CMPT 983

Grounded Natural Language Understanding

April 15, 2021 Conclusion

Grounded natural language understanding

• Lightening tour of topics at the intersection of language and machine learning, visual computing and robotics

Multimodal Embeddings

"Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models" [Kiros, Salakhutdinov, Zemel TACL 2015]

Multimodal representations

- Joint vs Coordinated representations
 - Joint: Autoencoder + Fusion (e.g. concat)
 - Coordinated: CCA, joint embeddings

$$\mathcal{L}_C(\mathbf{W}, \mathbf{U}, I_i, y_i) = \sum \max\{0, \alpha - D(\Psi(I_i), \mathbf{u}_{y_i}) + D(\Psi(I_i), \mathbf{u}_{y_c})\}$$

• Useful for retrieval, translation

Attention

Not every part of the input given the task context

Exit the bathroom. Turn left and exit the room using the door on the left. Wait there.

Slide credit: Stefan Lee

Attention

- Used for many vision and language tasks
- Including captioning and understanding referring expressions
- Representation that weighs different parts of the input differently

Attention

- Mathematically: weighted sum $\hat{\boldsymbol{v}} = \sum_{i=1}^k \alpha_i \, \boldsymbol{v_i}$
- Types of attention
 - Different ways to compute weight / similarity
 - Hard vs Soft
- Query-key-value view of attention
- Self-attention and transformers

Attention function,
$$f$$

$$a_i = g(\mathbf{k}_i, \mathbf{q})$$

$$\alpha = \operatorname{softmax}(\mathbf{a})$$

$$\hat{\mathbf{c}} = \sum_{i=1}^k \alpha_i \ \mathbf{v}_i$$

Scaled dot-product attention:

$$g(\mathbf{c}_i, z) = z^{\top} \mathbf{c}_i / \sqrt{d}$$

Pretraining

Big pile of unannotated data! Lots of resources to train! Task specific
Small amount of annotated data
Start with pre-trained model

Pre-training

Fine-Tuning

Pretraining and masked multimodal models

VilBERT, Lu et al, NeurIPS 2019

CLIP, Radford et al, 2021

Structure and compositionality

Structured representations for compositionality

Constituency Parse Tree

Dependency Parse

Relational

Structured representation of images

Scene Parse Tree

Hierarchical

Scene Graph

Relational

Socher, Lin, Ng, and Manning, "Parsing Natural Scenes and Natural Language with Recursive Neural Networks", ICML 2011

Yang, Liao, Ackermann, and Rosenhahn, "On support relations and semantic scene graphs", ISPRS Journal of Photogrammetry and Remote Sensing, 2017

Semantic parsing

- Parse natural language into programs
- Use in VQA

Shape and attributes

Left vs. right

In front vs. behind

Programs: formed from composable modules

Relations

Generated language

Neural module networks, Andreas et al, CVPR 2016

Speaker-listener models

- Need to model other party
- Rational Speech Acts (RSA)
- Used in referring expression generation + comprehension
- Looked at ShapeGlot and emergent communications

Goodman and Frank, 2016

Instruction following

Instruction following (RoboNLP)

- Quick review of imitation learning and reinforcement learning
- Visual language navigation
- Instruction following with manipulation and interaction

ALFRED, Shridhar et al, CVPR 2020

- Lots of challenges:
 - Data, task specification, accurate simulation

Interactive language learning

- Language learning with feedback
 - Human or the environment
- Model weights are adjusted based on feedback

Text conditioned content generation

Review of generative models

- Examples of text-to-image generation with
 - GANs (GAN+CLS+INT, StackGAN++)
 - VAE+Autoregressive (DALL-E like VQ-VAE but text conditioned)
- Text to 3D is underexplored

Thank you!

