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Grounded natural language understanding

» Lightening tour of topics at the intersection of language and
machine learning, visual computing and robotics
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Multimodal Embeddings

“Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models”
[Kiros, Salakhutdinov, Zemel TACL 2015]



Multimodal representations

» Joint vs Coordinated representations

 Joint: Autoencoder + Fusion (e.g. concat)
_ o . Correct label  Other labels
» Coordinated: CCA, joint embeddings (more similar) (less similar)
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e Useful for retrieval, translation

Adapted from slide by: Louis-Philippe Morency



Attention

* Not every part of the input given the task context

Turn left and exit the room using the door on the left.

Slide credit: Stefan Lee



Attention

« Used for many vision and language tasks
* Including captioning and understanding referring expressions
* Representation that weighs different parts of the input differently
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Attention

» Mathematically: weighted sum v
* Types of attention
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» Different ways to compute weight / similarity

 Hard vs Soft
» Query-key-value view of attention
e Self-attention and transformers

Output
Probabilities

The The
animal animal
didn’t didn’t
cross cross
the the
street street
because because
it it

was was

too too
tired tired

Attention function, f

a; =9k, q)
a = softmax(a)

~ _ \V'k
C = l-=]aivi

» Scaled dot-product attention:

g(ci, z) = ZTCi/\/g



Pretraining

Task specific
Big pile of unannotated data! Small amount of annotated data
Lots of resources to train! Start with pre-trained model
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Pretraining and masked multimodal models
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Structure and compositionality

« Compositionality
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Image credit: Stefan Lee

» Structured representations for compositionality
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Structured representation of images
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Socher, Lin, Ng, and Manning, “Parsing Natural Scenes and Natural
Language with Recursive Neural Networks”, ICML 2011
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Yang, Liao, Ackermann, and Rosenhahn, “On support relations and

semantic scene graphs”, ISPRS Journal of Photogrammetry and
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Semantic parsing

* Parse natural language into programs
* Use in VQA
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Speaker-listener models

* Need to model other party

* Rational Speech Acts (RSA)

* Used in referring expression
generation + comprehension

* Looked at ShapeGlot and emergent ﬁ

communications
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Instruction following

« How to train agent to follow instructions?
« Can the agent learn language through
interacting with the environment?

Exit the bedroom. Turn
left down the hall and
stop in the kitchen.

Observations Actions




Instruction following (RolboNLP)

* Quick review of imitation learning and reinforcement learning
* Visual language navigation
* Instruction following with manipulation and interaction

"Rinse off a mug and place it in the coffee maker"

Y ¢ "pick up the mug and go
1 "wash the mug in the sink" I bp ktpth ffg g "
i

ALFRED, Shridhar et al, CVPR 2020

* Lots of challenges:
» Data, task specification, accurate simulation



Interactive language learning

 Language learning with feedback
« Human or the environment

* Model weights are adjusted based on feedback




Text conditioned content generation

 Review of generative models

Generative models Model does not explicitly compute
Model can comput(ip,()i)’,’//// \;J{)d,lwtfan sample from p(x)
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» Examples of text-to-image generation with
 GANs (GAN+CLS+INT, StackGAN++)
« VAE+Autoregressive (DALL-E - like VQ-VAE but text conditioned)

* Text to 3D is underexplored



Thank you!
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