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Multimodal representations



Today

* Multimodal representations
* Joint representations
* Correlated representations

* Applications using multimodal representations
* Retrieval
* Translation



Multimodal
models



Multimodal models

Text

Image

Audio

Encoders

Multimodal
Fusion

R A

Predictors
+ Decoders

Does the image/text match?

Captions

Image with object
selected based on text

Modified image with
text applied to it



Modeling Images
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Slide credit: Stefan Lee



Modeling text

Encoding text

RNN —» RNN —p RNN ====---- » RNN
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Modeling text

Encoding text
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Word embedding are used

These word embeddings can be

- Initialized randomly and
trained for a specific task

- Pretrained and frozen

- Pretrained and fine-tuned for a
specific task

Pretraining can take advantage of
huge amount of text-only data

How to pretrain these
embeddings?



Text Embeddings
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...saying that Europe needs unified banking regulation fo replace the hodgepodge...
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These context words will represent banking

Distributional hypothesis
“words that occur in similar contexts tend to have similar meanings”

ideas



How are these embeddings learned?

Simplify context to small

Learn to fill in the blank

C1: A bottle of is on the table.

C2: Everybody likes :
C3: Don’thave ___ before you drive.
C4: We make out of corn.

Language modeling
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How are these embeddings learned?

Simplify context to small

£ ~
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djacentV

I d ASIRS N
C1 C2 C3 Cq4

Represent each word as a vector || . .

] o ] tejuino 1 1 1 1
Train classifier to predict word

: loud 0 0 0 0
using context words.
During training, the word vector | motor-oil 1 0 0 0
is updated so that it is possible tortillas 0 1 0 1
to predict the center word using | |.hoices o ) o o

the context words.

wine




Word2Vec

Predict center word from context words Predict context words from center word

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)
SUM
% w(t) w(t) —
w(t+1) w(t+1)
w(t+2) w(t+2)

Continuous Bag of Words (CBOW) Skip-grams



GloVe

e Let’s take the global co-occurrence statistics: X; ;

e Try to learn word vectors to predict the co-occurence counts (using L2 loss)
e Function f to weight loss by frequency of words (from o to 1)

\4
P » 2
J= Y f(Xi)(w]®; + b; + b; — log X;;)
2,7=1 10
e Final word vector: w; + W; 08

f ™~ 6

e Training faster

e Scalable to very large corpora

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation
43




Factorizing co-occurrence matrix

» Obtaining word embeddings via factorization

X =UxV'

word-word
PPMI matrix

1) SVD X

W XcC

2) Truncation

3) Embeddings

embedding for word i

~| W

1
2

w

* Learned word embeddings with
word2vec and glove have been
shown to be related to
factorizing shifted versions of
the co-occurrence matrix



Learning
multimodal
representations



Multimodal Embeddings

(a) Colors (b) Weather

Figure 5: PCA projection of the 300-dimensional word and image representations for (a) cars and
colors and (b) weather and temperature.

“Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models”
[Kiros, Salakhutdinov, Zemel TACL 2015]



Multimodal representations

- Joint (fused) representations ® o900 .

* Single combined representation space BN e sy P —

|[ J[ J ( ."'.‘JI Optional

e Early fusion 99::99/99::99 99::99)) ntermediate

* Can be learned supervised or unsupervised (00--00) (00--00) (00--00) Unimod
» Coordinated representations fi(x1) fa(x2)

* Similarity-based methods (e.g. cosine distance)  (00-:00] ~ (00:-08) coorinsted

« Structure constraints (e.g. orthogonality, if(_._._._.f;_._) _____ @e-—e@) P

sparseness)  TTTTITTTTTTITIIIoAETS
« Examples: CCA, joint embedding (@9:'@@' [O@";'CQ) Unimodal

* Representations can be trained end-to-end
for a task

Adapted from slide by: Louis-Philippe Morency



Joint representation

» Simplest version: modality concatenation (early fusion)
* More complex: Deep multimodal autoencoders

(®@ ®---® @) Joint

B et S e s e T e s o e \
I

Optional
I Intermediate

00---00) (00::-00) (@0::-@@®) Unimodal

X1 X7 Xp




Joint representation: Early fusion

Fusion of features / representation

Bilinear Pooling

Concatenation Element wise |

/ Sum Product
®
I/ / .(/ .{ Outer product
4 VAR :

/ = /} " z=Wlzr® (]|

. “ 3}00 zol43 2&48
12.5 billion 11!

Image credit: Qi Wu

All elements can interact.
More flexible, but lots of weights!
Adapted from slide by: Stefan Lee



Joint representation: Early fusion

Fusion of features / representation
Bilinear Pooling

®

Outer product

Low rank approximations

ZZW[T@M]

3000 2048 2048
12.5 billion 1!

Image credit: Qi Wu All elements can interact.
More flexible, but lots of weights!

Adapted from slide by: Stefan Lee



Joint representation: Early fusion

Compact Bilinear Pooling

Project outer product to a lower
dimensional space

Visual Vector Count Sketch of Visual Vector
X, (X, |- [ X N 0 x {0 x,[0 |0 [x, o _
s ~ Avoid direct computation of outer
c FFT product
O
‘_3 O FFT-
C
8 /FFT\
\ %
;19 [+ |Gz ¥ 70,0 ]+ [94] 0 [0 ]9.,[
Textual Vector Count Sketch of Textual Vector

Figure 2: Multimodal Compact Bilinear Pooling

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding_https://arxiv.org/pdf/1606.01847.pdf

Slide credit: Stefan Lee


https://arxiv.org/pdf/1606.01847.pdf

Joint representation: Autoencoders

Deep Multimodal Autoencoders | | | |
Audio Reconstruction Video Reconstruction

* Useful for conditioning on one (00 ... 00] (0O - OO]

. . t |
modality at test time (00 -+- 00) (00« 00)

« Can be regarded as a form of ~__

regularization (00 - 00 |2

? Representation

Q@ ++- 00 |

I
(00 +++ 00|

Video Input

Multimodal deep learning
[Ngiam et al, ICML 2011]

Adapted from slide by: Leonid Sigal



Joint representation: Autoencoders

Deep MU|t|mOda| AutoeﬂCOdel’S Audio Reconstruction Video Reconstruction
: : OO eee OO QQ eee OO
* Each modality can be pre-trained [ § ) § |
* using denoising autoencoder (0@ - 0] (@0 - OO |
e To train the model, reconstruct both \/:hued
mOdalitieS USing [OO s OO]Representation

e both Audio & Video /\

(@@ ..- 20 (0@ :-- 0]

* just Audio x 4
e just Video (00 ¢e» OO (00 s+ QO]
Audio Input Video Input

Multimodal deep learning
[Ngiam et al, ICML 2011]

Adapted from slide by: Louis-Philippe Morency



Correlated representations

Canonical correlation analysis (CCA)
* Find representations f1(X1), f2(X2) for each view that
maximize correlation: cov(f1(x1), f2(x2))

corrthiba) 2lxe)) = T ) - var (s (x0))

Joint Embeddings
* Minimize distance between ground truth pairs of samples

min D (f1(x"), f2(5) )



Canonical Correlation Analysis (CCA)

» Goal: Find representations f1(x1), fo(x2) for each view that
maximize correlation:

corr(fi(x1), f2(x2)) = cov (f1(x1), f2(x2))
(f( )af( )) \/Var(f1(X1))°Var(f2(X2))

* Finding correlated representations can be useful for
* Gaining insights into the data
 Detecting of asynchrony in test data
« Removing noise uncorrelated across views
* Translation or retrieval across views




Linear CCA

* Projections of representation

A(XL) =wi Xy f2(Xg) = w3 X
X1 € R2 Xo € R2

Two views of each instance have the same color

Slide credit: Andrew, Arora, Bilmes, Livescu



Linear CCA

» Classical technique to find linear correlated representations

fi(x1) = Wix Wi e R%
where
fa(x2) = W3 xy W, € Rézxk

» Select values for the first columns(wi .1, Wa..1) of the matrices
W and W5 to maximize the correlation of the projections:

(W11, Wo.1) = arg max corr(wleXl, w%jlez)

* Subsequent pairs are constrained to be uncorrelated with
previous components (i.e., for j < 1)

corr(wrf,n-Xl, W{:le) = corr(w%j:in, wg::sz) =0



Linear CCA

1. Estimate covariance matrix with regularization:

N N

1 5 o 1 N a5
Y1 = —N ] izE 1(X§ ) _ Xl)(Xg ) _ Xl)T + 7“11 Yo = —N 1 izg 1(X§ ) _ Xl)(Xg) — X2)T
L . . A .
12 — —N T E_ (ng) — il)(xg) e )_CQ)T 222 — —N 1 E (Xg’) = )_(2)(3(57’) — )_(2)T + 7"2:[

2. Form normalized covariance matrix: T = Z_l/ 22122 12 and its singular
value decomposition T = UDV?®
k

3. Total correlation at k is ) _ Di

1=1
4. The optimal projection matrices are: W7 = 21_11/ 2Uk

Wi = 2%V,

where Uy is the first k columns of U.

Slide credit: Andrew, Arora, Bilmes, Livescu



Kernel CCA

Use non-linear functions for f1(x1), fa(x2)
- Learns functions from any reproducing kernel Hilbert space

- May use different kernels for each view

- Using RBF (Gaussian) kernel in KCCA is akin to finding sets of
instances that form clusters in both views

* Pros:
* Allow for non-linear functions
 Can produce more highly correlated representations

* Cons:
« KCCA is slower to train
« KCCA model is more difficult to interpret
 Training set need to be stored and referenced at test time



Deep CCA

e Use neural network to

represent f;(x1), fa(x2)

e Can be trained end-to-end
for a task

Compared with KCCA

* Training set can be
disregarded once the
model is learned

» Computational speed at
test time is fast

{Canonical Correlation Analysis]

0 0

Q/:%:\C 0%:5%:\0
g

s>

el
" o Q/ O O ¢

View 1 View 2

Slide credit: Andrew, Arora, Bilmes, Livescu



Deep CCA

Training a Deep CCA model. [Canonical Correlation Analysis]

1. Pretrain the layers of each side individually 1} 1}

2. Jointly fine-tune all parameters to maximize / , /% \
the total correlation of the output layers.

Requires computing correlation gradient:
— Forward propagate activations on both sides.

.E % Z E % Z‘
Correlation is a population objective, so instead

of one instance (or minibatch) training, requires W W

L-BFGS second-order method (with full-batch)

— Compute correlation and its gradient w.r.t. output layers.

— Backpropagate gradient on both sides.

. _ View 1 View 2
Extensions: Deep canonically correlated autoencoders (DCCAE)

Slide credit: Andrew, Arora, Bilmes, Livescu



Correlated representations

Canonical correlation analysis (CCA)
* Find representations f1(X1), f2(X2) for each view that
maximize correlation: cov(f1(x1), f2(x2))

corrthiba) 2lxe)) = T ) - var (s (x0))

Joint Embeddings

* Minimize between ground truth pairs of samples
(or maximize similarity)

min D (f1(x"), f2(x5”) )



Discriminative Embeddings

Images and class labels are embedded into the same space

Image Embedding L]

U(I) =W .-CNN(I;©): RP — R?

Label Embedding CXEK]
U (word;) =u; : {1,...,L} — R%

Distance or Similarity in Embedding Space

Can use different distances / similarities

Euclidean (L2) distance

D(u,u’) = [Ju—u'[|3
Cosine similarity ,
u u
S(u,u’) = :
| [af] - [Ju’]

Adapted from slide by: Leonid Sigal



Discriminative Embeddings

Correct label Other labels
(more similar)  (less similar)

Lo(W, U, L,y) = Y max[0,a — S(¥(L),uy,) + S(U(L),uy,)]

Take care with signs depending if working with
similarity or distance R

Image Embedding L]

U(I;) =W -CNN(;®): RP - R*

Label Embedding CXK]
Uy (word;) =u; : {1,..,L} — R

Similarity in Embedding Space

S(u,u’) = 20t
[af| fJu’]]
N
$i%Z£C(W, U, L, ys) + M|[W[% + A2||U||%  (Bengoetal,, NPS'10]
’ i [ Weinberger, Chapelle, NIPS'09 ]

Adapted from slide by: Leonid Sigal



From words to sentences

Sentence embedding

:
U (word;) =u; : {1,...,L} — R? \IJL(wl, « .oy wk;)
Shared Embedding Space
e ke Composition
words —_— P ,
Function
(characters)
Average
BoW (FCN) — , Py
RNN Lf"’f ‘ o —.-"” ¢ S=oW)TW¥(t)
C N N ‘ ; > Sap > San + margin
Transformers
GraphNN (i, c) : matching

Triplet based ranking loss:

(i, ¢), (i, ¢): not matching

lsy(i,c) = Z[a —s(i,c)+s(i,6)]+ + Z[a —s(i,c) +s(i,0)]+



Discrminative Embeddings

* Inputs are mapped into a feature space

« Want the following:

* pairs that have the same label to have similar
eatures (i.e. be close together in the feature
space)

* pairs that have different labels to be dissimilar
(i.e. be be far apart in the feature space)

e Rich literature in this area with
e different loss functions

* how to construct positive and negative
examples



Contrastive and metric learning

* Metric Learning: Learning distance metric that can separate input with
the same label from those with different labels

BEFORE AFTER

ghborhood | ~~ ~~

s
>—margin~
\ //—\\
/ / —
x.

O Similarly labeled

- Differently labeled
~~~_ [target neighbor | | | ] Differently labeled

“Distance Metric Learning for Large Margin Nearest Neighbor Classification”
[Weinberger, Blitzer and Saul, NIPS 2005]

* Contrastive Learning: Learning similarity metric discriminatively



| osses

e Contrastive Loss
* Proposed for face verification (Chopra et al., 2005)
* Pairwise ranking loss

Leont (x4, %5) = Ly = y;)D(f(x:), f(x5)) + Lly; # yj] max (0,e — D(f(x:), f(x5)))

* Triplet Loss e N
nchor g LEARNING .
* Proposed in FaceNet (Schroff et al., 2015) 'Sot A’h{”gﬂ 8

* Select anchor with positive and negative

Liriplet(x,x7,x7) = >~ max (0,¢ + D(f(x), f(xT)) = D(f(x), f(x7)))

reEX
o—=0O O O o——=O O——0 O Oo—=0O O
X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6
(a) Contrastive embedding (b) Triplet embedding

Figure from “Deep Metric Learning via Lifted Structured Feature Embedding”
[Song et al, CVPR 2016]



Using triplet loss in multimodal embeddings

loss(image, label) = Z max[0, margin — tiape; MU (image) + t; M (image)]

j#label
Traditional Deep Visual Semantic Skip-gram
Visual Model Embedding Model Language Model
label similarity metric nearby word
! / |
( softmax layer ) transformation
| | ( softmax layer )
4 ) ( )
core core embedding embedding
visual _) visual vector = vector
model parameter model lookup table parameter lookup table
& | y initialization . | > I initialization I
image image label source word
Pretrained Pretrained

“DeViSE: A Deep Visual-Semantic Embedding Model”
[Frome et al, NIPS 2013]



Training data

* Positive pairs
* Correctly labeled data: (image, label) or (image, description)

* Perturb input for data augmentation

° Negative pairs Semi-hard negative
* Sample non-matching pairs
* What kind of negatives to sample?

* How to efficiently sample? S
Margin

Hard negative

Easy negative




Going beyond triplets

* Consider all pairs in a batch for efficient in-batch sampling

(N+1) Tuplet

Figure from “Improved Deep Metric Learning with
Multi-class N-pair Loss Objective”
[Sohn, NIPS 2016]

Lifted Structured Feature Embedding

o—oO0 O O o—oO0

X1 X2 X3 X4 X5 X6

(a) Contrastive embedding

o——=CO O O—=O O
X1 X2 X3 X4 X5 X6
(b) Triplet embedding

o 0 o v o o

X1 X2 X3 X4 X5 X6

(c) Lifted structured embedding

Figure from “Deep Metric Learning via Lifted
Structured Feature Embedding”
[Song et al, CVPR 2016]

l:‘ Positive D Negative

start start

g g5 start

start
3 84

g

(a) In-batch Negatives (B — 1)

Figure from “Learning Dense
Representations of Phrases at Scale”
[Lee et al, ACL 2021]



Contrastive learning as classification

* N-paired Multiclass loss

(a) Triplet loss (b) (N+1)-tuplet loss (c) N-pair-mc loss
L-pair (%, %7, {37 157) = log (1 + Z exp(f(x) " f(x;) = f(x)" f(xT)))
exp(f(x) " f(x1))

= —1lo
S exp(F(x)T F(xH) + 0 exp(f(x) T f(x;))

“Improved Deep Metric Learning with Multi-class N-pair Loss Objective”
[Sohn, NIPS 2016]



Contrastive learning as classification

* Noise Contrastive Estimation

* Train logistic regression classitfier to distinguish positive and negative
(noise) samples

* Uses cross-entropy loss
« With one positive sample and one noise sample (Gutmann & Hyvarinen, 2010)

N
1 ~
Lnce = — ; log o (£e(x:))log(1 — o (ly(X:)))]
* With multiple noise samples (InfoNCE, van den Oord et al., 2018)
f(x;¢) }
)

x'eX f(Xl) C

LinfoNCE = —E[log 5



Contrastive learning as classification

* Temperature Scaled
* Temperature parameter t controls how spiky /smooth the distribution is
 Automatically weights examples by their “hardness”

exp(sim(z;, 2;)/7)
o | Ljestq) exp(sim(zi, zi) /7)

fi,j = — lOg

“Learning a Similarity Metric Discriminatively, with Application to Face Verification”
[Chopra, Hadsell and LeCun, CVPR 2005]



SImCLR

* Does data augmentation help?
 What loss function to use?
e Effect of batch size and other

=
>
hyperparameters 5
= Maximize agreement s - 65
i * > Zj 8-
9(')I Tg(.) E N
h; <— Representation —» h; %o))
@
fC) £0) £ 55

N
(&)
T

% Supervised i — .- SimCLR (4x)
. *SimCLR (2x)
eCPCv2-L
" Qi MoCo (4x
*SimCLR MG ¢ (4x)
ePIRL-c2x AMDIM
I R eMoCo (2x)
*CPCVQ PIRL-ens.
PIRL oBigBIGAN
i QMoCo g
LA
L eRotation
e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

“A Simple Framework for Contrastive Learning of Visual Representations”

[Chen et al., ICML 2020]



Injecting Noise / Data Augmentation

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

“A Simple Framework for Contrastive Learning of Visual Representations”
[Chen et al., ICML 2020]



What loss to use?

A Simple Framework for Contrastive Learning of Visual Representations

Name | Negative loss function | Gradient w.r.t. u
exp(ulvt/r exp(ulv™ /7 -
NT-Xent uTvt /7 —log ) SR exp(uTv/7) | (1— p(Z(u) (1)) Jrot — . p(Z(u) [7) | 1o
NT-Logistic logo(ulv" /1) +logo(—uTv™ /7) (o(—uTvt /7)) /Tt —o(uTv™ /7)/Tv
Margin Triplet —max(uTv™ —uTvt +m,0) vt —v ifulvt —ulv™ <melse 0

Normalized dot product Margin NT-Logi. Margin (sh) NT-Logi.(sh) NT-Xent

(cosine similarity) 50.9 51.6 375 57.9 63.9

“A Simple Framework for Contrastive Learning of Visual Representations”
[Chen, ICML 2020]



Effect of batch size and other hyperparameters

70.0
67.5
¢5 norm? 7 | Entropy  Contrastive acc. | Top 1
o0 005 | 10 90.5 59.7
62.5 0.1 4.5 87.8 64.4
. s 05| 82 68.2 60.7
& 60.0 1 8.3 39:1 58.0
= Batch size
57.5 256 No 10 0.5 91.7 572
- 512 100 0.5 92.1 57.0
55.0 mm 1024
e I Zggg Table 5. Linear evaluation for models trained with different choices
' TH (] of /> norm and temperature 7 for NT-Xent loss. The contrastive
50.0 wsEmsn manand distribution is over 4096 examples.

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '

“A Simple Framework for Contrastive Learning of Visual Representations”
[Chen, ICML 2020]



Applications



Retrieval MS COCO

e Text to image/video retrieval
* Image/video to text retrieval

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.

Flicker 8k, Flicker 30k

A biker in red rides in the countryside.
A biker on a dirt path.
A person rides a bike off the top of a hill and is airborne.

A person riding a bmx bike on a dirt course.

The person on the bicycle is wearing red.




Retrieval

Accumulate
matching score L8'56
S| i T w523

o

-t The beak is yellow and pointe@ 0.03

Top-1 Acc (%) AP@50 (%)
Embedding DA-SJE | DS-SJE | DA-SJE | DS-SJE
ATTRIBUTES 50.9 50.4 20.4 50.0
WORD2VEC 38.7 38.6 D 33.5
BAG-OF-WORDS 43.4 44.1 24.6 39.6
CHAR CNN 47.2 48.2 2.9 42.7
CHAR LSTM 22.6 21.6 11.6 22.3
CHAR CNN-RNN 54.0 54.0 6.9 45.6
WORD CNN 50.5 51.0 3.4 43.3
WORD LSTM 52.2 53.0 36.8 46.8
WORD CNN-RNN 54.3 56.8 4.8 48.7
CUB Birds

“Learning Deep Representations of Fine-Grained Visual Descriptions” (Reed et al, CVPR 2016)




Retrieval

Match image region to

language

A

/ input image \ /~ candidate ™\
& j e location set
R, 3 - 3 object
“ g ok : proposal E
f I
natural language query: iy
white car on the right | global spatial local
context || configuration || descriptor

/ output object retrieval result \
2t s v ] -

Natural Language Object Retrieval

Spatial Context Recurrent ConvNet

/ candidate
scores

0.2

top score
candidate

(Hu et al, CVPR 2016)

0.1

0.4

0.0

LU CER

=]

(3]

N

i

g

Match video frames to language

Input Video
llllllllllllllllllllllllllllllllllllllll

BT

Base Moment Proposed Proposed Proposed

Context Context Context
Y
Visual Feature
Embedding (f,) o
»  Similarity (f,) —» Score
Language Feature
Embedding (f, )

Input Query: The girl talks before she bends down.

Localizing moments in video with temporal language
(Hendricks et al, EMNLP, 2018)



Retrieval: Phrase localization

A group of eight campers sit around
a fire pit trying to roast marshmallows
on their sticks.

X: regions

R

positive regions

negative regions

Y: “afire pit”

Embedding Network

d( , “afire pit”) + m < d( , “a fire pit”)
d( E.’ , “afire pit”) + m < d( , “campers”)

Embedding Loss
b 4 A\ N

_’H >I

= 3
) H % »H’I

= Hﬂ—%Iﬁi»l
= ,
< D> >
=

X
m

=
c

I*

Similarity Network
, “a fire pit”: +1
, “afire pit”: -1

FC layer

?

Element-wise product

RelU

v

Learning Two-Branch Neural Networks for Image-Text Matching Tasks

(Wang et al, TPAMI 2018)

‘—.

L2 norm

Vi



Translation (image to text)

Recurrent Neural Network
“straw” “hat” END

® ® O

Won
: Whn '
| (O)—(O e

‘thz:

O O O

START “Straw" “hat"

Convolutional Neural Network

“Deep Visual-Semantic Alignments for Generating Image Descriptions” (Karpathy and Fei-Fei, CVPR 2015)




Translation (text to image)

this small bird has
a yellow breast,

brown crown, and
black superciliary

an all black bird
GT with a distinct

thick, rounded bill.
wer has small, round violet

ith a dark purple center

This flower has small, round viole
petals with a dark purple center

PG R
I )

Generator Ne i-riminator Network

“Generative Adversarial Text to Image Synthesis” (Reed et al, ICML 2016) 63



Translation (text to image)

this small bird has
an all black bird
; e a yellow breast,
GT with a distinct
. . brown crown, and
thick, rounded bill. i
black superciliary

“Generative Adversarial Text to Image Synthesis” (Reed et al, ICML 2016)

64



Text and shape

a) 3D shapes and natural language descriptions

)

3 B¢

®

Circular glass coffee table with
two sets of wooden legs that
clasp over the round glass edge.

@

A brown wooden moon shaped @
table with three decorative legs
with a wooden vine shaped
decoration base connecting

the legs.

Dark brown wooden chair
with adjustable back rest and
gold printed upholestry.
Designed for comfort.

®

b) Joint embedding of text and 3D shapes

-

/~ Learning by association "\

o—20

% ®@\@@

Metric learning

=

@

c1) Text-to-shape retrieval

@o

- J
~

“brown wooden”

\“round table”

3

fCombined multimodal association modeI\

® 60

.

(It’s a dark brown,

upholstered chair
with arms and ==l
a curved )

rectangular back

c2) Text-to-shape generation

(

A dark brown wooden
dining chair with red
padded seat and
round red pad back

Text2shape: Generating shapes from natural language by learning joint embeddings

Chen et al, ACCV 2018




Next time

« Paper presentations and discussion (Monday 1/24)
> (Shichong) ViCo
o (Han-Hung) CLIP

« Paper critiques due by midnight Sunday 1/23
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