r(t)

2. Compute loss from samples L, (0) =~ H — [r(st, a;) + max
a

3. Update Q-network parameters 8’ = 8 + aVyL,(6) with gradient decent

[§

On-policy:
Off-policy:

Value-Based RL — Deep Q-Learning

e-greedy vs. argmax:

Consider the cliff-walking game:

Slide Credit: Stefan Lee

Value-Based RL — Deep Q-Learning

Weaknesses in our Simple DQN:

Examples in a trajectory are correlated

T = (Sg, 20,70, S1,a1,'1,S2,32,T2, ...)

Value-Based RL — Deep Q-Learning

Experience Replay:

Idea: collect a bufter of trajectories and then randomly sample transitions
to perform our update

Replay Buffer = ((s}al,rt,5t,.))

batch ~ Replay Buf fer

Value-Based RL — Deep Q-Learning

Off-policy DQN with Experience Replay:

While not converged:
1. Rollout 7, to collect trajectory T = (sg, ag, 51, a4, Sy, -..) and reward r(t)

N
Ly(0) ~ 2 HQ,TG (st alt) — [r(s?, at) +max Qry (5841, a?+1)] HZ
n=1

4. Update Q-network parameters 8’ = 6 + aVyL,(8) with gradient decent

Value-Based RL — Deep Q-Learning

Weaknesses in our Simple DQN:

Chasing a non-stationary target:

N
Lo(0) = z H — [r(s?, ai’) + max
n=1

Value-Based RL — Deep Q-Learning

Target networks:

Idea: Keep an old version of parameters around to estimate targets

_ Fixed Target Network
Qr (st 0)

1 an (St; 001a)
4 D N , 4 1 D
Deep Ly(8) = z H — [r(s{l, at) + max]H Deep
Net n=1 Net (copy)
\L * S/ \ y
St f

St

Value-Based RL — Double Q-Learning

Weaknesses in DQN:

Tends to overestimates action values:
R 2
LQ(Q) ~ HQn(St» ag) — H

Space Invaders

" DQN Estimate

6 - .
{ f DQN True Value

0 50 100 150 200

-
=
!
=

FAALIDNR

$RANDR |
U PRE T

B
(F9]
Lt
=
e
&

Value-Based RL — Deep Q-Learning
Deep Q-Learning:

Assume an implicit greedy policy and just learn its action-value function.
The approach is model-free and fairly general but does require some
tricks to overcome a few problems during training.

Bonus Concept: Experience replay to reduce correlation in
examples is broadly applicable.

* When to use this?
* When reward functions are well-defined but rollouts are more expensive.
» Worried about sample efficiency and have strong exploration policy.
« ... dont mind trying to get it stable ... which is a challenge sometimes

Model-based RL

Model-based RL

All the previous RL methods we discussed are model-free algorithms:

Action

Goal

| Environment

Observation

If we can estimate a model s, {~f (s, a;), can we be more efficient?

Model-based RL

If we can estimate a model s, ;~f(s;, a,), can we be more efficient?

// // //7' (s,a) backpropagate
fo(s,8)=—=f4(s,a)——F(s,) ngxzt:r(st,at)

NN

Ty (S) T (S)

Dynamics are reward independent — changing
reward function isn't a problem!

Slide Credit: Sergey Levine

Model-based RL

Model-based Control Algorithm

1. Run base policy (possibly random or human) to collect samples
2. Fit a model f(sy, ay) using least squares or some other loss
3. Backprop through f(s, ap) to optimize policy parameters

Model-based RL

Model-based Control Algorithm (lterative)

Run base policy (possibly random or human) to collect samples

While not converged:

1. Fit a model f(sy, a¢) using least squares or some other loss

2. Backprop through f(s, a) to optimize policy parameters

3. Run this backprop derived policy and add samples to training set

Model-based RL

Model Predictive Control Algorithm (lterative)

Run base policy (possibly random or human) to collect samples

While not converged:

1. Fit a model f(sy, a¢) using least squares or some other loss
1. Backprop through f(s, ay) to optimize policy parameters
2. Run this backprop derived policy and add samples to training set
3. Take a step with this policy then refit based on current state

Value-Based RL — Deep Q-Learning

Model-Based Reinforcement Learning from Pixels
with Structured Latent Variable Models 2019

https://bair.berkeley.edu/blog/2019/05/20/solar/

Slide Credit: Stefan Lee

https://bair.berkeley.edu/blog/2019/05/20/solar/

Value-Based RL — Deep Q-Learning

Learning Latent Dynamics for
Planning from Pixels 2019

https://planetrl.github.io

Slide Credit: Stefan Lee

https://planetrl.github.io/

Model-based RL:
Model-based Recap:

Learn the dynamics model and then optimize for long-term rewards through
it (aka plan!). Very sample efficient and can be self-supervised. Some initial
work does it directly in pixel space (including goal specitication).

* When to use this?
* When dynamics are unknown (e.g. physical systems) but modelable
 Very worried about sample efficiency (e.g. robotics)
« Want to transfer to different goals

Next time

* Paper presentations (3/15)

* Mapping Instructions and Visual Observations to Actions with
Reinforcement Learning (Atmika)

* Learning Interpretable Spatial Operations in a Rich 3D Blocks World
(Discussion)

* Thursday (3/18): Instruction following — VLN

