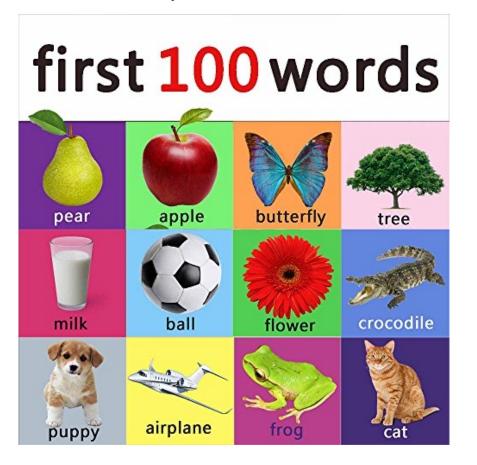
CMPT 983

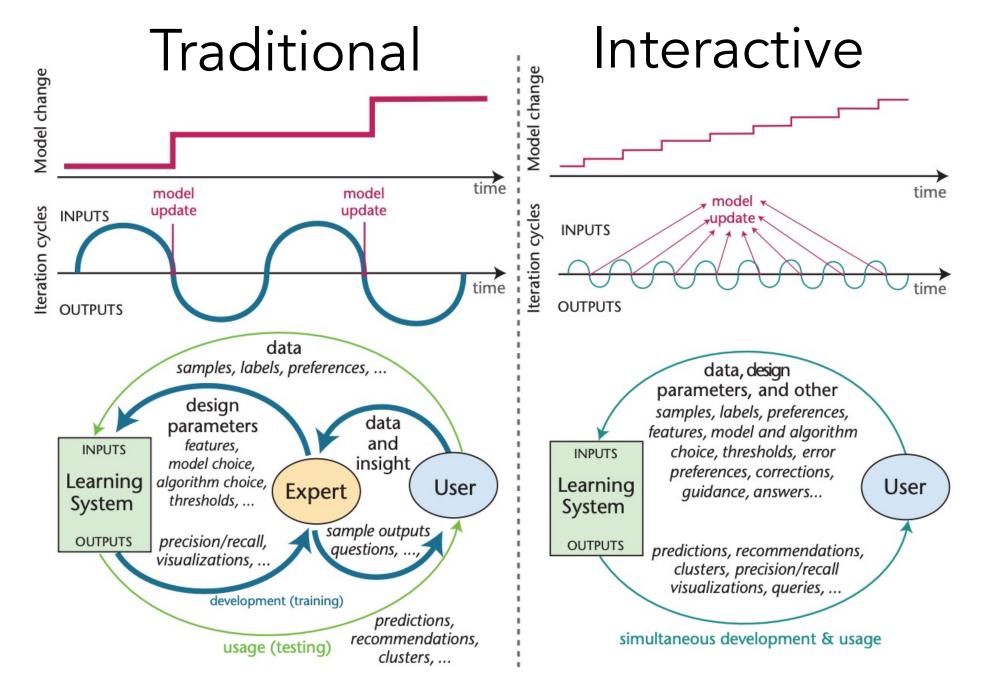

Grounded Natural Language Understanding

April 01, 2021 Interactive language learning What is interactive language learning?

How do people learn language?

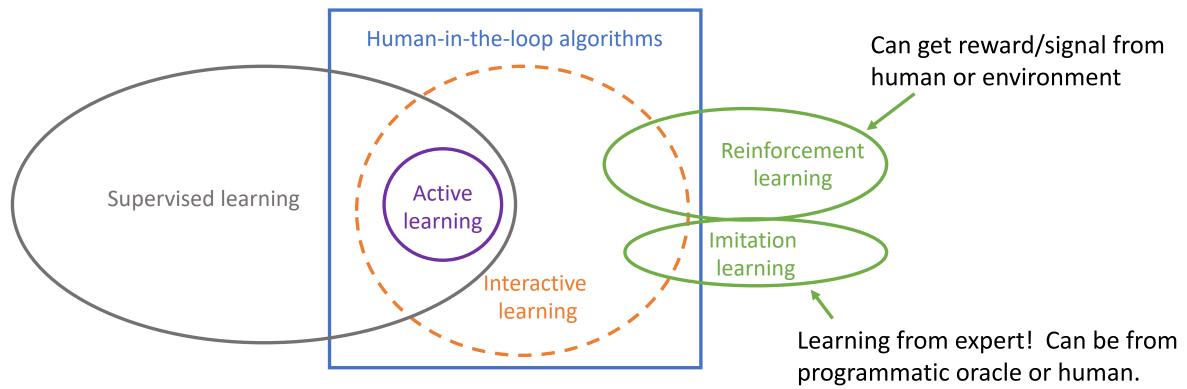
• Not just with static training pairs

• By interaction, through others



What is interactive machine learning?

- People provide feedback to the computer
- Also known as ``Human-in-the-loop"
- The world is constantly changing, learned models also need to evolve.



Power to the People: The Role of Humans in Interactive Machine Learning, Amershi et al, Al Magazine, 2014

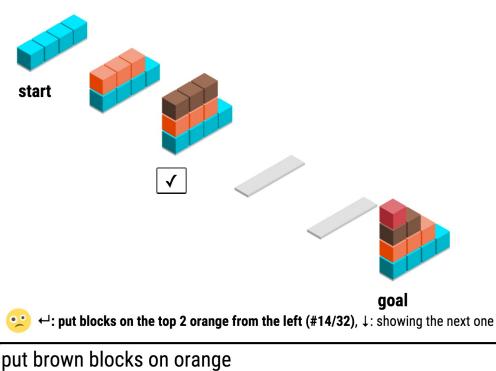
ML taxonomy

- Active learning: identify set of examples that should be labeled
 - Ideal setting: Interactively query user for labels
 - Often in papers: start with fully labeled set, assume that labels are not known for a part of the data, and then study what strategy to select a set to label will be best

https://www.trivedigaurav.com/blog/on-interactive-machine-learning/

What is interactive language learning?

Agent (model) learns language interactively either through


- Human feedback (like in interactive machine learning)
- Environment feedback (more traditionally known as grounded/situated language learning)

Commonality:

- interactive feedback indicating if an action or response is correct
- updating of model (weights) based on feedback
- ideally happens in real time, but practically there is still the train, test, deploy cycle

Interactive language learning (with human feedback)

Learning language through interaction

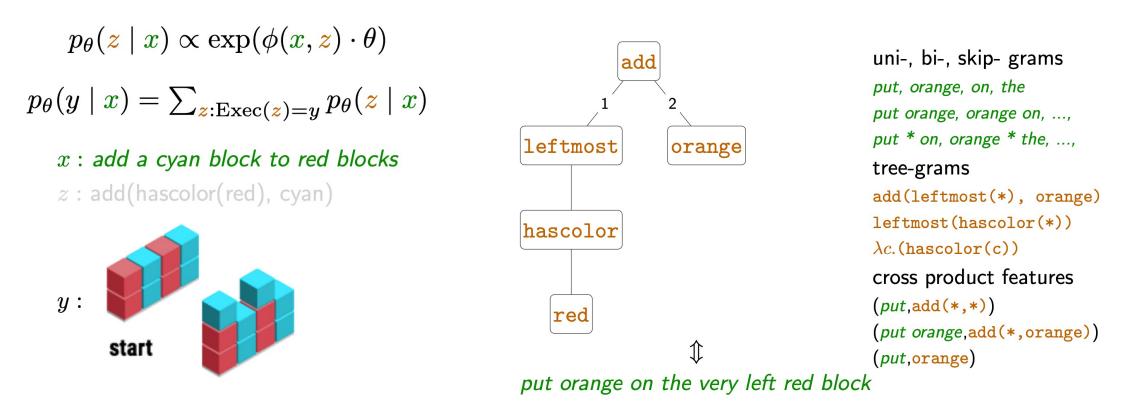
Human

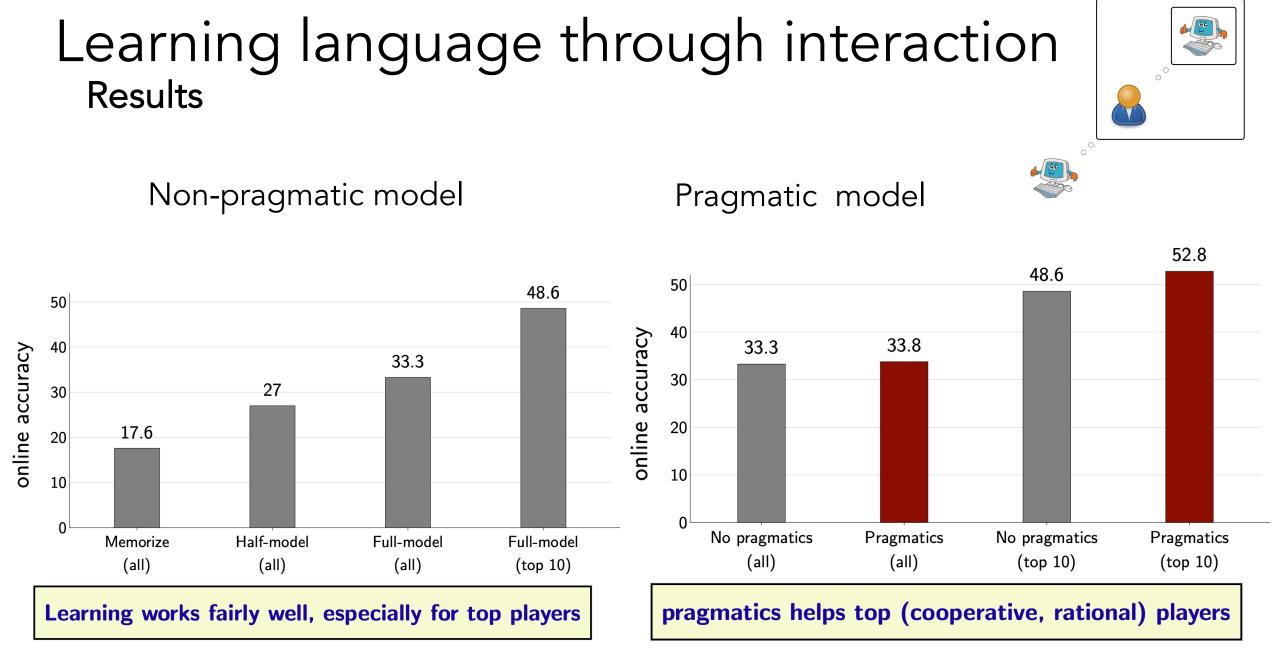
- Has a goal, cannot perform action
- Can use language, provide feedback

Computer

- Does not know goal, can perform action
- Does not understand language

Game:


- Computer predicts an action (initially just random)
- Human provide feedback on correct or not


Can we teach the computer to understand language through interactions?

Learning Language Games through Interaction <u>http://shrdlurn.sidaw.xyz/</u> Wang et al, ACL, 2016

Learning language through interaction Model

Log-linear model with L1 loss, optimized using AdaGrad

Results: top players (rank 1-20)

precise and consistent:

(3.01) rem cy pos 1 stack or blk pos 4 rem blk pos 2 thru 5 rem blk pos 2 thru 4 stack bn blk pos 1 thru 2 fill bn blk stack or blk pos 2 thru 6 rem cy blk pos 2 fill rd blk

Remove the center block Remove the red block Remove all red blocks Remove the first orange block Put a brown block on the first brown block Add blue block on first blue block

remove the brown block remove all orange blocks put brown block on orange blocks put orange blocks on all blocks put blue block on leftmost blue block in top row


Results: average players (rank 21-50)

inconsistent or mismatches computer capability:

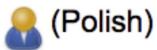
8 (9.17)	8) 🐣
reinsert pink	remove re
take brown	remove 1
put in pink	remove 2
remove two pink from second layer	add 2 red
Add two red to second layer in odd intervals	add 1 2 3
Add five pink to second layer	emove 1
Remove one blue and one brown from bottom layer	add 2 4 c
	add 2 ora
	remove 2

move second cube double red with blue double first red with red triple second and fourth with orange add red remove orange on row two add blue to column two add brown on first and third

red

Results: worst players (rank 51-100)

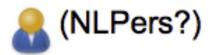
spammy, vague, did not tokenize:


(12.6) 'add red cubes on center left center right far left and far right' 'remove blue blocks on row two column two row two column four' remove red blocks in center left and center right on second row

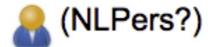
laugh with me red blocks with one aqua aqua red alternate brown red red orange aqua orange red brown red brown red brown space red orange red second level red space red space red space

(14.15)holdleftmost holdbrown holdleftmost blueonblue brownonblue1 blueonorange holdblue holdorange2 blueonred2 holdends1 holdrightend hold2 orangeonorangerightmost

Results: interesting players



-
usuń brązowe klocki
usuń niebieski klocek
usuń pomarańczowe klocki
usuń czerwony klocek
postaw brązowy klocek na pierwszym klocku
postaw czerwony klocek na pierwszym klocku
postaw pomarańczowe klocki na brązowych
postaw czerwone klocki
usuń ostatni brązowy klocek
usuń wszystkie klocki oprócz ostatniego
postaw niebieski klocek na czerwonym
postaw brązowy klocek na pierwszym klocku
,,


(Polish notation) rm scat + 1 c +1c rm sh +124 sh+1c -40 rm 1r+130full fill c rm o full fill sh -13 full fill sh rm sh rm r +23r rm o + 3 sh

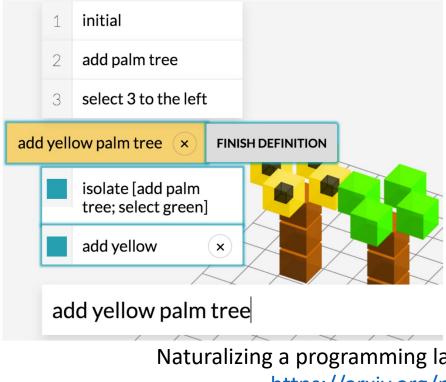
+ 2 3 sh

- Data from June 2016 May 2017
 - 26k+ labeled examples, 1599 games

add brown on the top unless the rightmost not(red) pick up blue blocks +12345rNot the brown block! The orange block! છોડો વાદળી 0 1 બધા વાદળી દૂર છોડો નારંગી 1 4 add blo 1 bro rem ora blo add blo 6 pin add blo 134 bl 去掉最后一个块 在蓝色块上面加一层橙色块 smaz 1 a 3 jednou retire les blocs bleus

move all blocks but middle - 1 br - 4 br - 6 br 一番奥にオレンジを置く 一番右の赤を消す add red one on the first lift 1 3 5 add one orange block on top of each orange 去掉 蓝色 方块 smaz 1 a 2 a 3 a 5 quita el bloque marrón quita el primer bloque por la derecha drop orange not left not right add brown on all blue in line 2 in line 3 Add x x o x o x red block 只保留桔黄色的方块 quitar cubo rojo quitar ultimo cubo rojo

3


Can be adapted to real world applications

I-day	Mon 11/9	Tue 11/10	Wed 11/11	The 11/12	PH 11/13	Set 11/14	Sun 11/15	Points: 0
tern .								
Sam			Alto 1140 West Full Pres to desting	ARI-118 project status conference room				Recipe Steps (0/100
0em	najeri njen			and we can be a	-			
1am					-	thematic with parameter parameter haven		add meeting
tam	08.18						peer with lade	initial
1pm	ean luich san 100				50° 00			
2pm								
3pm				10-40	10-48		10.000	
Apm						-	_	
					_	_		
Spm				ann ann				
_	an a		taniya ana		tal tal antistary ar			
7pm					•			
8pm		_						
							EDIT CALENDAR	
	💿 et m	we tomorrow	at 3 pm titled "	CURIS Session	r (#25/29) 1-	showing the pe	at one	
	w		at a printinea .	ounia dession	n (*20/23), 1.	showing the ne	ALC: NO	
	rename	tomorrow	at 3 pm to	CURIS Set	ssion"	⊗	TRY ACCEPT	

https://nlp.stanford.edu/blog/interactive-language-learning/

Follow-up work

- Let users write programs using natural language
- define new things in terms of what's already defined
- trace back to the core language

add palm tree:

add brown trunk height 3:

add brown top 3 times:

repeat 3 [add brown top]

go to top:

select very top of all

add leaves here:

select left or right or front or back; add green

Naturalizing a programming language via interactive learning https://arxiv.org/pdf/1704.06956.pdf

Wang et al, ACL, 2017

Interactive language acquisition

Teacher What is this

Learner

It is a giraffe

It is a giraffe

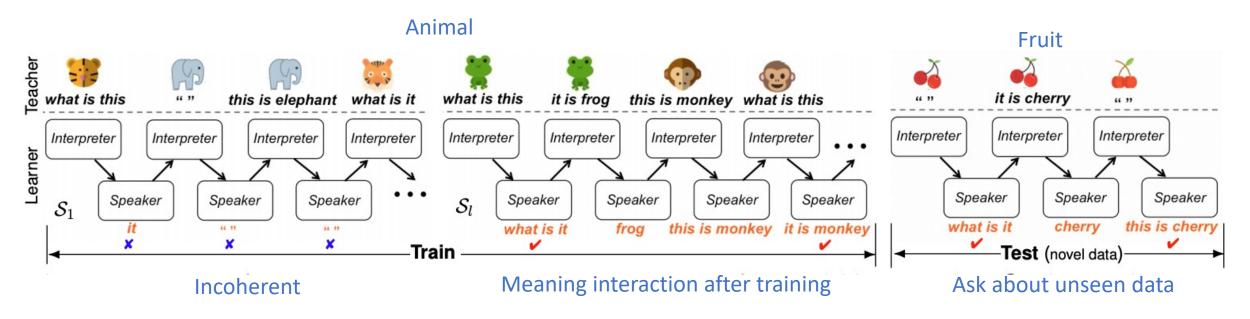
• Learn about new objects with

What is this

- a conversational game between teacher and learner
- Learner needs to:
 - Extract + remember important information (Interpreter)
 - Ask question (Speaker)
 - Name novel objects (Speaker)

Interactive Language Acquisition with One-shot Visual Concept Learning through a Conversational Game <u>https://arxiv.org/pdf/1805.00462.pdf</u>

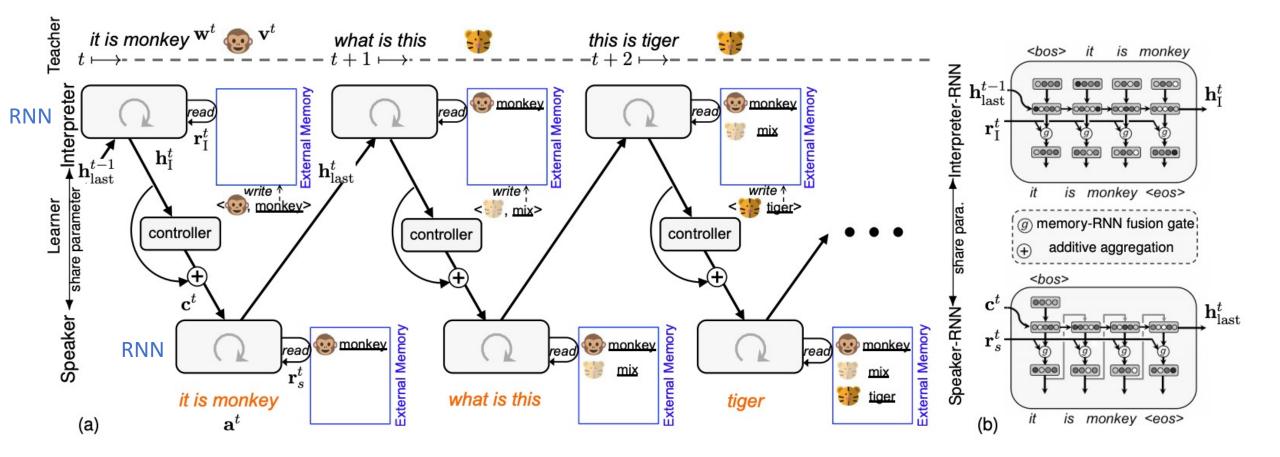
Zhang et al, ACL, 2018


Interactive language acquisition

Teacher (select random object for session):

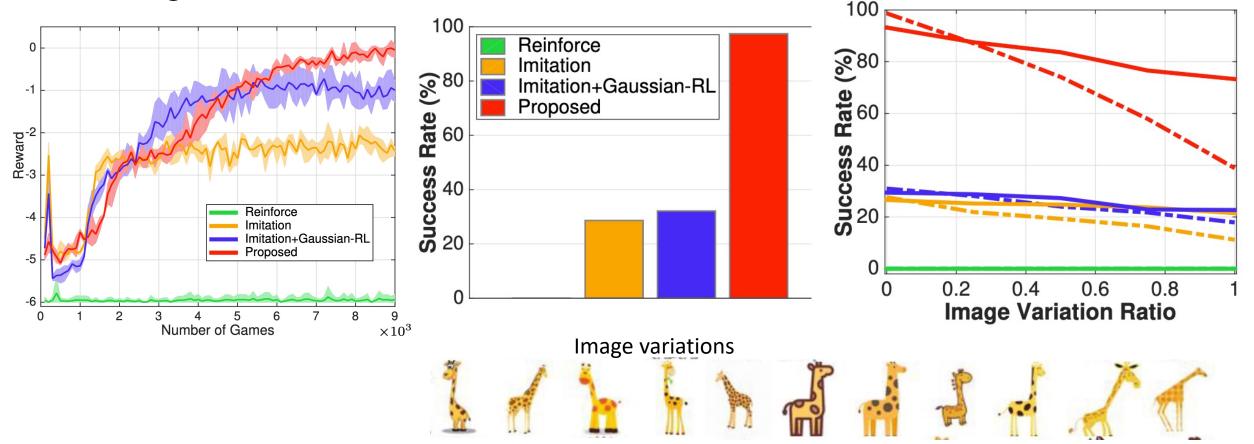
- Ask question
- Answer question / Make statement
- Say nothing

Learner is rewarded for


- Asking question: +0.1
- Providing correct answer: +1 (session terminates)
- Incorrect answer: -1

https://arxiv.org/pdf/1805.00462.pdf, Zhang et al, ACL, 2018

Interactive language acquisition


• Model: RNN with external memory

https://arxiv.org/pdf/1805.00462.pdf, Zhang et al, ACL, 2018

Results

- Compared proposed training with combined imitation and reinforce learning loses against baselines
- Compared impact of image variations (dashed) against not using image variations (solid)

Grounded/Situated Interactive language learning (with environment feedback)

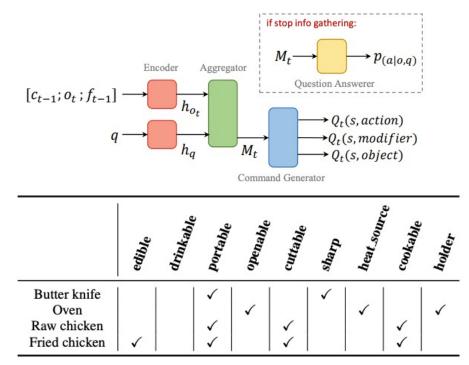
Grounded natural language learning

Learning natural language by interacting with an environment

Goal specified as an attributed object

go to the green ball

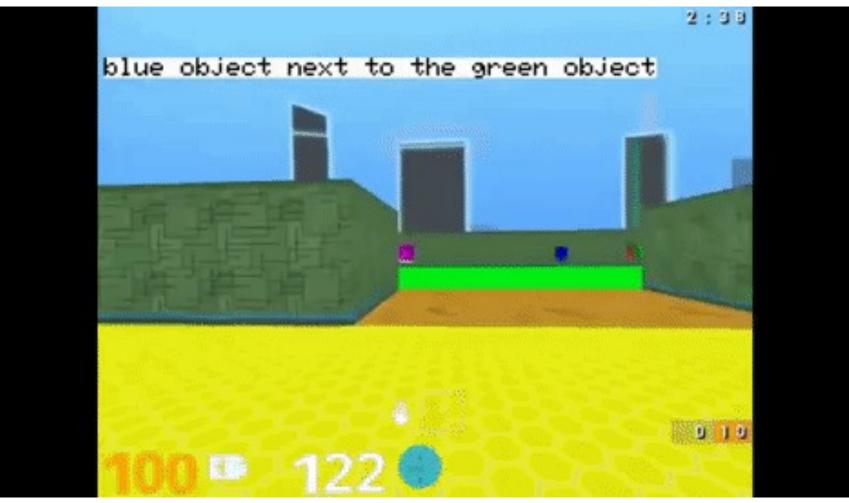
go to the small red object


the target is left of the hair dryer

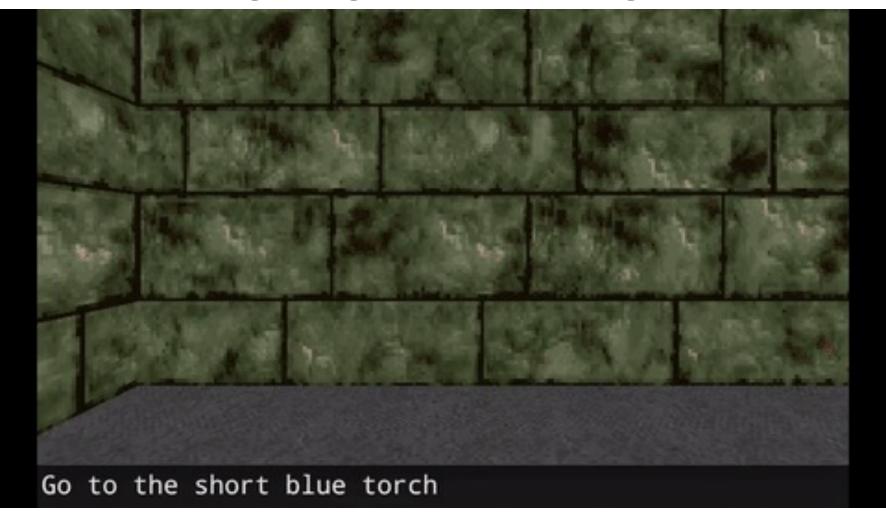
go to any green object

Focus is on language learning – often study generalization to compositionally novel instances

Interactive language learning in TextWorld


- Text adventure game
- Information seeking actions
- Question answering actions

Game	You find yourself in a backyard. You make out a patio table. You see a patio chair. It is stylish. In a corner you can see a BBQ. There is an open screen door leading south.
Question	Is ghargh edible?
Agent	> Qapla'
Game	That's not a verb I recognize.
Agent	> eat ghargh
Game	You can't see any such thing.
Agent	> go south
Game	You've just entered a kitchen. You can see an open fridge here. It is empty! You see a closed oven. Look over there, it's a counter. On the counter you can see a diced potato, a red ghargh and a knife. There is an open screen door leading north.
Agent	> eat ghargh
Game	You need to take the red ghargh first.
Agent	> take red ghargh
Game	You take the red ghargh from the counter.
Agent	> eat ghargh
Game	You eat the red ghargh. Not bad.
Agent	> wait
Agent	> answer: yes


Interactive Language Learning by Question Answering, https://arxiv.org/pdf/1908.10909.pdf, Yuan et al, EMNLP 2019

Grounded Language Learning

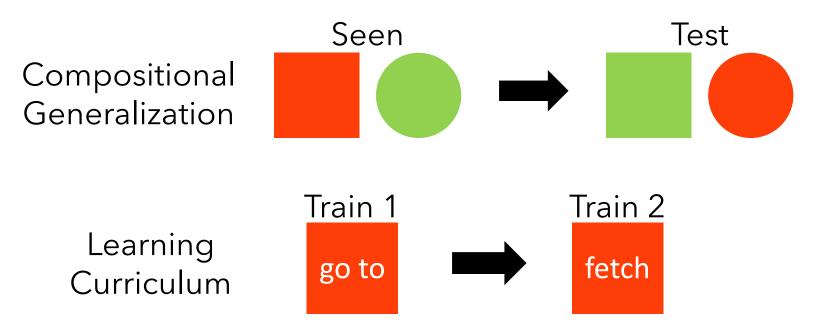
- Grounded Language Learning in a Simulated 3D World <u>arxiv.org/abs/1706.06551</u>
- Understanding Grounded Language Learning Agents arxiv.org/abs/1710.09867

Grounded Language Learning

 Gated-Attention Architectures for Task-Oriented Language Grounding <u>arxiv.org/abs/1706.07230</u>

Slide credit: Stefan Lee

Grounded Language Learning



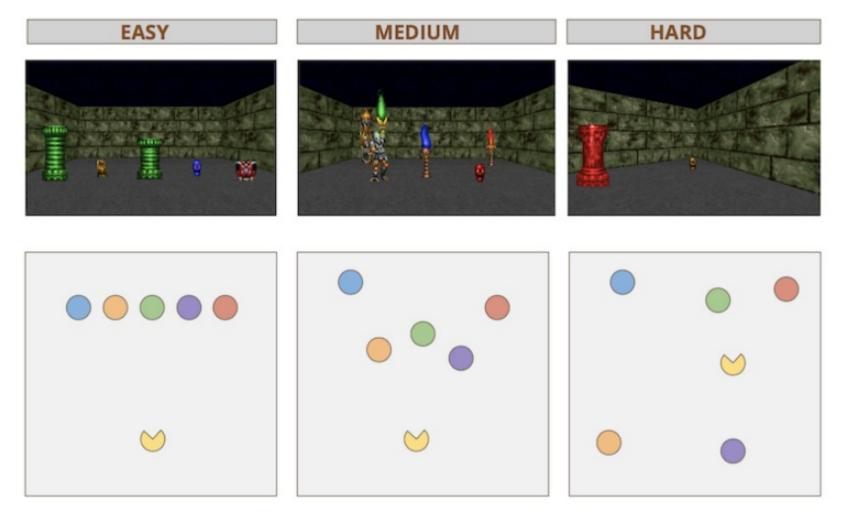
 Guided Feature Transformation (GFT): A Neural Language Grounding Module for Embodied Agents <u>arxiv.org/abs/1805.08329</u>

Slide credit: Stefan Lee

What is the difference from instruction following?

- Focus is less on measuring whether the agent can understand language and follow instructions correctly but on whether the agent can learn language
- Controlled settings to study specific aspects of language learning (measure what is learned)

Gated-Attention Architectures for Task-Oriented Language Grounding


Environment:

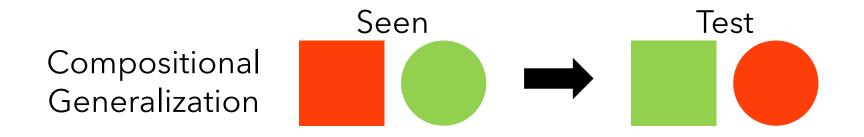
Observation: Egocentric RGB Frame

Actions: turn_left, turn_right, forward

Goal Specification: Templated directions ``go to the red torch"

Slide credit: Stefan Lee

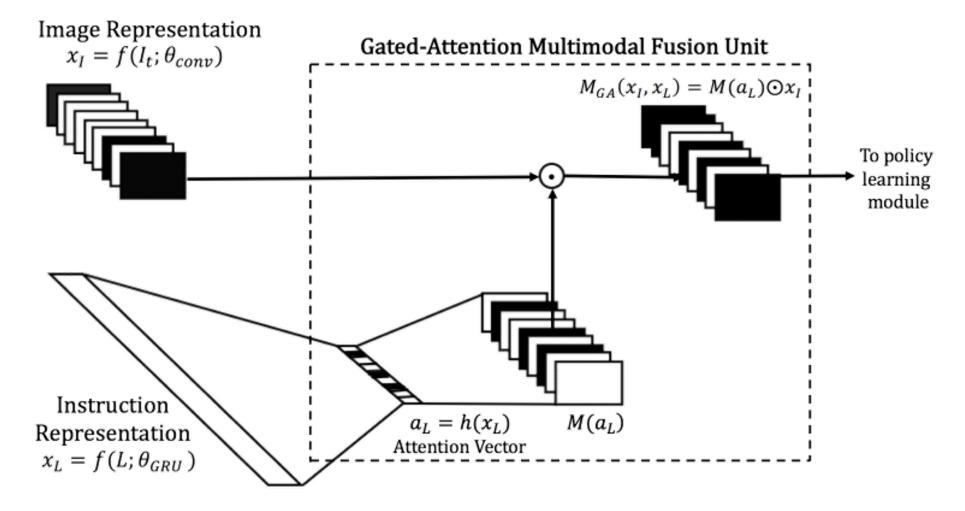
Slide credit: Stefan Lee

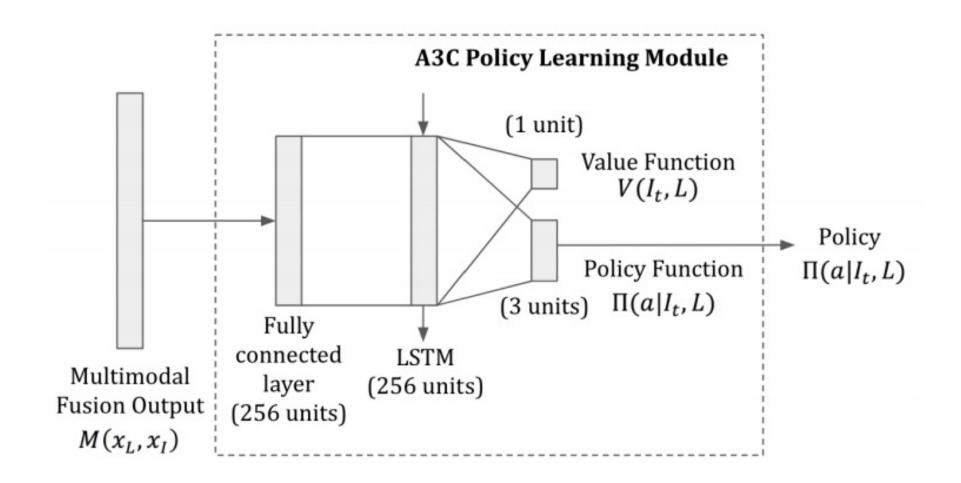

Slide credit: Stefan Lee

70 possible instructions (object / attribute combinations)

Instruction Type	Instruction			
Size + Color	tall green torch, short red object, short red pillar, short red torch, tall red object, tall blue object, tall green object, tall red pillar, tall green pillar, short blue torch, tall red torch, short green torch, short green object, short blue object, tall blue torch, short green pillar			
Color + Size	red short object, green tall torch, red short pillar, red short torch, red tall object, green tall object, blue tall object, red tall pillar, green tall pillar, red tall torch, blue tall torch, green short object, green short torch, blue short object, green short pillar, blue short torch			
Color	blue torch, red torch, green torch, yellow object, green armor, tall object, red skullkey, red object, green object blue object, red pillar, green pillar, red keycard, red armor, blue skullkey, blue keycard, yellow keycard, yellow skullkey			
Object Type	torch, keycard, skullkey, pillar, armor			
SuperlativeSize+Color	smallest yellow object, smallest blue object, smallest green object, largest blue object, largest red object, largest green object, largest yellow object, smallest red object			
SuperlativeSize	largest object, smallest object			
Size	short torch, tall torch, tall pillar, short pillar, short object, tall object			

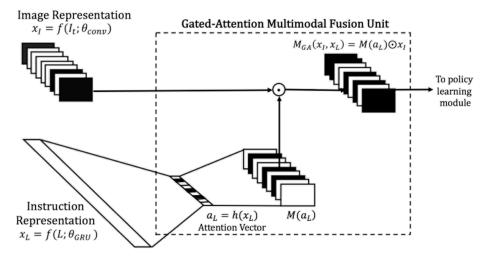
Slide credit: Stefan Lee

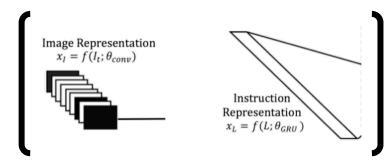

70 possible instructions (object / attribute combinations) 55 used in training, 15 for test


Episodes end on contact with any object or after 50 steps.

Slide credit: Stefan Lee

Gated-Attention Architectures for Task-Oriented Language Grounding Model: Representation


Gated-Attention Architectures for Task-Oriented Language Grounding Model: Policy



Slide credit: Stefan Lee

Gated-Attention Architectures for Task-Oriented Language Grounding **Results**

Model		Parameters	Ea	Easy		Medium		Hard	
			MT	ZSL	MT	ZSL	MT	ZSL	
	BC Concat	5.21M	0.86	0.71	0.23	0.15	0.20	0.15	
Imitation	BC GA	5.09M	0.97	0.81	0.30	0.23	0.36	0.29	
Learning	DAgger Concat	5.21M	0.92	0.73	0.45	0.23	0.19	0.13	
	DAgger GA	5.09M	0.94	0.85	0.55	0.40	0.29	0.30	
Reinforcement	A3C Concat	3.44M	1.00	0.80	0.80	0.54	0.24	0.12	
Learning	A3C GA	3.39M	1.00	0.81	0.89	0.75	0.83	0.73	

Slide credit: Stefan Lee

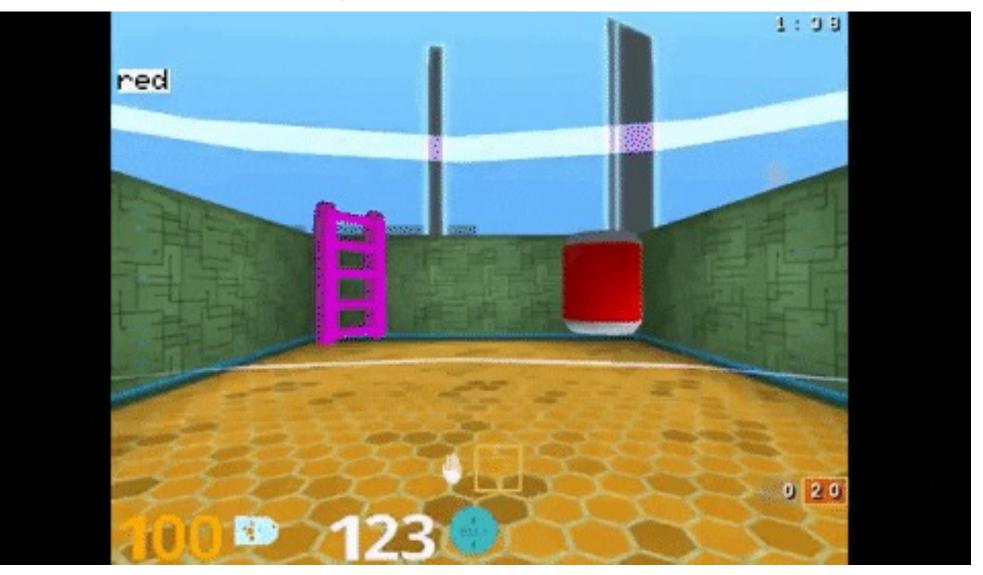
VS.

arxiv.org/pdf/1706.07230.pdf

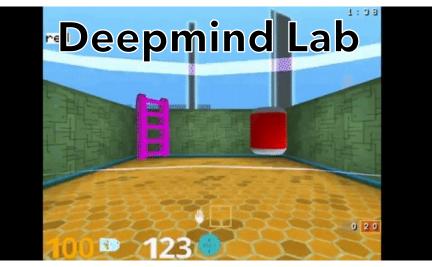
Gated-Attention Architectures for Task-Oriented Language Grounding **Results**

MT = Seen instructions, same room, new combination of objects

ZSL = New instructions, same room, new combination of objects


Model		Parameters	Easy		Medium		Hard	
			MT	ZSL	MT	ZSL	MT	ZSL
	BC Concat	5.21M	0.86	0.71	0.23	0.15	0.20	0.15
Imitation	BC GA	5.09M	0.97	0.81	0.30	0.23	0.36	0.29
Learning	DAgger Concat	5.21M	0.92	0.73	0.45	0.23	0.19	0.13
	DAgger GA	5.09M	0.94	→ 0.85	0.55 -	0.40	0.29	▶ 0.30
Reinforcement	A3C Concat	3.44M	1.00	0.80	0.80	0.54	0.24	0.12
Learning	A3C GA	3.39M	1.00	0.81	0.89	0.75	0.83	▶0.73

Compositional Generalization



Slide credit: Stefan Lee

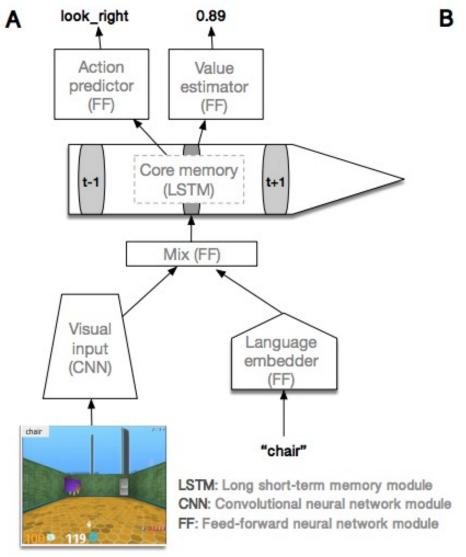
arxiv.org/pdf/1706.07230.pdf

Slide credit: Stefan Lee

Environment:

Observation: Egocentric RGB Frame

Actions: move-forward, move-back, move-left, move-right, look-left, look-right, strafe-left, strafe-right


Goal Specification: Single word descriptor

Slide credit: Stefan Lee

Goal Specification: Single word descriptor

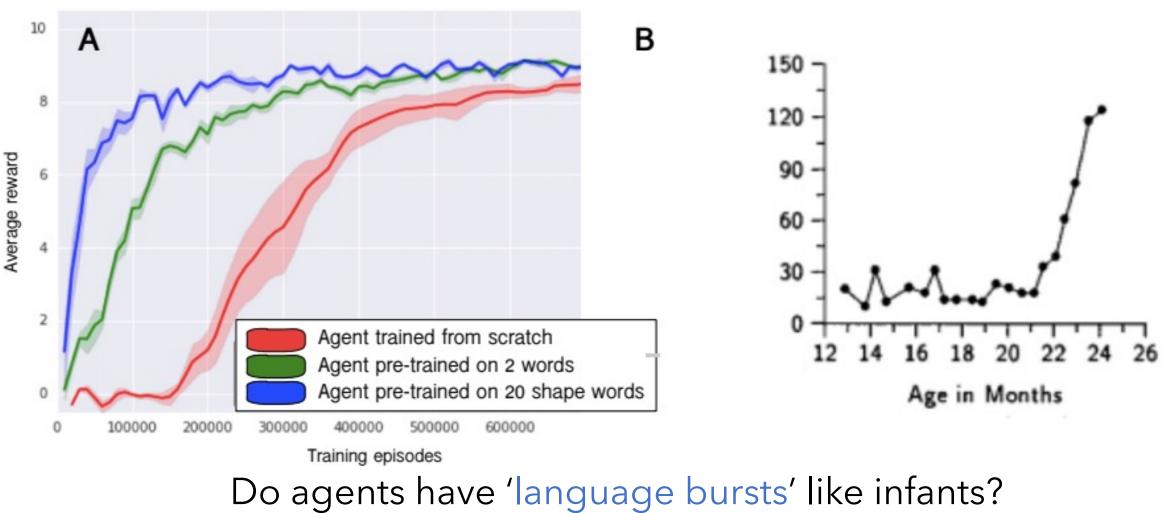
Word class (class size)	Example	Instruction meaning (in this setting)
shapes (40)	"pencil"	Find and bump into a pencil.
colors (10)	"blue"	Find and bump into any blue object.
patterns (2)	"striped "	Find and bump into any striped object.
relative shades (2)	"darker"	Find and bump into the darker of the two objects in front of you
directions (2)	"left"	Find and bump into the object furthest to the left as you look.

Model:

arxiv.org/pdf/1710.09867.pdf

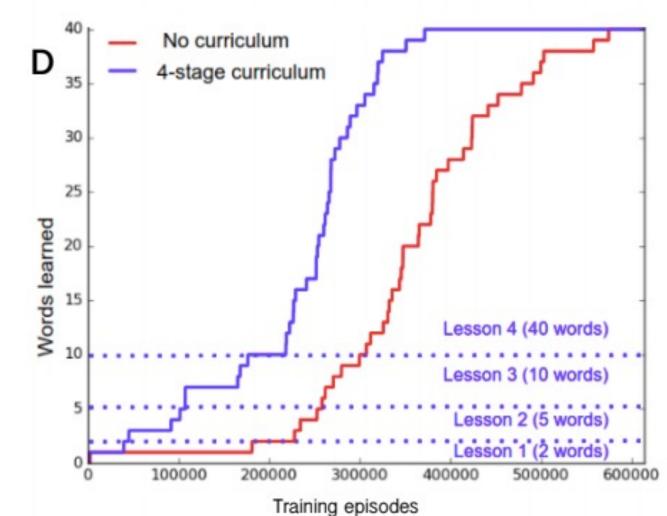
Slide credit: Stefan Lee

Experimental Setting:


Slide credit: Stefan Lee

Fixed room Fixed spawn Fixed object locations Randomized objects

No notion of generalization


Interested in dynamics of learning instead.

Results

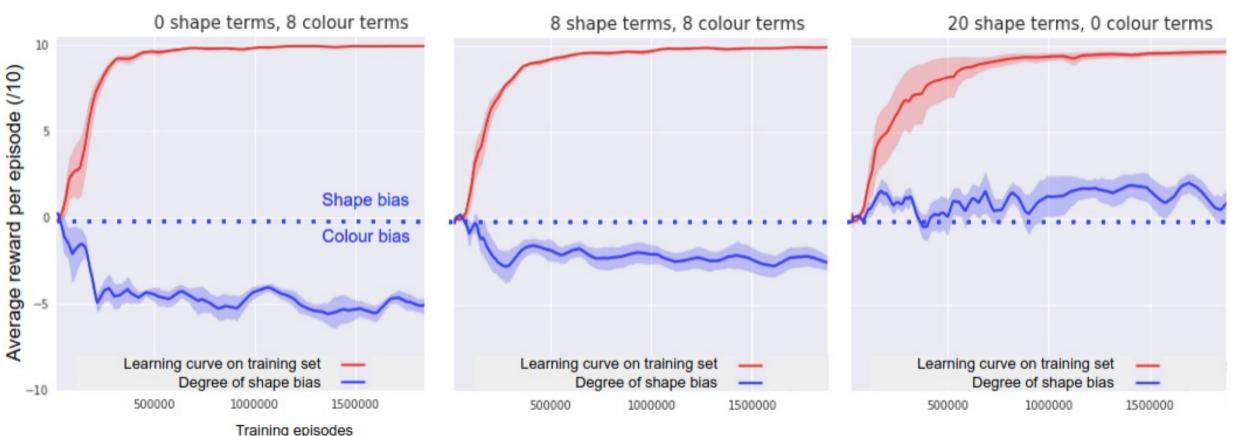
Slide credit: Stefan Lee

Results

Does curriculum help? Some work suggests it does in humans.

Slide credit: Stefan Lee

Results



What happens now when the agent see this?

Slide credit: Stefan Lee

Results

Humans assume shape words. Agent leans towards color.

Slide credit: Stefan Lee

Next time / end of term

- Easter Holiday (4/5) let's take a break!
- Optional readings (extra credit)
 - Learning Language Games through Interaction
 - Learning Adaptive Language Interfaces through Decomposition
- Thursday (4/8): Conditional generative models from text
- Monday (4/12): Paper discussion or more on generating stuff from text
- Thursday (4/15): Last day project discussion and conclusion