CMPT 983

Grounded Natural Language Understanding

April 12, 2021 Content generation from language

Next time

- Thursday (4/15): Last day project discussion and conclusion
 - Watch other group's project video before class
 - Project video due by 11:59pm 4/14
 - Project report due by 11:59pm 4/15

Content generation from language

Translating across modalities

[&]quot;Dall-e" [Ramesh et al, https://openai.com/blog/dall-e/]

Taxonomy of machine learning models

Models different probability distributions

Taxonomy of generative models

Taxonomy of generative models

Generative Adversarial Networks (GAN)

Jointly train generator G and discriminator D with a minimax game

Text to image with GANs

• Generator and Discriminators are trained alternately

Generative Adversarial Text to Image Synthesis, https://arxiv.org/pdf/1605.05396v2.pdf, Reed et al, ICML 2016

GANs for text to image generation

- GAN+CLS+INT (Reed et al, ICML 2016)
 - Pre-train text (char-CNN-RNN) and image encoder (CNN) for joint-embedding
 - CLS: additional discriminator loss for if image/text match
 - INT: interpolated text for additional training data
- StackGAN (Zhang et al, ICCV 2017)
 - 2 level GANs stacked together for higher resolution
- StackGAN++ (Zhang et al, TPAMI 2018)
 - Generalized StackGAN (multiscale), trained end-to-end
 - Unconditional + conditional loss (similar to GAN+CLS)
- AttnGAN (Xu et al, CVPR 2018)
 - Series of GANs (like StackGAN++)
 - Attention based similarity (DAMSM loss) to encourage representations that align regions of images to words in the text
- Many more GAN papers: MirrorGAN, ControlGAN, DMGAN, DTGAN...

Taxonomy of generative models

Autoregressive models

- Explict function for modeling p(x) = f(x, W)
- Assume x can be broken down into subparts and apply chain rule

$$x = (x_1, x_2, \dots, x_T)$$

$$p(x) = p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t | x_1, \dots, x_{t-1})$$

• Predict each part one after the other (autoregressive) using RNNs or Transformers

Autoregressive models

PixelRNN

PixelRNN, van der Oord et al, 2016

Image Transformer

Image Transformer, Parmar et al, ICML 2018

PixelCNN, van der Oord et al, 2016

Image GPT

Generative Pretraining from Pixels, Chen et al, ICML 2020 https://openai.com/blog/image-gpt/

PixelCNN

Taxonomy of generative models

 \mathbf{T}

• PixelRNN/PixelCNN explicitly parameterizes density function with a neural network, so we can train to maximize likelihood of training data

$$p_{\theta}(x) = \prod_{t=1}^{I} p_{\theta}(x_t | x_1, \dots, x_{t-1})$$
 Assume data can be broken into subparts! What if we don't make this assumption?

- Variational Autoencoders (VAE) use an intractable density that we cannot explicitly compute or optimize
- But we will be able to directly optimize a lower bound on the density

(Regular, non-variational) Autoencoders

Loss: L2 distance between input and reconstructed data.

Reconstructed data

Decoder: 4 tconv layers Encoder: 4 conv layers

Input Data

(Regular, non-variational) Autoencoders

After training, throw away decoder and use encoder for a downstream task

- Autoencoders
 - Not probabilistic
 - No sampling

• Variational

Assume **z** is latent representation that we can sample from to generate image **x**.

- 1. Learn latent representation
- 2. Sample to generate images

- Autoencoders
 - Not probabilistic
 - No sampling

Variational

Probabilistic

ic	Sample from conditional $p_{ heta^*}(x \mid z^{(i)})$	x
	Sample z from prior $p_{ heta^*}(z)$	z

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Decoder Network

Sample from

 $p_{\theta^*}(x \mid z^{(i)})$

conditional

Sample z

from prior

 $p_{\theta^*}(z)$

• Let's maximize the likelihood of data! Need to compute $p_{\theta}(x)$

x

z

Marginalize?

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Problem: Impossible to integrate over all z!

Variational

• Probabilistic

Bayes Rule?

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$

Problem: No way to compute this!

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x \mid z}, \Sigma_{x \mid z})$$

• Let's maximize the likelihood of data! Need to compute $p_{\theta}(x)$

Let's train					
encoder and					
decoder jointly!					

Solution: Train another network (encoder) that learns $q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$

Bayes Rule?

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$

Problem: No way to compute this!

 Variational Probabilistic 	Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$	x
	Sample z from prior $p_{ heta^*}(z)$	z

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x \mid z}, \Sigma_{x \mid z})$$

Variational Autoencoders (VAE)

Decoder network inputs latent code z, gives distribution over data x

z

Encoder network inputs

data x, gives distribution over latent codes z

If we can ensure that $q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$,

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z}) \quad q_{\phi}(z \mid x) = N(\mu_{z\mid x}, \Sigma_{z\mid x}) \quad \text{then we can approximate}$$

$$\mu_{x\mid z} \quad \Sigma_{x\mid z} \quad \mu_{z\mid x} \quad \Sigma_{z\mid x} \quad p_{\theta}(x) \approx \frac{p_{\theta}(x \mid z)p(z)}{q_{\phi}(z \mid x)}$$

x

Idea: Jointly train both encoder and decoder

Variational AutoEncoders (VAE) Bunch of math to get a lower bound that we can optimize for!

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

Variational AutoEncoders (VAE) Bunch of math to get a lower bound that we can optimize for!

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$
$$= \log p_{\theta}(x \mid z) - \log \frac{q_{\phi}(z \mid x)}{p(z)} + \log \frac{q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)}$$

Apply expectation (safely because x doesn't depend on z) $\log p_{\theta}(x) = E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x)]$

$$= E_z[\log p_\theta(x|z)] - E_z\left[\log \frac{q_\phi(z|x)}{p(z)}\right] + E_z\left[\log \frac{q_\phi(z|x)}{p_\theta(z|x)}\right]$$

Variational AutoEncoders (VAE) Bunch of math to get a lower bound that we can optimize for!

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_z[\log p_\theta(x|z)] - E_z\left[\log \frac{q_\phi(z|x)}{p(z)}\right] + E_z\left[\log \frac{q_\phi(z|x)}{p_\theta(z|x)}\right]$$

Data reconstruction

KL divergence between prior, and samples from the encoder network

KL divergence between encoder and posterior of decoder

$$= E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right) + D_{KL}\left(q_{\phi}(z|x), p_{\theta}(z|x)\right)$$

KL is >= 0, so dropping this term gives a **lower bound** on the data likelihood:

Variational Autoencoders (VAE)

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Encoder Network

Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x \mid z}, \Sigma_{x \mid z})$$

Text-based image generation with VAE

Generating Images from Captions with Attention <u>https://arxiv.org/pdf/1511.02793.pdf</u>, Mansimov et al, ICLR 2016

Text-based image generation with VAE

A rider on a blue motorcycle in the desert.

A rider on a blue motorcycle in the forest.

A surfer, a woman, and a child walk on the beach.

A surfer, a woman, and a child walk on the sun.

alignDRAW

LAPGAN

Conv-Deconv VAE

Fully-Conn VAE

Generating Images from Captions with Attention https://arxiv.org/pdf/1511.02793.pdf, Mansimov et al, ICLR 2016

Compare AR and VAE models

Autoregressive models

- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Variational models

- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Can we combine them and get the best of both worlds?

Combine VAE + Autoregressive

Vector-Quantized Variational Autoencoder (VQ-VAE)

- Autoregressively model images
- But instead of directly on pixels, on image patches compressed into image ``tokens" using VAE

• Two-stage training process

Neural Discrete Representation Learning <u>https://arxiv.org/pdf/1711.00937.pdf</u>, Oord et al, NIPS 2017

Combine VAE + Autoregressive Vector-Quantized Variational Autoencoder (VQ-VAE)

- Two-stage training process
- Use VAE to create a code book to encode image patch into latent quantized discrete vector

128x128 class-conditional results trained on ImageNet

• Use autoregressive model (PixelCNN) to model latent prior p(z)

Neural Discrete Representation Learning <u>https://arxiv.org/pdf/1711.00937.pdf</u>, Oord et al, NIPS 2017

Combine VAE + Autoregressive Vector-Quantized Variational Autoencoder (VQ-VAE2)

• Hierarchical VQ-VAE

Train a VAE-like model to generate multiscale grids of latent codes

VQ-VAE Encoder and Decoder Training

Use a multiscale PixelCNN to sample in latent code space

Generating Diverse High-Fidelity Images with VQ-VAE-2 <u>https://arxiv.org/pdf/1906.00446.pdf</u>, Razavi et al, NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet

Generating Diverse High-Fidelity Images with VQ-VAE-2 <u>https://arxiv.org/pdf/1906.00446.pdf</u>, Razavi et al, NeurIPS 2019

VQ-VAE2 Results

256 x 256 class-conditional samples, trained on ImageNet

Generating Diverse High-Fidelity Images with VQ-VAE-2 <u>https://arxiv.org/pdf/1906.00446.pdf</u>, Razavi et al, NeurIPS 2019

VQ-VAE2 Results 1024 x 1024 generated faces, trained on FFHQ

https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurIPS 2019

DALL-E

- Like VQ-VAE2 but
 - Conditioned on text
 - Large network trained with tons of data
 - Used 3.3M text/image pairs (Conceptual Captions) for 1.2B parameter model
 - Used 120 text/image pairs (collected from Internet) for 12B parameter model
 - Uses autoregressive transformer vs PixelCNN
 - Uses CLIP to rerank generated images (vs classifier network trained on ImageNet)
DALL-E: Results

this gray bird has a pointed beak black wings with small white bars long thigh and tarsus and a long tail relative to its size

this rotund bird has a black tipped beak a black tail with a yellow tip and a black cheek patch

this is a small white bird with a yellow crown and a black eye ring and cheek patch and throat

the small bird has a dark brown head and light brown body small bird with a pale yellow underside light brown crown and back gray tail and wing tips tip of tail feather bright yellow black eyes and black stripe over eyes

a small bird with a grey head and grey nape with grey black and white covering the rest of the body

DALL-E: Results

Summary of Generative models

- Autoregressive models
 - PixelRNNs/CNNs, Image Transformers, ...

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i | x_1, \dots, x_{i-1})$$

- Directly maximize likelihood of training data
- VAEs (Variational autoencoders)
 - Probabilistic version of autoencoder to allow for sampling
 - Introduces a latent z (assumed to be Gaussian) and maximizes a lower bound

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- GANs (Generative adversarial networks)
 - Don't bother modeling p(x), just try to sample from p(x)
 - Generator + Discriminator (is it real or generated)

https://deepgenerativemodels.github.io/

How good are these models?

- Is this model generating new and novel images? Or is it just retrieving from training data?
- Comparison of kNN retrieval vs images generated by the model.
- Showing of disentangled latent space, interpolation, and operations on the space.

6600000 6 Б 555 6 555 6 3355 **Auto-Encoding Variational Bayes** https://arxiv.org/pdf/1312.6114.pdf, Kingma and Welling, ICLR 2014

Structured content generation using language

Image generation from scene graphs

- Convert text to scene graph
- Layout objects to preserve relationships

Image Generation from Scene Graphs <u>https://arxiv.org/pdf/1804.01622.pdf</u>, Johnson et al, CVPR 2018

Image generation from scene graphs

Ч	sky > has > cloud mountain	cloud sky → above	boy + on top of + grass	building sky line behind	$car \rightarrow left of \rightarrow car \rightarrow above$		
Grap	sheep stone in front of eating eating rock behind grass sheep tree	riding riding background wave board edge	sky kite brick	sign has behind has windshield windshield	cage person + left of grass above below / left of tree playingfield person + above		
Text	Two sheep, one eat- ing grass with a tree in front of a mountain; the sky has a cloud.	A person riding a wave and a board by the wa- ter with sky above.	A boy standing on grass looking at a kite and the sky with the field under a mountain	Two busses, one be- hind the other and a tree behind the second; both busses have win- shields.	A person above a play- ingfield and left of an- other person left of grass, with a car left of a car above the grass.		
Layout	sky cloud mountain tree sheep stone rock	ocean sky wave person water board	sky kite meuntain field boy grass brick	tree windshield bus windshield bus line	cage grass person playingfield person		
Image		ANK A	· And		1.1		

Image Generation from Scene Graphs https://arxiv.org/pdf/1804.01622.pdf, Johnson et al, CVPR 2018

Content manipulation using language

Content manipulation

- Similarities to instruction following
- Structured representation + well defined operations
 - Semantic parsing!
- Unstructured representation + learned operations
 - Vector representation
 - Operation = some transformation on the encoded representation
 - Decode into image or shape

Content manipulation

ManiGAN

A bird with black eve rings and a black bill, with a red crown and a red belly.

Boat, sunset.

Given Text

SISGAN [6]

Ours

ManiGAN: Text-Guided Image Manipulation https://arxiv.org/pdf/1912.06203.pdf Li et al, 2020

RefineGAN

Segmentation mask.

A stop sign is in a grassy rural area.

A pizza with cheese and **pepperoni** is on a wooden tray.

Segmentation mask.

A zebra in a road A giraffe is standing with trees in the on a grass covered background.

Image-to-Image Translation with Text Guidance https://arxiv.org/pdf/2002.05235.pdf Li et al, 2020

Text-to-image generation with additional input

Text-to-Image generation with mouse traces

Text-to-Image Generation Grounded by Fine-Grained User Attention <u>https://arxiv.org/pdf/2011.03775.pdf</u>, Koh et al, 2021

Evaluating generated content

Evaluation

- Evaluation of these models are tricky!
- What makes for a good generation?
- General
 - Is the generated content high quality?
 - Does it match the distribution?
 - Is it diverse?
- For language conditioned generation:
 - Does the generated content match the language?
 - Are salient aspects of the language captured in the objects, appearance, and relationships?

GAN evaluation

- Inception Score: $I = \exp(\mathbb{E}_{\boldsymbol{x}} D_{KL}(p(y|\boldsymbol{x}) || p(y)))$
 - Use inception model to predict class y
 - Want good models to generate diverse but meaningful images
 - Large distance between marginal prior (of labels) and conditional prior
- FID (Frechet Inception distance): measures distance between generated and real distribution
- Human rank images generated by models

Metrics

- R-Precision (retrieval)
 - Randomly sample 99 other captions, where is the input caption ranked (using cosine similarity) compared to the rest (is it in the top r)?

 $VS = \frac{f_t(t) \cdot f_x(x)}{||f_t(t)||_2 \cdot ||f_x(x)||_2}$

- Visual similarity (VS)
 - how well does the encoded text and image match)
 - High variance, dependency on the specific encoders used
- Semantic Object Accuracy (SOA)
 - Use pretrained object detector to match words in text
- Captioning generate caption and evaluate with original caption using standard captioning metrics

Adversarial Text-to-Image Synthesis: A Review <u>https://arxiv.org/pdf/2101.09983.pdf</u>, Frolov et al, 2021

Metrics

Metric	Image Quality	Image Diversity	Object Fidelity	Text Relevance	Mentioned Objects	Numerical Alignment	Positional Alignment	Paraphrase Robustness	Explainable	Automatic
IS [130] FID [131] SceneFID [103]	\checkmark	√	√							√ √ √
R-prec. [35] VS [42] SOA [108] Captioning				$ \begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ (\checkmark) \end{array} $	√					✓ ✓ ✓
User Studies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Adversarial Text-to-Image Synthesis: A Review <u>https://arxiv.org/pdf/2101.09983.pdf</u>, Frolov et al, 2021

Text to 3D

State of text to 3D

- Much less work in text to 3D
- 3D generation less explored than 2D
 - Less 3D data → with more 3D data, 3D deep learning + 3D generation is more popular
 - Less developed methods
 - Choices of representation to use
- 2D or 3D, basic families of methods are the same
 - Details are tricky
- 3D generation broken down into two levels:
 - Scenes vs Shapes
- See survey paper for more on 3D generation

Shape vs Scene Generation

- Shape Generation typically treated as generating voxels/points/triangles directly
- Scene Generation typically treated as collection of objects (shapes): select/retrieve objects from DB and arrange them (position, rotation, scale)
- Blurry line
 - Can treat shape generation as generating + assembling parts
 - Grammar/program
 - Can treat scene generation as generating one big mesh (3D reconstruction)
- Not as emphasized in 2D (since output is just an image), but the two options also exist
 - Put together objects into an 2D scene or just generate pixels

Choice of output for shapes

- Voxels: Direct analogue of 2D pixels, use convolutions
 - High resolution challenging
 - Dense voxels are expensive (N^3 vs N^2)
 - Work on sparse voxel representations (lots of empty space!)
- Point clouds
 - Does not capture topology
- Mesh: Traditionally what is used in graphics
 - Trickier to work work:
 - Use graph representation to predict triangle vertices and edges
 - Can go from Point clouds/Voxels to Mesh (use traditional methods)
 - Can also go from implicit surfaces to Mesh
 - For each point: predict if inside or outside of Mesh

Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings

Kevin Chen, Christopher B. Choy, Manolis Savva, Angel Chang, Thomas Funkhouser, Silvio Savarese ACCV, 2018

Text + Shape Joint Embedding

Text-to-shape retrieval

Text-to-shape generation

A dark brown wooden dining chair with red padded seat and round red pad back

Text-to-shape generation

- 1. Encoder maps text description to latent space
- 2. Description embedding is concatenated with noise vector
- 3. Generator generates a plausible colored shape
- 4. Critic evaluates quality of generation

Text-to-shape generation

Input: Brown colored dining table. It has four legs made of wood.

Text-to-shape generation

Input: Waiting room chair leather

[1] Generative Adversarial Text to Image Synthesis, Reed et al, ICML 2016

Shape manipulation

Shape manipulation

Text2Shape status

- Work from 2016-2017, published in 2018
- GAN based
- Voxels based
- Lots of improvements in generative models and shape generation since then!

Text2Scene

Learning Spatial Knowledge for Text to 3D Scene Generation, Chang et al, EMNLP 2014 Text to 3D Scene Generation with Rich Lexical Grounding, Chang et al, ACL 2015

How do we handle natural, underspecified language?

- learn common sense priors on how objects are arranged in the real world
- view scene description as constraints on the scene

Language as constraint for 3D scene graphs

objects, attributes and relations

Object occurrences

What goes in an office?

Probability that object of category C_o is found in scene type C_s

Semantic queries – Where can X go?

poster

rug

floor lamp

hat

There is a sandwich on a plate

There is a desk and a chair

There is a sandwich on a plate

There is a computer desk with a red chair

"There is a living room with a red couch and a TV."

"Put a cup on the bookcase."

"Put a clock on the wall."

"Put a painting on the wall."

"Look at the painting."

Followup work

• Retrieve and edit approach

Language-Driven Synthesis of 3D Scenes from Scene Databases https://manyili12345.github.io/Publication/2018/T2S/t2s_final.pdf Ma et al, Siggraph Asia 2018

Followup work

- Retrieve and edit approach
- Also uses semantic scene graphs (extracted from larger datasets)
- Parse text, retrieve matching sub-scenes, edit to match desired semantic scene graph

Language-Driven Synthesis of 3D Scenes from Scene Databases https://manyili12345.github.io/Publication/2018/T2S/t2s_final.pdf Ma et al, Siggraph Asia 2018

Text to 3D scene status

- Work from 2013-2015, some work in 2018.
- Pre-deep learning, used probabilistic graphical models
- Lots of improvements to object retrieval, scene generation, text interpretation since then!
- Larger, more realistic 3D datasets
- Still, limited by the availability of text + 3D data

Next time

- Thursday (4/15): Last day project discussion and conclusion
 - Watch other group's project video before class
 - Project video due by 11:59pm 4/14
 - Project report due by 11:59pm 4/15