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Review of deep learning models



Today

* Review of basic deep learning building blocks
* CNNs
* RNNs
» Attention
 Transformers



Deep learning models



Neural network architectures
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* All network architectures can be used to model images, text,
3D representations, etc.

* Traditionally:
* CNNs for images — scale/translation invariance
* RNNs for sequences (text)

 Transformers were introduced for machine translation
* Now used for images and 3D shapes as well
« Currently SOTA vision+language models are all using transformers!



Modelling Images



Modelling Images
I
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Modelling Images

Convolutional Neural Networks
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CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING
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Modelling Images

Grid-based features
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Modelling Images
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Modelling Images

*Considering receptive field it is actually much more like

Slide credit: Stefan Lee



Modelling Images

Slide credit: Stefan Lee



Modelling Images

Slide credit: Stefan Lee



Modelling Images

ldea: Switch to object detection models as the backbone for image representation
« Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering arxiv.org/abs/1707.07998

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
https://arxiv.org/abs/1506.01497
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https://arxiv.org/abs/1506.01497
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Modelling Images

ldea: Switch to object detection models as the backbone for image representation
« Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering arxiv.org/abs/1707.07998
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https://arxiv.org/abs/1707.07998

Modelling Images
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Modelling Images

Image Level Features Spatial / Conv Features Detection Features

ResNet 101 FasterRCNN - ResNet 101

Trained on ImageNet _Trained on Visual Genome

These are almost never fine-tuned for downstream tasks in vision-and-language.

Slide credit: Stefan Lee



ResNet 101 Pre-training on ImageNet
« 1000 object classes (many fine-grained)

Faster R-CNN Pre-training on Visual Genome
* 1600 object classes
* 400 attribute classes

N




Modelling Sequences



Modelling Sequences

Recurrent Neural Networks

* Ideal for processing sequential data containing possibly long-term dependencies.
* Various implementations (e.g. simple RNN, LSTM, GRU) expose the same AP!
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Modelling Sequences

Recurrent Neural Networks

* Ideal for processing sequential data containing possibly long-term dependencies.
* Various implementations (e.g. simple RNN, LSTM, GRU) expose the same AP!
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Modelling Sequences

Recurrent Neural Networks

* Ideal for processing sequential data containing possibly long-term dependencies.
* Various implementations (e.g. simple RNN, LSTM, GRU) expose the same AP!
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Multi-layer (stacked) RNNs
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the movie was terribly  exciting !



Bidirectional RNNs

This contextual representation of “terribly”
has both left and right context!
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Modelling Sequences

CNNs as a fixed-time horizon alternative:
 Parallel computation!
» Tricky encoding.

wool Wooz W003 ‘ Oups el wooN

F ............. f .................. f ...................... * :, """""""

Padding with | |
Zeros E

VGG16 T

I

Slide credit: Stefan Lee

p(y;) [P(Yz)] [ p()’.‘-)] Word Probabilities
Output
W,0, W,0, W,03 Word
Embeddings
----- A-T-T-
PARALLEL $
CONVOLUTIONS
_______ » !
1
]
Convolutional 1
Kernel :

* * Input Word
W<S> Wevi Weys : We IN-1
Embeddings




Multimodal seg2seq models

» Video captioning (video frames to text)

VLN:
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Move inside and

... formal dining table




Some Notes on Representing Text

Words and Vocabularies

Words exist in a fixed vocabulary, i.e. w € V

Vocabulary includes an UNK token — any out of
vocabulary tokens get mapped to this.

QUERY FREQUENCY
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Slide credit: Stefan Lee



Some Notes on Representing Text

Quirks of Common Practice

ho hq h, hr hriq
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SOS Exit the coe wait. EOS

Start of Sequence End of Sequence

Slide credit: Stefan Lee



Some Notes on Representing Text

What is actually input to represent tokens?

* One-hot vector 2 learned representation
» ForV ={cat,dog, fish}, wgisp =[001].

hq

T fish W

RNN 0.2 1 1.5 08 -0.2 1.2
T [001]|-1.3 2 -2 1.2 056 0.1
. 0.13 0.2 095 0.2 -1.3 0.5
fish

Wrisn * W = [0.13 0.2 0.95 0.2 — 1.3 0.5]

Initialize to random vectors and learn the
embeddings during training



Some Notes on Representing Text

What is actually input to represent tokens?

» Use pretrained word embeddings

cat dog « Word2Vec
GloVE
Wrish = GlLoVE(“fish”)
fish

« Can do a mix of these
initialize learned embeddings with pretrained values



Some Note on Terminology

Distributed representation

- Meaning is not localized to

one dimension
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Contextual representation

iiiii

Distributional representation
- Meaning is learned from the context (other
words) that co-occur with each word

...government debt problems turning into banking crises as happened in 20089...
...saying that Europe needs unified banking regulation to replace the hodgepoadge...
...India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

“You shall know a word by the company it keeps”
(J.R. Firth 1957) - Distributional hypothesis

- Representation changes based on context



Attention



Need for "attention”

* Uses encoding of entire input when generating each output token

» Maybe would be useful to focus on a part of the input as the output
tokens are generated

Translation Captioning

Recurrent Neural Network
“straw” “hat” END

Encoding of the
source sentence.

Target sentence (output)

A
r \

he hit me with a pie <END>

Encoder RNN

U

il a m’  entarté <START> he hit me with a pie

N y ) Convolutional Neural Network

Source sentence (input)

H_/
NNY 12p02a(

START “straw” “hat”




Attention for VLN

Not every part of an input is important given the task context

Exit the bathroom.

Slide credit: Stefan Lee



Attention for VLN

Not every part of an input is important given the task context

Turn left and exit the room using the door on the left.

Slide credit: Stefan Lee



Attention for VLN

Not every part of an input is important given the task context

Wait there.

Slide credit: Stefan Lee



Attention for VLN

Not every part of an input is important given the task context

Take a right when you see the mirrored wardrobe.
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Slide credit: Stefan Lee




Attention for VOA

Not every part of an input is important given the task context

What shape is the doormat?

Slide credit: Stefan Lee



Attention

* The concept of ‘attention’ has seen widespread use...
* In many language and / or vision tasks, attention works extremely well!
* Attention improves interpretability of neural networks

Q: What room are they in? A: kitchen

Focus on part of input



Attention mechanisms - summary

» Attention is probably one of the simplest and most effective ideas in
deep learning — proven across many different domains

» Practically: focus on part of input by taking a weighted sum of
different input parts

 With sufficient data, attention mechanisms can learn to ground
language in visual content from ‘distant’ supervision

» Given the complexity of biological attention systems, assume there

is still much to explore... particularly temporal aspects in context ot
LV&A



Attention

* Major impact on computer vision and NLP from 2014/5

Recurrent Models of Visual Attention
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Attention

* Major impact on computer vision and NLP from 2014/5

Neural Machine Translation by Jointly Learning to Align and Translate
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hl h2 h3 hT 1992
Xl Xz X3 XT <end>

source (English)

Attention weights a; (0 = black, 1 = white)



Attention

* Major impact on computer vision and NLP from 2014/5

Neural Machine Translation by Jointly Learning to Align and Translate

< c
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Attention

Attention in Neural Networks:

A learned mechanism that learns to focus on a subset of the
input that is most relevant to the current task.

task context representation
l (also called query)

attended feature — ¢ = f(Z, C)
i 1

learned attention function set of attention
(neural net) candidates



Computing attention

Attention function, f
a; =9g(c;,z)
a = softmax(a)
C= Z{'{=1 a; C;

Attention score a; = g(c;,z)
how well does the attention
candidate c¢; match the query z

Attention scores: a (unnormalized)

Attention weights: a (normalized)
Final attention output

Weighted sum of context features

» Dot-product attention:

g(c;, z) = e

* Neural network
g(ci,z) =v' tanh (Wic; + Waz)



Attention over

Attention candidates, C typically defined by the hidden states of an
encoder (e.g. one feature vector for each word in the input text)

hq h; h3 hr
T T 1 )
RNN —» RNN —» RNN == ===~ »enN — C = {h4, ..., ht}

T 1 1 1

Je ne comprehends .. <EOS>



Attention over Visual Features

» Attention candidates, C typically defined by the spatial output
of a CNN (feature vectors for different parts of the image)

Object
Grid based proposals

>
CNN feature | 10
map
10
2048
C =

Slides Credit: Peter Anderson U



Attention over Agent Experience

Embodied Al (visual language navigation)

 Attention candidates, C as agent hidden state or visual vectors

C = {hl' ""h’S}

or

C = {vl, ...,U6}

51



Task context for Attention

» Task context representation, z, is often an RNN encoding

Machine translation / image captioning:
hidden state

h;

T

—» RNN —» RNN —» RNN

T 1 T

<Start> I don'’t

VQA: Question encoding
(final encoder hidden state)

h,

T
RNN —» RNN —» RNN ======= » RNN
T ) T T
What color 1s c o ?

52



Putting it all together

e Attentive model

Attention
output

(e000]

A

= =)

C; is the weighted sum of encoder hidden states

C = {(;L,...,C?r}

understand Predict next
T word to
generate
‘ Softmax

Feedforward Net

A :
Concatenation

ﬁtl
h, h, h h, C —>‘ A:tend ‘
t ot 1 t h
RNN —» RNN —p RNN ====--- » RNN — RNN —» RNN — RNN

T 1

Je ne comprehends ...

1 1 T

<EOS> <Start>

1 T

I don'’'t



Interlude: Attention for
machine translation



Attention for machine translation

dot product

=

O wn

2S¢

=

B,

2 9

<L

o 0 o} o ')

e = o o o o

O & e |® o) o)

Lu i f T T
il a m’  entarté <START>
9 )

Y
Source sentence (input)

NNY J2po2aQ



Attention

Attention

Encoder

scores  distribution
M >

RNN

On this decoder timestep, we're

mostly focusing on the first
/ encoder hidden state (“he”)

Take softmax to turn the scores
into a probability distribution

@) (o) 0] (@) (@)

(] (o) @) (@) (@)

() (3] @) (@) O

(<) (@] (@) (@) @)

T T N /]\ N\

il a m’  entarté <START>
1\ J

Y
Source sentence (input)

NNY J2p0o2a(

Slides Credit: Abigail See



Attention

Attention

Encoder

distribution

scores

RNN

output

Attention <

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden states that
received high attention.

X

JHEE
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o) o le|

0] (@) 0]

il a m’  entarté

J

Y
Source sentence (input)

<START>

NNY J2p02a(

Slides Credit: Abigail See



Attention
distribution

Attention

Encoder

scores

RNN

Attention
output
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Y

Source sentence (input)

<START>

Concatenate attention output
with decoder hidden state, then
use to compute j; as before

NNY J2p02a(

Slides Credit: Abigail See



Decoder RNN
}
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Decoder RNN
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Putting it all together

understand
» Attentive model t
Attention function, f ‘ Softmax ‘
a; = w! tanh(W,c; + W, h) l
aA: Soitmax(a) Feedforward Net
C=)2,-1%; C; ! n |
LA Concatenation
Gt
C —>‘ Attend ‘
C]_ C2 C3 CT
T T 1 1 t he

RNN —» RNN —» RNN

T 1 1

Je ne comprehends ...

T

<EOS>

T

<Start>

------- » RNN —» RNN —» RNN —p RNN
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. . answer
Putting it all together 1 o
e Attentive model ‘ Softmax ‘ choice answer

I

Feedforward Net

Attention over visual regions! o T Multimodal Fusion
C = {vl, ...,vloo} |
C—»‘ Attend ‘
Attention function, f t h
a; = w! tanh(W,.c; + W, h) RNN —| RNN |---.»] RNN
a = softmax(a) I I I
A k
C=Li=1% €

question word embeddings



Putting it all together

T word;

Predict next

* Attentive model ‘ Softmax ‘ word to
> generate
| ki
h%_l ----- [ 4 RNN ..... > h%
Attention over visual regions! 4 .
C = {v1: ---:vloo} 6” Concatenation
C —>‘ Attend ‘
Attention function, f t h;
a; = w! tanh(W,c; + Wy h) Rl - RNN e > Rl
a = softmax(a) f _
~ k _ Concatenation
C == C | |
embedded 5;

word;_4

1%



Types of attention scores

Attention function, f

a; =9g(c;,z)
a = softmax(a)

~ Ok

C=Li=14;

* Dot-product attention:

g(c;,z) = e,

» Scaled dot-product attention:
T
glci,z) =2"¢;/Vd
» Bilinear / multiplicative attention:
g(ci,2) =2 We; € R
where W is a weight matrix

« Additive attention (essentially MLP):
g(ci,z) =v' tanh (Wic; + Waz)
where W, , W, are weight matrices
and v is a weight vector



Query-key-value view of attention

Attention function, f Attention function, f

ai=g(ci,z) ai:g( /q)
a = softmax(a) a = softmax(a)

A _ Yk A _ Yk
C=Li=1@; C; C=)_1Q;V;

Matrix form

q=W;,z q=W;,z

Projected query,key,value = =Wgc; =» =W, C"
vi:WVCi V:WVCT



Self-attention

* Attention (correlation) with different parts of itself

The The The The
animal animal animal animal
didn’t didn’t didn’t didn’t
Cross Cross Cross Cross
the the the the
street street street street
because because because because
it it it it

was was was was
too too too too
tired tired wide wide

* Transformers: modules with scaled dot-product self-attention



Transformers

- NIPS'17: Attention is All You Need

* Originally proposed for NMT (encoder-
decoder framework)

 Key idea: Multi-head self-attention

* No recurrence structure so training can
be parallelized
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o J =)
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Encoding Encoding
Input Output
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Inputs Outputs
(shifted right)



Modelling Sequences -- Transtformers

» Each Transformer block has two sub-layers
*|Multi-head attention
 2-layer feedforward NN (with RelLU)

e Each sublayer has a residual

connection and a layer normalization Helps the training
process!

LayerNorm(x + SubLayer(x))

* Input layer has a positional encoding

Add & Norm

Feed
Forward

A

\

Add & Norm

Multi-Head
Attention

At

\.

J

Positional
Encoding

O

Input
Embedding

T

Inputs



Modelling Sequences -- Transtformers

Scaled Dot-Product Attention

self-attention
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Scaled Dot Product Attention

Efficient, stable training Let X € RM*4x be a matrix of task context
. vectors to attend to
Scaled Dot-Product Attenti : :
caiel OO enton Let C € RN*4c be a matrix of Input vectors to
A attend over
[ Matvul ] SDPAttention(X,C):
A
Softhax Q=WyXT Wy e Rnxdx
t K =WgCT Wk € Rén*dc
[ Mask (opt.) |
i V=Ww,CT Wy € Rév>dc
So;le i QTK
Return V =softmax| — |V

MatMul \/d_h

(g & v V € RMXdv he 3 matrix of attended values

Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf

Fall 2019


https://arxiv.org/pdf/1706.03762.pdf

Modelling Sequences -- Transtformers

Scaled Dot-Product Attention

self-attention sbpprAttention(c, ©):
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Multi-head attention

One head is not expressive enough. Let’s have multiple heads!
A(Q,K,V) = Concat(heady, ..., head,)W,

head; = A(Wy, X", Wi X", Wy, XT)

In practice, h = 8,
d=d,/hWy € R%outXdout
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Transformers: Encoding position

PE(pos 2i) = 8in(pos/10000%/ dmecr) SDfAttenti?n(Y,f):
PE 05 2i+1) = €08(pos/10000%¢/ o) —>{((Add & Norm
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Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf 4
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https://arxiv.org/pdf/1706.03762.pdf

Modelling Sequences -- Transtformers

» Each Transformer block has two sub-layers

s i ~\
e Multi-head attention Ao 2lE i lelian
. Feed
 2-layer feedforward NN (with RelLU) Forward
Provides non-linearity ry
.
N x
. Add & Norm
e Each sublayer has a residual VTR
connection and a layer normalization Helps the training Attention
| A
LayerNorm(x + SubLayer(x)) process: \ . “ )
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* Input layer has a positional encoding inout
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Qutput
Transformers e
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* Encoder: Multi-headed self-attention . .
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Transformers

e Stacked into multi-layers
* For language, input embedding is subwords
* Byte-pair encoding (BPE) / Word pieces
 Other training details:
* Learning rate with warmup and decay
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Encoder Layer 6

Encoder Layer 5

Encoder Layer 4

- 512:4000
512:8000

0.0008 1 —— 256:4000

Encoder Layer 3
0.0006 1

0.0004

0.0002 1
Encoder Layer 2

0.0000 A

0 5000 10000 15000 20000

* Label smoothing: one-hot vector + noise

Encoder Layer 1

The Annotated Transformer http://nlp.seas.harvard.edu/2018/04/03/attention.html
A Jupyter notebook which explains how Transformer works line by line in PyTorch!



http://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformers are used for everything!

10 Novel Applications using Transformers [DL]

Transformers have had a lot of success in training neural language models. In the past

few weeks, we've seen several trending papers with code applying Transformers to new
types of task:

& Transformer for Image Synthesis - £’ Esser et al. (2020)

@ Transformer for Multi-Object Tracking - £ Sun et al. (2020)

»? Transformer for Music Generation - £’ Hsiao et al. (2021)

3» Transformer for Dance Generation with Music - &’ Huang et al. (2021)
® Transformer for 3D Object Detection - £ Bhattacharyya et al. (2021)

& Transformer for Point-Cloud Processing - £’ Guo et al. (2020)

© Transformer for Time-Series Forecasting - £’ Lim et al. (2020)

® Transformer for Vision-Language Modeling - £’ Zhang et al. (2021)
#= Transformer for Lane Shape Prediction - £’ Liu et al. (2020)

Ed Transformer for End-to-End Object Detection - £’ Zhu et al. (2021)

PapersWithCode newsletter (1/20/2021)
https://paperswithcode.com/newsletter/3



Next time

* Multimodal representations



