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Content generation from language



Next time

• Thursday (4/15): Last day – project discussion and conclusion
• Watch other group’s project video before class
• Project video due by 11:59pm 4/14 
• Project report due by 11:59pm 4/15



Content generation from 
language



Translating across modalities

Encoder Decoder

Vector 
representation

a teapot in the shape of a pikachu.  
a teapot imitating a pikachu

Text Image

“Dall-e”
[Ramesh et al, https://openai.com/blog/dall-e/]



Taxonomy of machine learning models

Discriminative models:
Learn p(y|x)

Conditional Generative Model: 
Learn p(x|y) 

Generative Model:
Learn p(x)

Assign labels to data

Feature learning (with labels)

Detect outliers

Feature learning (without labels)

Sample to generate new data

Assign labels, while rejecting outliers!

Generate new data conditioned on 
input labels

Models different probability distributions

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html


Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Taxonomy of generative models

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Generative Adversarial Networks (GAN)



Text to image with GANs
• Generator and Discriminators are trained alternately 

Generative Adversarial Text to Image Synthesis, https://arxiv.org/pdf/1605.05396v2.pdf, Reed et al, ICML 2016

https://arxiv.org/pdf/1605.05396v2.pdf


GANs for text to image generation
• GAN+CLS+INT (Reed et al, ICML 2016)

• Pre-train text (char-CNN-RNN) and image encoder (CNN) for joint-embedding
• CLS: additional discriminator loss for if image/text match
• INT: interpolated text for additional training data 

• StackGAN (Zhang et al, ICCV 2017)
• 2 level GANs stacked together for higher resolution

• StackGAN++ (Zhang et al, TPAMI 2018)
• Generalized StackGAN (multiscale), trained end-to-end
• Unconditional + conditional loss (similar to GAN+CLS)

• AttnGAN (Xu et al, CVPR 2018)
• Series of GANs (like StackGAN++)
• Attention based similarity (DAMSM loss) to encourage representations that align 

regions of images to words in the text

• Many more GAN papers: MirrorGAN, ControlGAN, DMGAN, DTGAN…
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Autoregressive models
• Explict function for modeling 
• Assume x can be broken down into subparts and apply chain rule

• Predict each part one after the other (autoregressive) using RNNs 
or Transformers

<latexit sha1_base64="/JSIqgp7nJ4kDp8eQXhtDwNg9qE=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotQoZSkiLoRim5cVugL2hAmk2k7dDIJMxNpCV248VfcuFDErR/hzr9x0mahrQcunDnnXube40WMSmVZ30ZubX1jcyu/XdjZ3ds/MA+P2jKMBSYtHLJQdD0kCaOctBRVjHQjQVDgMdLxxrep33kgQtKQN9U0Ik6AhpwOKEZKS65ZnMBrWJ64dgVO3FoF9pkfKpk+mmeuWbKq1hxwldgZKYEMDdf86vshjgPCFWZIyp5tRcpJkFAUMzIr9GNJIoTHaEh6mnIUEOkk8yNm8FQrPhyEQhdXcK7+nkhQIOU08HRngNRILnup+J/Xi9Xgykkoj2JFOF58NIgZVCFME4E+FQQrNtUEYUH1rhCPkEBY6dwKOgR7+eRV0q5V7Ytq7f68VL/J4siDIjgBZWCDS1AHd6ABWgCDR/AMXsGb8WS8GO/Gx6I1Z2Qzx+APjM8fy+qVqA==</latexit>

x = (x1, x2, . . . , xT )
<latexit sha1_base64="DxL1dYXTguYKBA3M9kaTFwWZgNk=">AAACNnicbVDLSgMxFM3UV62vUZdugkVQ0DJTRN0IRTduBIXWFto6ZDKpDc1MhuSOWMZ+lRu/w50bF4q49RPMjAWfF0JOzjmXm3v8WHANjvNoFSYmp6ZnirOlufmFxSV7eeVCy0RR1qBSSNXyiWaCR6wBHARrxYqR0Bes6Q+OM715zZTmMqrDMGbdkFxFvMcpAUN59mm8ebOFD7G5PHcb33jVbdwRgQSdPeqZ1ImVDLwUDt3RZT03Ar7Fuf3LmcKOO9ry7LJTcfLCf4E7BmU0rjPPfugEkiYhi4AKonXbdWLopkQBp4KNSp1Es5jQAblibQMjEjLdTfO1R3jDMAHuSWVOBDhnv3ekJNR6GPrGGRLo699aRv6ntRPoHXRTHsUJsIh+DuolAoPEWYY44IpREEMDCFXc/BXTPlGEgkm6ZEJwf6/8F1xUK+5epXq+W64djeMoojW0jjaRi/ZRDZ2gM9RAFN2hR/SMXqx768l6td4+rQVr3LOKfpT1/gH1aafx</latexit>

p(x) = p(x1, x2, . . . , xT ) =
TY

t=1

p(xt|x1, . . . , xt�1)
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p(x) = f(x,W )



Autoregressive models

Image Transformer, Parmar et al, ICML 2018 Generative Pretraining from Pixels, Chen et al, ICML 2020

https://openai.com/blog/image-gpt/

Image Transformer

PixelCNN

Image GPT

PixelRNN

PixelRNN, van der Oord et al, 2016 PixelCNN, van der Oord et al, 2016
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Variational Autoencoders
• PixelRNN/PixelCNN explicitly parameterizes density function with a 

neural network, so we can train to maximize likelihood of training data

• Variational Autoencoders (VAE) use an intractable density that we 
cannot explicitly compute or optimize

• But we will be able to directly optimize a lower bound on the density

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)

Assume data can be broken into subparts!

What if we don’t make this assumption?

<latexit sha1_base64="FODv8vRG1tND6KP5K/b4nm7BxYk="></latexit>

p✓(x) =
TY

t=1

p✓(xt|x1, . . . , xt�1)

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html


(Regular, non-variational) Autoencoders

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html


Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)

(Regular, non-variational) Autoencoders

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html


Variational Autoencoders
• Autoencoders
• Not probabilistic
• No sampling

Latent representation!

Assume simple prior p(z), e.g. Gaussian with mean 

How to sample?

• Variational
• Probabilistic Assume z is latent representation 

that we can sample from to 

generate image x.

1. Learn latent representation
2. Sample to generate images

Adapted from slides by Justin Johnson 
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Variational Autoencoders
• Let’s maximize the likelihood of data!  Need to compute 

Assume simple prior p(z), e.g. Gaussian with mean 

How to sample?

• Variational
• Probabilistic

Adapted from slides by Justin Johnson 

Marginalize? Bayes Rule?



Variational Autoencoders
• Let’s maximize the likelihood of data!  Need to compute 

Assume simple prior p(z), e.g. Gaussian with mean 

How to sample?

• Variational
• Probabilistic

Adapted from slides by Justin Johnson 

Bayes Rule?
Let’s train 
encoder and 
decoder jointly!



Variational Autoencoders (VAE)

Adapted from slides by Justin Johnson 



Variational AutoEncoders (VAE) Bunch of math to get a lower 

bound that we can optimize for!

Adapted from slides by Justin Johnson 



Variational AutoEncoders (VAE)

Apply expectation (safely because x doesn’t depend on z) 

Bunch of math to get a lower 

bound that we can optimize for!

Adapted from slides by Justin Johnson 



Variational AutoEncoders (VAE) Bunch of math to get a lower 

bound that we can optimize for!

Adapted from slides by Justin Johnson 



Variational Autoencoders (VAE)

Adapted from slides by Justin Johnson 



Text-based image generation with VAE

Generating Images from Captions with Attention 
https://arxiv.org/pdf/1511.02793.pdf, Mansimov et al, ICLR 2016

https://arxiv.org/pdf/1511.02793.pdf


Generating Images from Captions with Attention 
https://arxiv.org/pdf/1511.02793.pdf, Mansimov et al, ICLR 2016

Text-based image generation with VAE

https://arxiv.org/pdf/1511.02793.pdf


Compare AR and VAE models

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html


Combine VAE + Autoregressive
Vector-Quantized Variational Autoencoder (VQ-VAE)

Neural Discrete Representation Learning
https://arxiv.org/pdf/1711.00937.pdf, Oord et al, NIPS 2017

• Autoregressively model images
• But instead of directly on pixels, on image patches compressed 

into image ``tokens’’ using VAE

• Two-stage training process

https://arxiv.org/pdf/1711.00937.pdf


• Two-stage training process
• Use VAE to create a code book to 

encode image patch into latent 
quantized discrete vector 

Combine VAE + Autoregressive
Vector-Quantized Variational Autoencoder (VQ-VAE)

Neural Discrete Representation Learning
https://arxiv.org/pdf/1711.00937.pdf, Oord et al, NIPS 2017

• Use autoregressive model (PixelCNN) to model latent prior p(z)

128x128 class-conditional results 
trained on ImageNet

kit fox

gray 
whale

brown

bear

admiral

butterfly

https://arxiv.org/pdf/1711.00937.pdf


Combine VAE + Autoregressive
Vector-Quantized Variational Autoencoder (VQ-VAE2)
• Hierarchical VQ-VAE

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurIPS 2019

https://arxiv.org/pdf/1906.00446.pdf


VQ-VAE2 Results

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurIPS 2019

https://arxiv.org/pdf/1906.00446.pdf


VQ-VAE2 Results

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurIPS 2019

https://arxiv.org/pdf/1906.00446.pdf


VQ-VAE2 Results

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurIPS 2019

https://arxiv.org/pdf/1906.00446.pdf


DALL-E
• Like VQ-VAE2 but
• Conditioned on text
• Large network trained with tons of data

• Used 3.3M text/image pairs (Conceptual Captions) for 1.2B parameter model
• Used 120 text/image pairs (collected from Internet) for 12B parameter model

• Uses autoregressive transformer vs PixelCNN
• Uses CLIP to rerank generated images (vs classifier network trained on 

ImageNet)

“Dall-e”
[Ramesh et al, https://openai.com/blog/dall-e/]



DALL-E: Results



DALL-E: Results



Summary of Generative models
• Autoregressive models
• PixelRNNs/CNNs, Image Transformers, …
• Directly maximize likelihood of training data

• VAEs (Variational autoencoders)
• Probabilistic version of autoencoder to allow for sampling
• Introduces a latent z (assumed to be Gaussian) and maximizes a lower 

bound

• GANs (Generative adversarial networks)
• Don’t bother modeling p(x), just try to sample from p(x)
• Generator + Discriminator (is it real or generated)

https://deepgenerativemodels.github.io/



How good are these models?
• Is this model generating new and 

novel images?  Or is it just retrieving 
from training data?

• Comparison of kNN retrieval vs 
images generated by the model.

• Showing of disentangled latent 
space, interpolation, and operations 
on the space.

Auto-Encoding Variational Bayes
https://arxiv.org/pdf/1312.6114.pdf, 

Kingma and Welling, ICLR 2014

https://arxiv.org/pdf/1312.6114.pdf


Structured content 
generation using language



Image generation from scene graphs

• Convert text to scene graph 
• Layout objects to preserve 

relationships

Image Generation from Scene Graphs 
https://arxiv.org/pdf/1804.01622.pdf, Johnson et al, CVPR 2018

https://arxiv.org/pdf/1804.01622.pdf


Image generation from scene graphs

Image Generation from Scene Graphs 
https://arxiv.org/pdf/1804.01622.pdf, Johnson et al, CVPR 2018

https://arxiv.org/pdf/1804.01622.pdf


Content manipulation
using language



Content manipulation
• Similarities to instruction following
• Structured representation + well defined operations
• Semantic parsing!

• Unstructured representation + learned operations
• Vector representation 
• Operation = some transformation on the encoded representation
• Decode into image or shape



Content manipulation

Image-to-Image Translation with Text Guidance 
https://arxiv.org/pdf/2002.05235.pdf

Li et al, 2020

ManiGAN: Text-Guided Image Manipulation
https://arxiv.org/pdf/1912.06203.pdf

Li et al, 2020

ManiGAN

RefineGAN

https://arxiv.org/pdf/2002.05235.pdf
https://arxiv.org/pdf/1912.06203.pdf


Text-to-image generation 
with additional input



Text-to-Image Generation Grounded by Fine-Grained User Attention
https://arxiv.org/pdf/2011.03775.pdf, Koh et al, 2021

Text-to-Image generation with mouse traces

https://arxiv.org/pdf/2011.03775.pdf


Evaluating generated 
content



Evaluation
• Evaluation of these models are tricky!

• What makes for a good generation?

• General
• Is the generated content high quality?
• Does it match the distribution?
• Is it diverse?

• For language conditioned generation: 
• Does the generated content match the language?
• Are salient aspects of the language captured in the objects, appearance, and 

relationships?



GAN evaluation
• Inception Score:
• Use inception model to predict class y
• Want good models to generate diverse but meaningful images
• Large distance between marginal prior (of labels) and conditional prior

• FID (Frechet Inception distance): measures distance between 
generated and real distribution
• Human rank images generated by models



Metrics
• R-Precision (retrieval)
• Randomly sample 99 other captions, where is the input caption ranked 

(using cosine similarity) compared to the rest (is it in the top r)?

• Visual similarity (VS)
• how well does the encoded text and image match) 
• High variance, dependency on the specific encoders used

• Semantic Object Accuracy (SOA)
• Use pretrained object detector to match words in text

• Captioning – generate caption and evaluate with original 
caption using standard captioning metrics

Adversarial Text-to-Image Synthesis: A Review
https://arxiv.org/pdf/2101.09983.pdf, Frolov et al, 2021

https://arxiv.org/pdf/2101.09983.pdf


Metrics

Adversarial Text-to-Image Synthesis: A Review
https://arxiv.org/pdf/2101.09983.pdf, Frolov et al, 2021

https://arxiv.org/pdf/2101.09983.pdf


Text to 3D



State of text to 3D
• Much less work in text to 3D
• 3D generation less explored than 2D
• Less 3D data à with more 3D data, 3D deep learning + 3D generation 

is more popular
• Less developed methods
• Choices of representation to use

• 2D or 3D, basic families of methods are the same
• Details are tricky

• 3D generation broken down into two levels:
• Scenes vs Shapes

• See survey paper for more on 3D generation



Shape vs Scene Generation
• Shape Generation typically treated as generating 

voxels/points/triangles directly
• Scene Generation typically treated as collection of objects 

(shapes): select/retrieve objects from DB and arrange them 
(position, rotation, scale)
• Blurry line
• Can treat shape generation as generating + assembling parts

• Grammar/program
• Can treat scene generation as generating one big mesh (3D 

reconstruction)
• Not as emphasized in 2D (since output is just an image), but 

the two options also exist
• Put together objects into an 2D scene or just generate pixels



Choice of output for shapes
• Voxels: Direct analogue of 2D pixels, use convolutions 
• High resolution challenging
• Dense voxels are expensive (N^3 vs N^2)
• Work on sparse voxel representations (lots of empty space!)

• Point clouds
• Does not capture topology

• Mesh: Traditionally what is used in graphics
• Trickier to work work: 
• Use graph representation to predict triangle vertices and edges
• Can go from Point clouds/Voxels to Mesh (use traditional methods)
• Can also go from implicit surfaces to Mesh 

• For each point: predict if inside or outside of Mesh



58

Text2Shape: Generating Shapes from Natural
Language by Learning Joint Embeddings

Kevin Chen, Christopher B. Choy, Manolis Savva, Angel Chang,
Thomas Funkhouser, Silvio Savarese

ACCV, 2018



Text-to-shape retrieval

Text-to-shape generation

“a tall brown table”

“a brown table with four legs”

“a gray, cushioned chair”

!!

!"

!#

"! ""

"#

Text + Shape Joint Embedding

-

Circular glass coffee table with 
two sets of wooden legs that 
clasp over the round glass edge.

A brown wooden moon shaped
table with three decorative legs
with a wooden vine shaped 
decoration base connecting
the legs.

Dark brown wooden chair 
with adjustable back rest and 
gold printed upholestry. 
Designed for comfort.

1 It s a dark brown, 
upholstered chair 

with arms and
a curved 

rectangular back

a) 3D shapes and natural language descriptions b) Joint embedding of text and 3D shapes c1) Text-to-shape retrieval

2

3
A dark brown wooden 
dining chair with red 

padded seat and 
round red pad back

c2) Text-to-shape generation
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Combined multimodal association model
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Text-to-shape generation

1. Encoder maps text description to latent space
2. Description embedding is concatenated with noise vector
3. Generator generates a plausible colored shape
4. Critic evaluates quality of generation

Text	Encoder

!

Generator Critic

“Dark	brown	wooden	dining	
chair	with	red	padded	seat	
and	round	red	pad	back.”

60



Text-to-shape generation

61
[1] Generative Adversarial Text to Image Synthesis, Reed et al, ICML 2016

Input: Brown colored dining table. It has four legs made of wood.

GAN-INT-CLS[1] Ours CGAN Ours CWGAN Ground Truth



Text-to-shape generation

62
[1] Generative Adversarial Text to Image Synthesis, Reed et al, ICML 2016

Input: Waiting room chair leather

GAN-INT-CLS[1] Ours CGAN Ours CWGAN Ground Truth



Shape manipulation

white table – white brown+ =

gray table gray glass– + =



Shape manipulation

=

=

– round rectangular+

– +chair table



Text2Shape status
- Work from 2016-2017, published in 2018
- GAN based 
- Voxels based
- Lots of improvements in generative models and shape 

generation since then!   



Learning Spatial Knowledge for Text to 3D Scene Generation, Chang et al, EMNLP 2014
Text to 3D Scene Generation with Rich Lexical Grounding, Chang et al, ACL 2015



67

How do we handle natural, underspecified language? 

“Living room 
with a red 

couch”

• learn common sense priors on how objects are arranged 
in the real world

• view scene description as constraints on the scene



68

Language as constraint for 3D scene graphs

color(red) There is a room with 
a table and a cake. 

There is a red chair to 
the right of the table. 

a) Explicit Constraints

right(o2,o1)

o3
cake

o0
room

o1
table

o2
chair

Parse
color(red)

b) Inferred Scene Template

supports(o0,o1) supports(o0,o2)

right(o2,o1)

o3
cake

o0
room

o1
table

o2
chair

supports(o1,o4)

supports(o4,o3)o4
plate

Infer

objects, attributes and relations



!! !"

!# !$

…
Scene Database 3D Models

69



!! !"

!# !$

Spatial Knowledge Base 3D Models

right

70



Object occurrences
What goes in an office?
Probability that object of category !! is found in scene type !"

71



Semantic queries – Where can X go?
poster

floor lamp

rug

hat

72



There is a desk and a chair

There is a sandwich on a plate There is a sandwich on a plate

There is a computer desk with a 
red chair

73



“There is a living room with a red couch and a TV.”

74



75

System Learning

More manipulation …

Candidate ScenesInput Description
“There is a living 
room with a red 
couch and a TV”

Manipulation
“Put a clock on the wall”

Interactive Scene Manipulation



Scene refinement

“Put a cup on the bookcase.” 76



Scene refinement

“Put a clock on the wall.” 77



Scene refinement

“Put a painting on the wall.” 78



Scene refinement

“Look at the painting.” 79



Followup work
• Retrieve and edit approach

Language-Driven Synthesis of 3D Scenes from Scene Databases 
https://manyili12345.github.io/Publication/2018/T2S/t2s_final.pdf

Ma et al, Siggraph Asia 2018

https://manyili12345.github.io/Publication/2018/T2S/t2s_final.pdf


Followup work
• Retrieve and edit approach
• Also uses semantic scene graphs (extracted from larger datasets)
• Parse text, retrieve matching sub-scenes, edit to match desired 

semantic scene graph

Language-Driven Synthesis of 3D Scenes from Scene Databases 
https://manyili12345.github.io/Publication/2018/T2S/t2s_final.pdf

Ma et al, Siggraph Asia 2018

https://manyili12345.github.io/Publication/2018/T2S/t2s_final.pdf


Text to 3D scene status
- Work from 2013-2015, some work in 2018.
- Pre-deep learning, used probabilistic graphical models
- Lots of improvements to object retrieval, scene generation, 

text interpretation since then!
- Larger, more realistic 3D datasets

- Still, limited by the availability of text + 3D data



Next time

• Thursday (4/15): Last day – project discussion and conclusion
• Watch other group’s project video before class
• Project video due by 11:59pm 4/14 
• Project report due by 11:59pm 4/15




