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Compositionality and Structure



Today

» Compositionality
» Structured representations

e Structured reasoning



Compositionality



Compositional Generalization

Grounding Compositionality
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Studying compositionality

 Systematic study
Controlled settings to study specific aspects of language learning:

* Easier to study in smaller, synthetic generated datasets

Seen Test

Compositional ‘
Generalization

Image credit: Stefan Lee



ShapeWorla

« Framework to generate “worlds” and matching captions

« Language generated from semantic graph

o Task: Does the Image-Caption match? —SEERE S LSS S
There is a blue circle.
 Training: Simple color + shape combination
« Evaluation: unseen color shape combination
training evaluation
INETATE -'. .
=
There is a green There is a green  There is a red There is a green
circle. CroSsSs. square. square.

False
SHAPEWORLD: A new test methodology for multimodal language understanding, Kuhnle and Copestake, arXiv 2017



ShapeWorld — 4 datasets

UANTIFICATION
MULTISHAPE 2
SPATIAL
training evaluation i e
L . e The shape is green.
o ‘ e There is a magenta e Most shapes are
semicircle. rectangles.
An ellipse isto A red triangle is A blue shape is to A triangle is ° ;Zere l.S ap entagho " e No shape is a red tr iang le.
the left of ared  below a cross. the left of a below a blue - €re is a cyan shape. o All triangles are green.
pentagon. circle. Cross. e Two blue shape s are
Talse pentagons.
Can the model generalize to Can the model pick out shape
unseen relation + color + from many, and generalize to
shape combinations? unseen number of objects?

SHAPEWORLD: A new test methodology for multimodal language understanding, Kuhnle and Copestake, arXiv 2017



ShapeWorld Results

Dataset configuration LSTM-only CNN+LSTM:Mult | CNN+CNN:HCA-par | CNN+CNN:HCA-alt
ONESHAPE 51/46/50 81/70/66 90/77178 92/81/77
C: no hypernyms 90/70/ 100 95/64/57 98/71/73 97 /68 /66
C: only hypernyms 100/100/ 100 96 /78 /82 9517513
I: changed shape 70/81/82 73/78/78
I: changed color 100/ 100/99 100/92 /96 100/97/ 89
I: changed both 96/97/98 87/85/84 93/92/89
MULTISHAPE 72/711/72 72/71/69 71/68 /68
correct instances 76164 /54 81/68 /65 ALTS9 7153
I: random attr. 58/63/68 67/74/79 64 /67 /68 70/73/78
I: random existing attr. | 100/ 100/ 100 78 /86795 S8 19 2187195
SPATIAL 52/51/50 57/52/54 63/65/ 64 54/527/55
C: no hypernyms 85/85/69 45/44 /41 83/83/86 92/62/100
C: only hypernyms 95/95/97 60/59/65 49/40/52
I: swapped direction 98/97/98 50/61/47
I: object random attr. 88/88/91 69 /68 /68 63 /66 /60
I: subject random attr. 87/88/89 69/71/70 61/64/56
QUANTIFICATION 56/56/58 76/77/78 74/77178
correct instances 7471711172 J0LTUTTS

incorrect instances
instances with no
instances with the (=1)
instances with a (>1)
instances with two (>2)
instances with most
instances with all

94/93/93
52/51/48
53/58/61

53/48/48
49/50/49

52/54/50

88/90/88
61/60/61
991U 59158

50/50/49
48 /48 /49
48 /50/51

81/83/88

78 /82 /82

63/63/63

70/69/62 72/67/58
69 /68 /60

SHAPEWORLD: A new test methodology for multimodal language understanding, Kuhnle and Copestake, arXiv 2017




'The white square is a small square’ True
'The white square is a big square' False

MaleVic

(.09 (.49

« Size understanding

big big small small small small small

T =Max - k * (Max - Min)

« Programmatically determine big / small using thresholds

Superlative Any s.hape. |
The yellow triangle is the biggest triangle. The red circle is a big object.
Same shape Pick shape from different shapes
The white square is a small square. The white rectangle is a big rectangle.

Is the Red Square Big? MALeViC: Modeling Adjectives Leveraging Visual Contexts, Pezzelle and Fernandez, EMNLP-IJCNLP 2019’



CLEVR: Compositionality and reasoning

« VQA - Answering
questions is a good way
to assess understanding

« Diagnostic dataset for
probing visual
understanding and
reasoning

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning, Johnson et al, CVPR 2017

Q: What shape is the object reflected in
the blue cylinder?
A: cube

Q: How many objects are not purple and
not metallic?
A:2

Q: What number of cylinders share the
same color?
A:2

Q: What color is the object partially
blocked by the purple cylinder?
A: yellow
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Compositionality with actions

Generate worlds and language

70

ROOT — VP
VP —- VP RB
VP = VV; ‘1o’ DP
VP — VV, DP
DP — ‘a’ NP
NP — JJ NP
NP — NN

Training Testing

VV; —»
VV, —
RB —
NN —
IJ—

Y 4 Y 4 HE o

J

Command: walk to a yellow small cylinder

Meaning: walk to a yellow small cylinder

Target: turn left turn left walk walk walk walk turn left
walk walk walk “Walk to the red circle.”

“Push the red circle.”

“Walk to the blue square.” “Walk to the red square.”

“Push the red square.”

{walk}

{push, pull}

{while spinning, while zigzagging, hesitantly, cautiously }
{circle, square, cylinder}

{red, green, blue, big, small}

Training Testing

u)ull pull ]

2 2 )
. 5 push push |
i push push

B e

“Pull the square.” “Push the square.”

“Pull the small red square.” 1 2 3 4

A Benchmark for Systematic Generalization in Grounded Language Understanding, Ruis et al, NeurlPS 2020
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ow to achieve compositionality?

Classifier

Baseline networks

« Language: RNN
e Vision: CNN |
. FUSiOﬂ F CNN Fusion

Classifier

RNN

The triangle is below a blue cross

« One way to achieve compositionality is by considering
structured representations and reasoning over structures



CLEVR baseline performance

Accuracy

100¢
R K

O
o O

N B
o O O

Overall

[

68.5 7

L1 Q-type mode
L1 LST™
CNN+BoW
0 CNN+LSTM
CNN+LSTM+MC(CB
[ 1 CNN+LSTM+SA
= Human
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Structured
representations



Structured representation

Constituency Parse Tree

Hierarchical
S
/\
NIP VP
/\
NTP V]|3Z S
//\
Sam thinks NP VP
| /\
NITIP Vl|?>Z NP
Sandy likes DT NN

the book

of sentences

Dependency Parse
Relational

COMP OBJ

SUBJ .
AN Y

Sam thinks Sandy likes the book

15



Structured representation of images

Scene Parse Tree
Hierarchical

Semantic

Representations
@sssssee| Features

Segments

Socher, Lin, Ng, and Manning, “Parsing Natural Scenes and Natural
Language with Recursive Neural Networks”, ICML 2011

Scene Graph
Relational

scene

layout
structure

picture| objects

Support >
Position —*

Yang, Liao, Ackermann, and Rosenhahn, “On support relations and

semantic scene graphs”, ISPRS Journal of Photogrammetry and
Remote Sensing, 2017
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Objects + Relationships = Scene Graphs

: standing
girl %Ionde
/\ white

holding
in front of long
wide

___L-racket ¢z heawy .
yellow |
- - cone — orange

il \t: Y N
i black in butterflies
--------- = y
hair
o T
in blonde long

girl
pe=t
in front qf blonde standing white, has
R N
wearing logo  swinging l@‘m

1 : L
——a \ﬁ‘ / \\\ Mgty
round yellow on beside besidq low orange  brown above
shm/ lnnds‘ besi I\‘nu:ket ' )
arm si 1 on nose
T \ e

I
N\ '
behind white beside bent on has fong heavy yellow wide, has above
1

5
W

above

N Nyy e mmmeemeeoa- 12 N\ v

arm/ handle net  tennis court mouth
Y N 4 v ¢

in front of bent black lined closed

| Legend: objects attributes relationships

Slide from Stanford CS231n [Johnson, Yeung, and Fei-Fei]

108,077 Images

5.4 Million Region Descriptions

1.7 Million Visual Question Answers

3.8 Million Object Instances

2.8 Million Attributes

2.3 Million Relationships

Everything Mapped to Wordnet Synsets

EVISUALGENOME

Krishna, Ranjay, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen et al. "Visual genome: Connecting language and vision using crowdsourced dense image
annotations." International Journal of Computer Vision 123, no. 1 (2017): 32-73.
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Objects + Relationships = Scene Graphs

108,077 Images

5.4 Million Region Descriptions

1.7 Million Visual Question Answers

3.8 Million Object Instances

2.8 Million Attributes

2.3 Million Relationships

Everything Mapped to Wordnet Synsets

Krishna, Ranjay, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen et al. "Visual genome: Connecting language and vision using crowdsourced dense image
annotations." International Journal of Computer Vision 123, no. 1 (2017): 32-73.

18
Slide from Stanford CS231n [Johnson, Yeung, and Fei-Fei]



Scene Graph Prediction

Object
Proposals

Xu, Zhu, Choy, and Fei-Fei, “Scene Graph Generation by Iterative Message Passing”, CVPR 2017
Figure copyright IEEE, 2018. Reproduced for educational purposes.

Graph
Inference

face of

mountain — behind — horse
/
riding
/

wearing — hat

wearing — shirt

19



Neural networks tor
structured representations
and for structured reasoning



Structured predictions

» Can use neural networks for structured prediction
» Treat as sequence to sequence problem
John has a dog . — (S (NP NNP )xp (VP VBZ (NP DT NN )xp )vp - )s
* Predict actions to take to build the structure incrementally

* Use neural models to score local compatibility and then perform

search to find the structure with the highest overall score



Structured neural models

» Models for working with structured representations

e Tree structure models

* Graph neural networks



Tree-structured models



Recursive NNs

* Recursive model for building up compositional representations

Parsing Natural Language Sentences
S |
VP A small crowd
NP T wp ‘IWBNP quietly enters
uu e m vvwn the historic
A small qunetly 3 ~NP EhrcH
crowd enters Det,” I\d'l..f---'i ~_N. Semantic
§ . N (™5™ Representations
‘ O | \ O | Indices
the = |historic |church| Words

Parsing Natural Scenes and Natural Language with Recursive Neural Networks, Socher et al, ICML 2011



Compositional phrase embeddings

Train to increase scores of segment pairs with good

Score of two nodes Embedding for
combining parent node
- T (%
o V' Sp — u /l]p vp - O-(W [’UC ] —|_ b)
house teapot c2

2:5 Sp /U

3.8
4 2.8
“house” [4,5] [3_6] “teapot”

Tied weights



Compositional phrase embeddings

* Train: structured max-margin
of two nodes for

» Structure prediction (inference)  combining barent node
 Given current set of segments to
merge, compute scores for all pairs Sp = uTUp v, = o(W [U ] +b)
of neighboring segments
« Greedily merge the highest scoring S V)
segment p g)
* |terate until only one segment left

N



Recursive NNs

* Recursive model for building up compositional representations
* Can be applied to sentences and images

Parsing Natural Scene Images

_—”‘-—- >;<--‘—_
Parsing Natural Language Sentences G —_— s AN
rass- ~People Buildi ~Jr
“W” —VP A small crowd a
..':'.':.. ,}’3,,, “[.gg" qtjr'\itmsigtr?gs = — &
Asmall  quietly NP church —‘ m
crowd enters Det, qAI'JHN Semantic
. Representations
’ O ‘ ‘ o Indices
_ the | lhistoric/ |church/ Words
—~__ Semantic
o, i | (¥ Representations
EYTTYTETS ‘uuuu‘ Features
A %7 9| Segments

Parsing Natural Scenes and Natural Language with Recursive Neural Networks, Socher et al, ICML 2011




RvINNs vs RNNs

Recursive Recurrent

e T
TR ;

the country  of my b|rth the country of my birth

Image credit: Chris Manning



Recursive NNs

 Use dependency trees instead of constituency trees
* Apply to multi-modal search

h,

s ;ide he :: "y
X1 X3 at x
Students bikes night
Compositional Sentence Vectors Multi-Modal Image Vector Representation
P Representations

A small child sits on a cement wall near white flower.

—— e

A man wearing a helmet jumps on his bike near a beach.

g

A man jumping his downhill bike.

///<\~\Amm:

Two airplanes parked in an airport.

Grounded Compositional Semantics for Finding and Describing Images with Sentences, Socher et al, TACL 2014



TreeRNNSs

* Extend to a n-ary trees

forget

iy gate OUtAPUt
/ A \i m<¢— output gate

\ I o g

A
. \ A B<4— input gate
} v ?
/ forget input
| gate

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai et al, ACL 2015



Inductive biases

* Assumptions to favor one set of solutions over another

* Structure priors

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

* These architecture constraints can help your network learn faster

Table from Relational inductive biases, deep learning, and graph networks, Battaglia et al, arXiv 2018



Graph neural networks



Hidden layer Hidden layer
'S Y 'S Y

GraphNNs

Input v e Output
\ o o e

RelU | o /—° ReLU
o ™ 1§ ° ° —»:JJ-» )Y ° ° ——b_/\—>—> ¢ e

« Need to decide what will be nodes, edges |

« Embeddings (attributes) for
nodes v;, edges ¢, entire graph u

Attributes

=% <1> <:> 1 .
.\Vsk :—».‘V,«k)

Relational inductive biases, deep learning, and graph networks, Battaglia et al, arXiv 2018
33



G ra ph N N S . Different architecture differ on what

functions are used

« Use neural network for ¢ (shared weights)
« Embeddings (attributes) for (MLP, CNN, RNN)

nodes v, edges g, entire graph u
! I ki grap « Use sum / weighted average for p

» Embeddings are iteratively updated

In some architectures, some components
or inputs may be ignored

er = (e, Vi, Vs 0) Vi = ¢ (8,vi,u)  u = cbu( e, v, u)
- <‘> (V) )e—bk <1> ) )
Pio® Pudc Rp—
‘—// — pv—>U(V/)

Update each edge e, Update each node v; Update global graph u

Relational inductive biases, deep learning, and graph networks, Battaglia et al, arXiv 2018 34



GraphNNs

« GN blocks can be composead

Go—»| GN; > G1— GNa > - =GNy > G,
A b,
AV4
GO—’ GNcore _>G1Vf
X M

(a) Composition of GN blocks

/—P

GNCOTC

x M

GNCTLC

T

Ginp

T Gt —>

GNCOTC

x M

GNdec

GNCTLC

!

Gout

(b) Encode-process-decode

f

Gt

inp

Relational inductive biases, deep learning, and graph networks, Battaglia et al, arXiv 2018

Code for working with GraphNNs

e https://github.com/deepmind/graph nets

o https //thorch qeometrlc readthedocs.io

T G
GNdcc

'

Gt

out

t
hid

(c) Recurrent GN architecture


https://github.com/deepmind/graph_nets
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html

Structured reasoning



MAC (Memory, Attention, Control)

Recurrent network with cell with read/write/control

/; /‘\'\A (2) MAC Recurrent Network (p cells)

control
Control =——» Control =--» Control =—» Control —_— reasoning operation
p

memory

Memory =——» Memory =--» Memory - Memory —bmp # I
Intermediate result

] (1) Input Unit (3) Output Unit 1

»  classifier

knowledge base question g

| | | 2
i i uestion
cw |cw :cw q 1
“what is the materlal of the Iarge ob}ect Answer
w object “metal”

KHxde that is both behind the
and in front of the blue cy!mder?‘

Compositional Attention Networks for Machine Reasoning, Hudson and Manning, ICLR 2018
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MAC (Memory, Attention, Control)

e Recurrent network with cell with
Output Unit

read/write/control ‘\»

question

q

.
\ﬁ ‘ e <
l\w,b \r / =Wpb \ il —T—P answer

memory

e Control — extract “instruction” from attention m,
over query words

L~ RelU L~ Softmax |

e Read - retrieves information from a (MAC cell
knowledge base (image) given current —
control and previous memory

. . r;
« Write — updates memory (combines old + m _’mi
new information) B s

« Fully differentiable

Compositional Attention Networks for Machine Reasoning, Hudson and Manning, ICLR 2018 38



Compositionality and reasoning
(CLEVR dataset, Johnson et al, 2017)

Constructed by building
functional program

Q: What shape is the object reflected in Q: What number of cylinders share the
converted to natural the blue cylinder? sarme color?
A: cube A:2

language

Small space of objects
and attributes

Q: How many objects are not purple and  Q: What color is the object partially
not metallic? blocked by the purple cylinder?
A:2 A: yellow 39



MAC can learn with smaller amount of data

1234

Accuracy / Dataset Size (out of 700k) thers
1

IS

a
large
yellow
matte
object

does
it
have | |

the
same | |
shape
as

—MAC as
—PG+EE (S) red

rubber
: thing
=—FEiLM that
is

-=SA left

of
0.4 the

0 0.2 0.4 0.6 0.8 1 large
green

Fraction of training data metallic
object

o
[

Accuracy (Val)
o

o
o




Neural Event Semantics

: )
Sec 3.2: Event Argument Routing (Attn) fe;\" (2 Classifiers
The blue circle i -
Input Text T e blue circle is on gty .. s = (110 00 00 0100188 )’
the red square i Je,,e,.
....................................................... circle » NI =) ( 99 01 00 , 00 00 10 ) blue(e,)
| W I"ld w g c1rcle(e )
nput Wo Event Candidates V v 1 :
B circle
e susk on »(99 00 01, 00 99 01 ) s on(el,e )
@ ' 1
P L = red i = (00 10 00 , 00 00 10 ) s red(e;)
& -.- — ', It square AN (6)
- = | | square~ = (00 99 01 , 00 01 99 )| Neural Discrete
> @ —" Wt sequence @, @ @y ©; e, ey ~ Logical Boolean
1 9 © € € Rl
._ encoder  sgument1  argument 2 FormF S P
£ : .
V¥ grounded events Sec 3.4: Conjunctive Composition ¢
Vp Vp VW Vo V3 Vg Vg Vg Vs 1}??"@ max [blue(el)*(.'irc.'le(el)*on(e,,ez)*red(ez)*square(ez))]
€,
Vo V3 Wy V3 Vg Vy Vp Vi VY 1 Wy
Et ARGt U @ background @ ove*rall score Fin?’l Ou?ut:
( V) event weep sS,=1.0 =0 “True
e «—
L Sec 3.5: Existential Event Variable Interpretation Semantic Evaluation (Grounding)

Neural Event Semantics for Grounded Language Understanding, Buch et al, TACL 2021



Next time (after the break)

* Paper presentations

* Grounded Compositional Semantics For Finding and Describing
Images with sentences (Yanshu)

* Neural Event Semantics for Grounded Language Understanding (Sihui)
* Project proposal (2 groups)

* Wednesday (3/2): Semantic Parsing (language to programs)



