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Content generation from language



Content generation from
language



Translating across modalities

Text Image

A white bird with

a black crown Encoder Decoder
and yellow beak

Vector
representation

“StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks”
[Zhang et al, ICCV 2017]



Translating across modalities

Text

a teapot in the shape of a pika
a teapot imitating a pikachu

T

chu.
Encoder

/

Decoder

Vector
representation

“Dall-e”

Image

[Ramesh et al, https://openai.com/blog/dall-e/]




Translating across modalities

Text 3D Shape

\/

Brown colored dining table|
It has four legs made of wood. Encoder Decoder

Vector
representation

“Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings”
[Chen et al, ACCV 2018]




How Is generating images
and shapes different from
generating text?



Translating across modalities

Text

man in black shirt
Encoder Decoder is playing guitar

Vector
representation

Image captioning
“Deep Visual-Semantic Alignments for Generating Image Descriptions”
[Karpathy and Fei-Fei CVPR 2015]



Generating Content

* Note: retrieval as most basic form of generation



Generation as retrieval

Learn joint embedding = Embed and retrieve

“This is a large black bird with a pointy black beak.”

Accumulate
matching score

r———

GRNF= == == . m-5.23
~ -( The beak 1is yellow and pomte@' 0.03

“Learning Deep Representations of Fine-Grained Visual Descriptions” (Reed et al, CVPR 2016)

a tall brown table”

”Sl ‘V

OT,
“a brown table with four legs”

(It’s a dark brown,
upholstered chair

with arms and ==l

S3
O

S|
ne P

“a gray, cushioned chair”

“Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings” (Chen et al, ACCV 2018)

a curved
rectangular back

.

Al




Generating Content

* Note: retrieval as most basic form of generation
* Can also retrieve + edit

* Note : can model as output as a sequence and generate

autoregressively
Otpt @ © © © 0 0 0 00000 OGO O

Hidden
Layer

Hidden
Layer

Hidden
Layer -
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https://ml.berkeley.edu/blog/posts/AR_intro/



Autoregressive captioning

| image | <

conv-64

test image

conv-64
~ maxpool

conv-128

conv-128
~_maxpool straw hat

conv-256 v0 vl v2

conv-256

maxpool T T T \ Sample

- <END> token
g e => finish.

maxpool

conv-512
conv-512
maxpool

 FC-4096
FC-4096 e straw

hat

<START> straw  hat
Output from previous step is fed as input into next



How to get different ouputs?

Decoding strategies:
» Greedy decoding

 Take argmax P;(w)

» Beam search
* Sampling

* Basic sampling: sample from Py(w)
* Top-n sampling: restrict to top n words
* Top-p sampling: restrict to top p proportion of words

* Temperature scaling (make distribution less spiky)
exp(sw/7)
ZW'EV exp(swr/r)

P:(w) =



Generating Content

* Note: retrieval as most basic form of generation

* Note : can model as output as a sequence and generate

autoregressively

e« Decoders:

* Images/Voxels: CNNs with upsampling \

I—%\
100z<m =4 T | T
QAN ——————————— ===

Project and reshape .

.@@

T 1
iy yWy Aoy S

® ©

 Language: RNNs/Transformers

CONV 2

128

 |Stride 2

CONV 3

6 o

64l -

64
CONV 4

Radford et al, “Unsupervised Representation Learning with Deep o)
Convolutional Generative Adversarial Networks”, ICLR 2016

“wrongly called deconvolutions”



Taxonomy of machine learning models
Models different probability distributions

Discriminative models: -
> ssign labels to data
Learn p(ylx) Feature learning (with labels)

Detect outliers

Generative Model: — o
Feature learning (without labels)

Learn |O(X) Sample to generate new data

Conditional Generative Model: Assign labels, while rejecting outliers!
| earn p(x|y) sl Generate new data conditioned on

input labels

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Taxonomy of machine learning models
Models different probability distributions

Discriminative models: P(cat | FBN)
Learn p(ylx) I P(dﬁl)
P(dog |[Z%)
—
P(cat |54

Discriminative model: No way for the model
to handle unreasonable inputs; it must give
label distributions for all images

Adapted from slides by Justin Johnson



Taxonomy of machine learning models
Models different probability distributions

Generative Model:

Learn p(x)

PR

Generative model: All possible images compete
with each other for probability mass

Model can “reject” unreasonable inputs by
assigning them small values

Adapted from slides by Justin Johnson




Taxonomy of machine learning models
Models different probability distributions

P(g | cat)

Recall Bayes’ Rule: o o (8 cat)

P(L74| cat) E%S | cat

Discriminative Model (Uncon.ditiona(:)l ] - - P(!|Cat)
P(y | x) Generative Mode P(m|do
_ 8)
Conditional
Generative Model Prior over labels

We can build a conditional generative
model from other components!

1 Conditional Generative Model: Each possible
Conditional Generative Model: | labelinduces a competition among all images

Learn p(xly)

Adapted from slides by Justin Johnson



Taxonomy of machine learning models
Models different probability distributions

Discriminative models: -
> ssign labels to data
Learn p(ylx) Feature learning (with labels)

Detect outliers

Generative Model: — o
Feature learning (without labels)

Learn |O(X) Sample to generate new data

Conditional Generative Model: Assign labels, while rejecting outliers!
| earn p(x|y) sl Generate new data conditioned on

input labels

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Taxonomy of generative models

Model can computV

Generative models

«

Explicit density

Can compute

/ Wtion to p(X)

Tractable density

Can compute p(x)
- Autoregressive
- Flow-based models

Model does not explicitly compute

\/O()O,chan sample from p(x)

>

Implicit density

[T~

Approximate density Markov Chain Direct
Generative Generative
/ \ Stochastic Adversarial
Variational Markov Chain Networks (GSN) Networks (GAN)
Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Different types of generative models

Generator

G(z)

VAE: maximize X =% .z =6 ’
variational lower bound q¢(z|x) po(x|2z)

GAN: Adversarial ! X
training

v
”

Flow-based models: X > Flow > Z > Inllfrse . x/
Invertible transform of f(x) f(2)
distributions
Diffusion models: X0l X1 - X0 . Z
Gradually add Gaussian *--- - - - ------- REE R *-------
noise and then reverse

Figure credit: https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html



Taxonomy of generative models

Generative models Model does not explicitly compute
Model can computVﬂcan sample from p(x)
Explicit density Can compute Implicit density
Tractable density Approximate density Markov Chain Direct
Can compute p(x) / \ Generative Generative
- Autoregressive Stochastic Qd:c/ersal?a(lGAN)
- NADE / MADE - : Networks (GSN) etworks
- NICE / RealNVP Variational Markov Chain
- Gl .
] Fszvrvd Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Explicit Density Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x, x@), ... x™) train the model by solving:

* | | (i) Maximize probability of training data
W arg mvz\}x i p(x ) (Maximum likelihood estimation)

arg mmz}lx Zi logp (x(i)) Log trick to exchange product for sum

_ (i) This will be our loss function!
ars mm;}lx Zl log f (™, W) Train with gradient descent

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Explicit Density: Autoregressive models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume x consists of

multiple subparts: = (xl’xZ'x3’ vy XT )

Break down probability p(x) = p(xl, X2, X3,y vun ) XT )

using the chain rule: — p(x1)p(xz x1)l?(x3 \prz)
— T
() px) pix) i) = He=ap(e | x4, s xp1)
p;(l p;<2 pf p;(“ Probability of the next subpart
h - h, = h; — h, given all the previous subparts
! ! | !

This is exactly what we had with the language modeling with RNNs and
Xo X1 X, X3 Transformers for captioning

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

PixelRNN

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

hx,y =f (hx—l,y: hx,y—l: W)

At each pixel, predict red, then blue, then green:

softmax over [0, 1, ..., 255]

Each pixel depends implicity on all pixels above
and to the left:

Problem: Very slow during both
training and testing; N x N image
requires 2N-1 sequential steps

OO O—0
O—O—O0—0 O
O—O—0 O O
O—® O O O

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

PixelCNN

Still generate image pixels starting from corner

Dependency on previous pixels now modeled
using a CNN over context region

Training: maximize likelihood of training images

Training is faster than PixelRNN
(can parallelize convolutions since context
region values known from training images)

Generation must still proceed sequentially
=> still slow

Softmax loss
at each pixel

f

255

Y
N

2l

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurlPS 2016

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Autoregressive models: PixelRNN and PixelCNN

Improving PixelCNN performance

- Gated convolutional layers
Pros: :
- Short-cut connections

- Can explicitly compute likelihood p(x)

Discretized logistic loss
- Explicit likelihood of training data

gives good evaluation metric

Multi-scale

Training tricks
- Good samples

- Etc...
Con: See
- Sequential generation => slow - Van der Oord et al. NIPS 2016

- Salimans et al. 2017 (PixelCNN++)

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)



https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Text-based image generation with PixelCNN

neac 1x1 conv
pelvis class
embedding
/left leg lookup
o ® :
) right leg

Structure: Class ségmentation or keypoint map.

gy

Sequential .
encoding Spatial
(GRU) tiling
COnV. II’Q“ ',’ . R lll : 5 l;’>

. o
encoding .
o B
| ',‘\ 'l‘\ "\\
B BRG
I l“ X
’ ’ Y \
Cmecl— e _ Caea -

Depth concatenate
spatial and text

feature maps Dilated convolution layers
-y = To
- 1 Pixel-
CNN
> >000 — > >
. _ut
v

Dilated same-conv layers: merge global text
information with local spatial information

Text- and Structure-conditional PixelCNN, http://www.scottreed.info/files/txtstruct2pixel.pdf, Reed et al, 2016



http://www.scottreed.info/files/txtstruct2pixel.pdf

Text + segmentations

A person carrying their surfboard The woman is riding her horse on

while walking along a beach. te bh_b,y the water.

-.-&—- —_

Person

| | ||
Horse

L THERC LT
Tl M| | IR

Text- and Structure-conditional PixelCNN, http://www.scottreed.info/files/txtstruct2pixel.pdf, Reed et al, 2016



http://www.scottreed.info/files/txtstruct2pixel.pdf

Text + keypoints

.l-- .ﬁ- --. -’.

This bird is bright yellow.

Text- and Structure-conditional PixelCNN, http://www.scottreed.info/files/txtstruct2pixel.pdf, Reed et al, 2016



http://www.scottreed.info/files/txtstruct2pixel.pdf

Taxonomy of generative models

Model can computV

Generative models

«

Explicit density

Can compute

/ Wtion to p(X)

Tractable density

Can compute p(x)
- Autoregressive
- Flow-based models

Model does not explicitly compute

\p(x),butAcan sample from p(x)

>

Implicit density

[T~

Approximate density Markov Chain Direct
Generative Generative
/ \ Stochastic Adversarial
Variational Markov Chain Networks (GSN) Networks (GAN)
Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Generative Adversarial Networks (GAN)

Jointly train generator G and discriminator D with a minimax game

Discriminator wants Discriminator wants
D(x) = 1 for real data D(x) = O for fake data
A A
( \ ( \
min max (Ex~pdata log D(x)| + E,-p(») [log (1 — D(G(z)))])
Generator Generated Discriminator i Y
Network Sample Network Generator wants
Sample

—L Real

2fromp, |° 1 G —} : I Fake D(x) = 1 for fake data

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014



Text to image with GANSs

* Generator and Discriminator are alternately trained

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center

S"L»—lw %*

57 3 S I A b 5
s | By 4'\\ . [N : l\\ N
I} 1 | eE—— LS A 5 . ” e N
A 0, ]. o ] e | Py AR R (- R !
. ! . hov | | il b N i SRS o
’ - [ ~ | = Bl b .
. N e § R | ~ <
E B | - ’ N s -l -~ ~
et----- - 7 LN Ay g ey b SRy [y
- . . = Y
|- Qb . ~ O
3 a 4 ~ ~
P [E g\ B
’ ”
L
1 . I\
! 2

'\f _______ rl

________

Generator Network Discriminator Network

Generative Adversarial Text to Image Synthesis, https://arxiv.org/pdf/1605.05396v2.pdf, Reed et al, ICML 2016



https://arxiv.org/pdf/1605.05396v2.pdf

Text to image with GANs

* Image encoder (CNN ¢) and text encoder (char-CNN-RNN )
are pre-trained to produce a joint embedding where the
embedded representations can be used to predict the class
label of the image

%Z:: Yns fo(Vn)) + A(yn, fe(tn))

fo(v) = PO, A Ei7(y)[0(v)" o(t))]

fi(t) = S Evv) [6(v)" 0(8))]

Generative Adversarial Text to Image Synthesis, https://arxiv.org/pdf/1605.05396v2.pdf, Reed et al, ICML 2016



https://arxiv.org/pdf/1605.05396v2.pdf

Datasets
° CU B-ZOO (BII’dS) an all black bird

* 11,788 images of birds from ~ yifadsune
200 categories ’ |

Caltech-UCSD-Birds (CUB) 200

this small bird has
a yellow breast,

" brown crown, and

¢ black superciliary

bright droopy
yellow petals with
burgundy streaks,
and a yellow
stigma.

e Oxford-102 (Flowers) ik s

« 8,189 images of flowers from  Whiteand pink in

. color, with petals
102 categories that have veins.

*« MSCOCO
« 330K images

* 5 captions per image

The man at bat readies to swing at the Bunk bed with a narrow shelf sitting
pitch while the umpire looks on. underneath it.



Text to image with GANS: Results

« CLS: Add discriminator to distinguish if (image,text) match or not
(real image, right text), (real image, wrong text), (fake image, right text)

* INT: Add interpolated text embeddings (fake additional text embeddings)

this small bird has
a yellow breast,

brown crown, and
black superciliary

these flowers have
petals that start off
white in color and

end in a dark purple |

an all black bird
GT with a distinct
thick, rounded bill.

this flower is
white and pink in
color, with petals
that have veins.

‘‘‘‘‘

GAN - CLS
GAN - INT

GAN - INT

" B . = | > \ 5 ) - o & ) 4 ) o
- 3 3 } , ¥ 7k 7. .
* & . : R ’ N 4 1 " p [ S
. 2 - .Y -3 f y 0 T
> ’ N : 5 ¥ R 4 . I o ]
- d w AN - s - Y. -
» F & ’ . & 4
’ o N -CLS X Py 3 & R
N[ > Lopt /e Y e A iy N/ A. A
e ) e B AN ' e ' 1

Generative Adversarial Text to Image Synthesis, https://arxiv.org/pdf/1605.05396v2.pdf, Reed et al, ICML 2016



https://arxiv.org/pdf/1605.05396v2.pdf

Text to image with GANS Results

Ours Ours

a group of
people on skis . =
stand on the —

¥ suit riding a
surfboard on a
- wave.

snow. Very low res!
bt it two plates of ). 64 x 64

bt o food that include i

gigyaﬁ: % peans, Follow up work:
; & guacamole and

drinks S ice 128 x 128

two giraffe till low res!

a green plant

slandinginex that is growing

to each other

in a forest. out of the
ground.

a large blue

octopus kite , _

flies above there is only one

the people horse in the

having funat &f . &% " grassy field

the beach. ey | . s ST s

Generative Adversarial Text to Image Synthesis, https://arxiv.org/pdf/1605.05396v2.pdf, Reed et al, ICML 2016



https://arxiv.org/pdf/1605.05396v2.pdf

S kG A N Generate low resolution, and then pass through
ta C another GAN for improved resolution

Conditioning | | Stage-l Generator G, | (o Stage-l Discriminator Dy
| : 64 x 64 |
Augmentation (CA) | Fasilts
Embedding ./ Ho

Text description t

64 x 64 Compression and

i Spatial Replicati
real images ‘________paf_epﬁfn__J
Embedding . |
pr— B e e e e (R e Gy = i 1
256 x 256 Compression and

real images

Spatial Replication

Stage-l results
h I
l X
| 256 x 256

L Stage-ll Generator G for refinement | results

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
https://arxiv.org/pdf/1612.03242.pdf, Zhang et al, ICCV 2017



https://arxiv.org/pdf/1612.03242.pdf

StackGAN: Results

A small bird A small yellow  This small bird

The bird 1s A bird with a This small with varying bird with a has a white
Text This bird isted  short and medium orange  black bird has shades of black crown breast, light
d ?Txt' " and brown in stubby with bill white body  a short, slightly ~ brown with and a short grey head, and
escriptio color, with a yellow on its gray wings and  curved billand  white under the  black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail
64x64 \
B
' > -
128x128 ' P
GAWWN \ 4
<
256x256
StackGAN

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
https://arxiv.org/pdf/1612.03242.pdf, Zhang et al, ICCV 2017



https://arxiv.org/pdf/1612.03242.pdf

StackGAN: Results

This flower is This flower has  This flower is
This flower has  pink, white, petals that are white and Eggs fruit A street sign
Text a lot of small and yellow in dark pink with  yellow in color, A group of candy nuts on a stoplight
description purple petals in  color, and has white edges with petals that A picture of a people on skis  and meat pole in the
a dome-like petals that are and pink are wavy and very clean stand in the served on middle of a
configuration striped stamen smooth living room snow white dish day

64x64
JAN-INT-CLS

256x256
StackGAN

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
https://arxiv.org/pdf/1612.03242.pdf, Zhang et al, ICCV 2017



https://arxiv.org/pdf/1612.03242.pdf

StackGAN: Evaluation

. Inception Score: I = exp(Ex Dk r(p(y|x) || p(y)))

* Use inception model to predict class y
« Want good models to generate diverse but meaningful images
* Large distance between marginal prior (of labels) and conditional prior

« Human rank images generated by models

Metric Dataset GAN-INT-CLS GAWWN Our StackGAN

Inception CUB 2.88 + .04 3.62 &+ .07 3.70 + .04

e Oxford 2.66 = .03 / 3.20 £+ .01
COCO 7.88 + .07 / 8.45 + .03

- —— CUB 2.81 4+ .03 1.99 + .04 1.37 £ .02

il Oxford 1.87 :I: .03 / 1.13 :i: 03
COCO 1.89 4+ .04 / 1.11 + .03

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
https://arxiv.org/pdf/1612.03242.pdf, Zhang et al, ICCV 2017



https://arxiv.org/pdf/1612.03242.pdf

Sta CkGAN + + Joint Discriminator

» if image is real/fake (unconditional loss)
Generalization of StackGAN (Multiscale) * if text+image match (conditional loss)

IFC with reshape I Upsampling IJoining I Residual IConv3x3

Generators in a tree-like structure JCU Discriminator

real fake

=

128x128 256x256
X2Ng XNg

C

.

——————————————————— ——————————————— ——————————————————— ]

TR

128x128x3 Y
JCU
D;

Color constancy regularization

64x64x3
Unconditional
loss

Conditional

_____________________

StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
https://arxiv.org/pdf/1710.10916.pdf, Zhang et al, TPAMI 2018



https://arxiv.org/pdf/1710.10916.pdf

StackGAN++

« Generalization of StackGAN (arbitrary number of
Generators/Discriminators)

* Color constancy regularization

 Joint Discriminator (similar to +CLS from Reed et al)
« if image is real/fake (unconditional loss)
« if text+image match (conditional loss)

* Alternately train generator and discriminator

1 1 .
Lp; = = SBainpyara,; 108 Di(z:)] — SEa;npg, [log(l — Di(2:)] +
1 ) 1 o \ v y
EGi _ — EIE:%?;NPG.,; [log(Dz (33@)] —_ 5E£inGi [log(Dz (xi) e)], unconditional loss
~ AN _y 1 1
N g —=E;.~ log D;(xz;,e)] — =Ejz. ~ log(1 — D;(z;,¢€)],
unconditional loss conditional loss 2 “i7Pdata, [ Z( ' )] 2 TiTPGi [ ( z( ' )],

ot
conditional loss

StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
https://arxiv.org/pdf/1710.10916.pdf, Zhang et al, TPAMI 2018
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StackGAN++: Results

* FID (Frechet Inception distance): measures distance between
generated and real distribution

Metric CUB Oxford COCO
GAN-INT-CLS GAWWN Our StackGAN-vl | GAN-INT-CLS | Our StackGAN-vl | GAN-INT-CLS | Our StackGAN-v1
FID | 68.79 67.22 51.89 79.55 55.28 60.62 74.05
FID* | 68.79 53.51 35.11 79.55 43.02 60.62 33.88
IS 1 2.88 £+ .04 362 0] 3.70 + .04 2.66 £+ .03 3.20 £+ .01 7.88 £ .07 8.45 + .03
IS* 1 2.88 £+ .04 3.10 = .03 3024 .03 2.66 £+ .03 273 + .03 7.88 £+ .07 8.35 + .11
HR | 276 .01 1.95 £+ .02 1.29 + .02 1.84 £+ .02 1.16 + .02 1.82 £+ .03 1.18 + .03
Dataset CUB Oxford-102 COCO LSUN-bedroom | LSUN-church | ImageNet-dog | ImageNet-cat
FID | StackGAN-v1 51.89 55.28 74.05 91.94 57.20 89.21 58.73
StackGAN-v2 15.30 48.68 81.59 35.61 25.36 44.54 28.59
IS 4 StackGAN-vl | 3.70 & .04 | 3.20 = .01 | 8.45 £ .03 3.59 £ .05 2.87 £ .05 8.84 1+ .08 4.77 = .06
StackGAN-v2 | 4.04 = .05 | 3.26 = .01 | 8.30 £ .10 3.02 £ .04 238 103 955 =11 4.23 £+ .05
HR | StackGAN-vl | 1.81 £.02 | 1.70 = .03 | 1.45 £ .04 1.95 .01 1.86 £ .02 1.90 £ .01 1.88 £ .02
StackGAN-v2 | 1.19 = .02 | 1.30 = .03 | 1.55 &= .05 1.05 £ .01 1.14 £ .02 1.10 £ .01 1.12 £+ .02

StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

https://arxiv.org/pdf/1710.10916.pdf, Zhang et al, TPAMI 2018
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AttnGAN

* Attention based similarity matching of image and text that tries to align
regions of the image to words in the text

* m generators (G;), each taking hidden state h; to produce image %;

I Residual I FC with reshape I Upsampling

Deep Attentional Multimodal Similarity Model (DAMSM)

al
U Conv3x3

a

word
features

Attentional Generative Network
Attention models

‘ sentence

Text feature

I ca
e » F
Encoder |

this bird is red with
white and has a

very short beak

al
IIII |
3
|

256x256x3

J

Local image
features

Image
Encoder

ho = Fy(z, F°“(€));
h; = F;(hi—1, F*"" (e, hi—1))

z; = G;(h;).

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
https://arxiv.org/pdf/1711.10485.pdf, Xu et al, CVPR 2018



https://arxiv.org/pdf/1711.10485.pdf

AttnGAN:

* Attention based similarity matching of image and text that tries to align
regions of the image to words in the text

* m generators (G;), each taking hidden state h; to produce image %;

m—1
) TOtal LOSS. ﬁ = ﬁG + )\LDAMSM, where EG = Z ﬁ(;z..
e Main contribution: =0

* Semi-supervised training to match image regions to text

 Attention-based match score R(Q, D)of image (Q) to text (D) based on attention-
based match of words to regions in the image

* Train to optimize match based on words (w) and sentences (s)

* Estimate probability of text given image and vice versa  p_ . o\ — LP 8 4 LI 2

exp(v3R(Qi, D;)) M M
Y exp(13R(Qi, D;)) v=—Y log P(Di|Q;), Ly =-) logP(Qi|D;),
=1

i=1

P(D;|Q:) =

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
https://arxiv.org/pdf/1711.10485.pdf, Xu et al, CVPR 2018
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AttnGAN: Results

this b1rd has w1ngs that are black and has a white belly

Inception Scores

Dataset | GAN-INT-CLS [20] | GAWWN [18] | StackGAN [21] | StackGAN-v2 [32] | PPGN [16] | Our AttnGAN
CUB 2.88 + .04 3.62 + .07 3.70 &+ .04 3.82 £+ .06 { 4.36 + .03
COCO 7.88 £ .07 / 8.45 + .03 / 9.58 £+ .21 25.89 + 47

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
https://arxiv.org/pdf/1711.10485.pdf, Xu et al, CVPR 2018



https://arxiv.org/pdf/1711.10485.pdf

Cross-Modal Contrastive Learning

« GAN with contrastive losses

Attentional Self-Modulation Generator

8 l’_’—
7’
/

Real Image

i, =
s mivim Word embeddings
Random Noise : __
" h
o] .
of baseball
players on Generated
a field.” Image Attention
e h, h Map c
S oy ]
e TR [ewesf] ______________ Ry ! { i
Contrastive Discriminator Legend
Region Feats .
(Fake) Self-Modulation Word-Region
Layer Attention Module
Region Feats .
1 (Real) #Acouia I:| oo gttetl?nhtﬁlgz:ation
/MLP 7
Q@ c;:yis;t:)ar:l Layer
Global Feats afield.” aie
% (Fake) ; ..., Feature used as condition for
I:":I— L Caption modulation.
3 Global Feats
g (Real) @ Contrastive loss (attract)
L €,, BERT word embeddings.

]

I Real / Fake |

Prediction

€, BERT sentence embedding.

Cross-Modal Contrastive Learning for Text-to-Image Generation

https://arxiv.org/pdf/2101.04702.pdf, Zhang et al, CVPR 2021



https://arxiv.org/pdf/2101.04702.pdf

Taxonomy of generative models

Generative models Model does not explicitly compute
Model can computVﬂcan sample from p(x)
Explicit density Can compute Implicit density
Tractable density Approximate density Markov Chain Direct
Can compute p(x) / \ Generative Generative
- Autoregressive Stochastic Qd:c/ersal?a(lGAN)
- NADE / MADE - : Networks (GSN) etworks
- NICE / RealNVP Variational Markov Chain
- Gl .
] Fszvrvd Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Variational Autoencoders

» PixelRNN/PixelCNN explicitly parameterizes density function with a
neural network, so we can train to maximize likelihood of training data

T
p@(x) — Hpe(xt‘xh I 73775—1)
t=1

Assume data can be broken into subparts!

What if we don’t make this assumption?
A

* Variational Autoencoders (VAE) use an intractable density that we 4
cannot explicitly compute or optimize

» But we will be able to directly optimize a lower bound on the density

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)
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(Regular, non-variational) Autoencoders _Reconstructed data

e =

Loss: L2 distance between input and reconstructed data. ’3 .n
Does not use any Loss Function u,ﬂﬂﬂ
labels! Just raw datal! ”55 — XH% : -“Al -E

T Decoder:
Reconstructed Z 4 tconv layers
input data 3 Encoder: t
Decoder 4 conv layers

Features need to be
lower dimensional Features Z .hﬁ ..
than the data f ’ ¥ ﬁ
Encoder : ‘Q ¥
Rl o T ¥ N
Input data h ’ . -
i suf7led < B

Input Data
Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)
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(Regular, non-variational) Autoencoders

After training, throw away decoder and use encoder for a downstream task

Loss function Encoder can be
(Softmax, etc) used to initialize a
/ \ supervised model
Predicted Label | ¥ Yy
“ Classifier Fine-tune bird  plane
encoder dog deer truck
Eeatures > jointly with Mﬂnmw
3 classifier . ‘ c
Encoder Train for final task
(sometimes with
Input data X small data)

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)
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Variational Autoencoders reconstructes :

input data ZU
Decoder
« Autoencoders
« Not probabilistic: Latent representation! Features Z
* No sampling Encader
Input data I
 Variational A < ront -
. pe e Sample from ssume z Is latent representation
Probabilistic conditional T that we can sample from to

generate image x.
1. Learn latent representation
Sample z 2. Sample to generate images

from prior
po=(2) Z

pe+(z | 2)

How to sample?
Assume simple prior p(z), e.g. Gaussian with mean
Adapted from slides by Justin Johnson



Variational Autoencoders reconstructes

 Autoencoders
* Not probabilistic
* No sampling

e Variational

input data CU
Decoder

Latent representation! Features ‘
Encoder

Input data I

Sample x from Gaussian with mean

* Probabilistic | Sample from
conditional

pe+(z | 21)

Sample z
from prior

Hz|z

po-(2)

How to sample?

Assume simple prior p(z), e.g. Gaussian with mean

Decoder Network

Po(x | z) = N(lyx|z) Zx|2)

Ea:lz

Adapted from slides by Justin Johnson

M. and (diagonal) covariance 3,



Variational Autoencoders

- Let's maximize the likelihood of data! Need to compute Pe(X)

Marginalize?

pe(x) = fpe (x,z)dz =

J

e (x12)pg (2)dz]

Problem: Impossible to integrate over all z!

e Variational

* Probabilistic | Sample from

Bayes Rule?

Po(x | 2)Pe(2) problem: No way

po(x) =

pe(z | x) to compute this!

Sample x from Gaussian with mean

conditional

pe+(z | 21)

Sample z
from prior

P (x

M. and (diagonal) covariance 3,

Decoder Network

z) = N(.ux|z:zx|z)

M|z Emlz

po-(2)

How to sample?

Assume simple prior p(z), e.g. Gaussian with mean

Adapted from slides by Justin Johnson




Variational Autoencoders

- Let's maximize the likelihood of data! Need to compute Pe(X)

Let's trai Solution: Train Bayes Rule?
et’s train
choier and y another network () = Po(x | 2)Pg(2) problem: No way

ecoder jointly! (encoder) that learns Po e (z | %) to compute this!

qp(z | x) = pe(z | x)
e \ariational Sample x from Gaussian with mean
e Probabilistic | Sample from My, and (diagonal) covariance 3, |,
conditional 33

Decoder Network

pe-(z | 219))

I po(x|2z) = N(.ux|z: lez)
Sample z
from prior i Zf’flz
po=(2) Z4
How to sample? >

Assume simple prior p(z), e.g. Gaussian with mean
Adapted from slides by Justin Johnson



Variational Autoencoders (VAE)

Decoder network inputs Encoder network inputs
data x, gives distribution
over latent codes z

latent code z, gives

distribution over data x

If we can ensure that
4 (2 | x) = pg(z | x),

po(x|z) = N(lxiz) Zx1z)  9g (z]|x) = N (Uz)x) Z7|x) then we can approximate

M|z Za:lz

Hz|x

Zzl:c

po(x | 2)p(2)
d¢ (z | x)

po (x) =~

Idea: Jointly train both
encoder and decoder

Adapted from slides by Justin Johnson



Variational AutoEncoders (VAE) o we con optimue for

o1 () _ | poHlp (2 (21)

log pg(x) = log 1 (z | %) pe(z]x)qqe (z]x)

Adapted from slides by Justin Johnson



Variational AutoEncoders (VAE) o we con optimue for

1 10 PeX 1 2P(@) _ . pe(xl2)p(2)gs (2]%)
0g pg(x) = log oz 1) 0 pg(z\x)|q—\¢(u\x

chb (z]x) d¢ (z]x)
= log|pg (x|z)|— log= - log
p(2) Po (2]|x)
Apply expectatlon (safely because x doesn’t depend on 2)
logpe (%) = E;q(z1x) 108 P (X)]
= E,[logpg(x|2z)] — E, -1 L zlx) - E, |log q¢(z|x)'
e @) | pe(zln),

Adapted from slides by Justin Johnson



Variational AutoEncoders (VAE) o we con optimue for

pe (x|2)p(2)q4(z]x)

pe(x | 2)p(2) _

log pg(x) = log log
pe(z | x) pe(z]x)qe (2]x)
Qe (z|x) - qy(z|x)
= FE,|lo x|z)] —E, |lo + E, |lo
z|log pg (x|2)] < [lo8— oy T B 108, ey
Data reconstruction KL divergence between prior, and KL divergence between encoder

samples from the encoder network and posterior of decoder

= Ez~q¢(z|x) [logpe (x|z)] — Dy, (CIqb (le),p(z)) + le{L(qcp (z|x),|pe (z] X))

KL is >= 0, so dropping this term gives a
lower bound on the data likelihood:

Adapted from slides by Justin Johnson



Variational Autoencoders (VAE)

Jointly train encoder g and decoder p to maximize
the variational lower bound on the data likelihood

log Pp (x) = E;-q,y(zj) 108 e (x12)] — D, (4 (21%), p(2))

Encoder Network Decoder Network
('Iqb (Z | x) — N(uz|xt z:z|x) Pe (x | Z) — N(.ux|z:zx|z)
Hz|x Ezlsc Hox|z 2zt:lz:
4 5 yA

Adapted from slides by Justin Johnson



Text-based image generation with VAE
| e

align p(xly, Zy.7)

. @ T write T write T write

- N.,

R T &b e 2
ay.-=" g, a-'a" g el 057l 0 s Generative Generative Generative _

=T R% pmman pameliinn pnnthe e mpd i n s O i ma | RNN ..M RNN .. RNN .. Generative (P)
' ¥ " :: " " : 1 2 i
Rl H R H R H R H e E S B %2 F )
' h1 :: h2 :: h3 :: h4 :: h5 :: h6 - ST
; .: t t :; :; Latent (z) Bl Latent (z) L_) Latent (z)
E :E :E :E :E :E v p(Zy) E p(Z:|Z,) - p(Zr|Zy.7-1)
' ' " it " % ; A Rl B e PR SR . T
HdH i d Hicd Hird Hind B i dE - : : : -
i he | he | ha i hs [l Pe Inference | i | Inference | i [ Inference
: ¥ ! 1 : ; : RNN | ™1 RNN {3 RNN |

.--.T.--..---T--------T--------T- ------ T ------ T gei l[read read read Inference (Q)

a person sking down a mountain : m
Y n Y2 Y3 Ya Ys Ye ;

Generating Images from Captions with Attention
https://arxiv.org/pdf/1511.02793.pdf, Mansimov et al, ICLR 2016
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Text-based image generation with VAE

i+ 6 ANNE T TS
THE NEE™= BTN ey

A rider on a blue motor- A rider on a blue motor- A surfer, a woman, and a A surfer, a woman, and a
cycle in the desert. cycle in the forest. child walk on the beach.  child walk on the sun.

A Lyt [SEANE SER RN
==k == DENE B'FIN

alignDRAW LAPGAN Conv-Deconv VAE Fully-Conn VAE

Generating Images from Captions with Attention
https://arxiv.org/pdf/1511.02793.pdf, Mansimov et al, ICLR 2016
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Compare AR and VAE models

Autoregressive models Variational models

- Directly maximize p(data) - Maximize lower-bound on p(data)
- High-quality generated images - Generated images often blurry

- Slow to generate images - Very fast to generate images

- No explicit latent codes - Learn rich latent codes

Can we combine them and get the best of both worlds?

Slide credit: Justin Johnson (https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html, L19,20)
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Combine VAE + Autoregressive
Vector-Quantized Variational Autoencoder (VO-VAE)

 Autoregressively model images

» But instead of directly on pixels, on image patches compressed
into image “tokens” using VAE

€, €,8, - eK
Embedding
Space

;

z,(x) ~ a(zlx)

Encoder Decoder

* Two-stage training process

Neural Discrete Representation Learning
https://arxiv.org/pdf/1711.00937.pdf, Oord et al, NIPS 2017
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Combine VAE + Autoregressive
Vector-Quantized Variational Autoencoder (VQ-VAE)

¢ TWO—Stage training process 128x128 class-conditional results
trained on ImageNet
* Use VAE to create a code book to gray  brown admiral
encode image patch into latent kitfox _whale  bear  butterfly

quantized discrete vector

€,6,8, B = ,_,e,K,
Embedding
Space

D vL
f

€
\ . a(z0) W
2
3 1/ H—8s;
Z,(x z,(x
> | L

53

* Use autoregressive model (PixelCNN) to model latent prior p(z)

Neural Discrete Representation Learning
https://arxiv.org/pdf/1711.00937.pdf, Oord et al, NIPS 2017
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Combine VAE + Autoregressive
Vector-Quantized Variational Autoencoder (VO-VAE?2)

e Hierarchical VQ-VAE

Train a VAE-like model to generate Use a multiscale PixelCNN to
multiscale grids of latent codes sample in latent code space
VQ-VAE Encoder and Decoder Training Image Generation

l Condition

crcodr lec
B I - e g éj‘iﬁ ) *iﬁfﬁéfﬁfi

l l Decoder
Decoder
A

Generation

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurlPS 2019
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VO-VAE2 Results

256 x 256 class-conditional samples, trained on ImageNet

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurlPS 2019
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VO-VAE2 Results

Pekinese

Papillon

Drake

Spotted Salamander

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurlPS 2019
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VO-VAE2 Results

1024 x 1024 generated faces, trained on FFHQ

=

Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf, Razavi et al, NeurlPS 2019
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DALL-E

e Like VO-VAE2 but

 Conditioned on text

* Large network trained with tons of data
* Used 3.3M text/image pairs (Conceptual Captions) for 1.2B parameter model
* Used 120 text/image pairs (collected from Internet) for 12B parameter model

 Uses autoregressive transformer vs PixelCNN

 Uses CLIP to rerank generated images (vs classifier network trained on
ImageNet)

“Dall-e”
[Ramesh et al, https://openai.com/blog/dall-e/]



DALL-E: Results

this gray bird has a pointed beak black wings this rolund bird has a black lipped beak a this is a small white bird with a yeliow
with small white bars long thigh and tarsus black tail with a yellow tip and a black crown and a black eye ring and cheek patch
and a long tal redative to its size cheek patch and throat

small bird with a pale yellow underside light e
the small bird has a dark brown head and brown crown and back gray tal and wing tps :ﬁ;ﬁ;’gg':nm&ﬁ::nm"x

light brown body tip of tail feather bright yeliow black eyes
and black stripe over eyes of the body




DALL-E: Results

china airlines plain a table that has a a living room with a : : s
a very cute cat + ¢ a couple of people . a kitchen with a a group of animals
on the ground at an train model on it tv on top of a stand are sitting on a maa :;rgy acl;ltjen g;lra}\;fge fridge, stove and are standing in the

: sink SNOW.

laying by a big : : : . :
bike. airport with baggage  with other cars and with a guitars o Benai

cars nearby. things sitting next to

Validation

AttnGAN




Diffusion models

* Detine Markov chain of transitions from input to series of latent
variables.

Diffusion models:. X0 . X1 - Xo . |z
Gradually add Gaussian - - - Ittt R ottty
noise and then reverse

Figure credit: https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html

» Forward process (diffusion process) .

Q(Xt’Xt—l) = N(Xt; V1= 06ixi_1, 5t1) (](X1:T\Xo) — H Q(Xt|Xt—1)
t=1

* Reverse diffusion: recreate sample (image) from latent (gaussian noise)

=) t=7% i =T

»
-
-.

g
o
(Image source: Sohl-Dickstein et al., 2015)
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GLIDE: Diffusion Models

* Large diffusion
model

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume™

GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
https://arxiv.org/pdf/2112.10741.pdf, Nichol et al, arXiv 2021



https://arxiv.org/pdf/2112.10741.pdf

Evaluating generated
content



Evaluation

* Evaluation of these models are tricky!
* What makes for a good generation?

 General
* |s the generated content high quality?
* Does it match the distribution?
* |s it diverse?

 For language conditioned generation:
* Does the generated content match the Ianguage'?

* Are salient aspects of the language captured in the objects, appearance, and
relationships



GAN evaluation

° |nception Score: I = exp(E«Dkr(p(y|z) || p(y)))

* Use inception model to predict class y
« Want good models to generate diverse but meaningful images
* Large distance between marginal prior (of labels) and conditional prior

* FID (Frechet Inception distance): measures distance between
generated and real distribution

« Human rank images generated by models



Metrics

* R-Precision (retrieval)

* Randomly sample 99 other captions, where is the input caption ranked
(using cosine similarity) compared to the rest (is it in the top r)?

e Visual similarity (VS) £i(0) - fo(@)
VS =
* how well does the encoded text and image match) 1)z - (1 fo(2)ll2
* High variance, dependency on the specific encoders used

* Semantic Object Accuracy (SOA)

* Use pretrained object detector to match words in text

» Captioning — generate caption and evaluate with original
caption using standard captioning metrics

Adversarial Text-to-lmage Synthesis: A Review
https://arxiv.org/pdf/2101.09983.pdf, Frolov et al, 2021
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Metrics

2
. & 8§ &
£ 223
> £ & 8 2 2 B 3
= % ) = ©C <« < o 9
S & = 2 9 = ~ ® B .9
a8 & ¥ & g g £ g2 3
+ o' O ik 5 <= B =
o & 9 € g 8 & 2 9
SENEEEDNEE
Metric »—Eq é o B =I5 I
IS [130] v v
FID [131] v v
SceneFID [103] v v
R-prec. [35] v v
VS [42] v v
SOA [108] v Y v
Captioning (v) v
User Studies v v v v v v v v Y

Adversarial Text-to-lmage Synthesis: A Review
https://arxiv.org/pdf/2101.09983.pdf, Frolov et al, 2021
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Next time

* Monday: Paper presentations and discussions
* (Tristan) Cross-Modal Contrastive Learning for Text-to-Image Generation

* (Han-Hung) GLIDE: Toward Photorealist Image Generation

* Wednesday: Compositionality and structured representations



