
CMPT 983
Grounded Natural Language Understanding

March 9, 2022
Instruction Following

(review of RL)

How to Train Your Agent
(A Crash Course in Sequential Decision Making with Deep Nets)

Stefan Lee – OSU, CS539 – Fall 2019

Today

Fall 2019 3

• Intro and Notation

• Imitation Learning
• Behavior Cloning
• Direct Policy Learning
• Sketch of Inverse Reinforcement Learning

• Reinforcement Learning
• Policy-based (REINFORCE, Actor-Critic)
• Value-based (Q-Learning)
• Model-based

Intro and Notation

A General Embodied Agent

Slide Credit: Stefan Lee 5

Agent

Environment

Action

Observation

Goal

Reward

A General Embodied Agent

Slide Credit: Stefan Lee 6

Agent

Environment

Action

Observation

Goal

Reward

!!

"! = $(&!)

&!

(!

)

Some Notation

Slide Credit: Stefan Lee 7

Markov Decision Process (MDP)

Defined as *,,,ℛ, ℙ, /
• * Set of possible states
• , Set of possible actions
• R: *×, → Ωℝ Distribution of reward given state-action pair
• ℙ: *×, → Ω# Transition function – distribution over next states
• / Discount factor

Life looks like (5$, 6$, 7$, 5% , 6%, 7%, …)
where 5&'% ∼ ℙ(5&'%|5& , 6&) and 7& ∼ ;(7&|5& , 6&)

state, action, reward

at each time step

Some Notation

Slide Credit: Stefan Lee 8

Markov Decision Process (MDP)

Action

State

Observation

Image Credit: Sergey LevinePOMDP: Partially observed MDP
• Often we don’t know what the states are!
• Only have partial observations

Examples MDPs

9

Robot Locomotion

Make the robot move forward

State Space: Angle and position of the joints
Action Space: Torques applied on joints
Reward Function: 1 at each time step upright + forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson - CS 231n

Examples MDPs

10

Atari Games

Complete the game with the highest score

State Space: Raw pixel inputs of the game state
Action Space: Game controls e.g. Left, Right, Up, Down
Reward Function: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson - CS 231n

Examples MDPs

11

PointGoal Visual Navigation

Navigate to the specified point

State Space: Raw pixel inputs
Action Space: Forward, Turn Left, Turn Right
Reward Function: Distance increase/decrease per time step

+ “It hurts to be alive” penalty

Slide Credit: Stefan Lee

Some Notation

12

Common Terminology and Definitions

Policy – How should the agent act?
• Stochastic policy <: * → Ω(6& ∼ <(5&)
• Deterministic policy <: * → , 6& = <(5&)

Value – How good is each state? Or state-action pair?
• (State) Value Function =) 5& = >),ℙ ∑,-&. /,/%7,
• Q Function Q) 5& , 6 = ; 5& , 6 + />0!"# =)(5&'%)
• Advantage A) 5& , 6 = C) 5& , 6 − =) 5&

• Optimal policy E∗ = !()F!G2 >3$ H2 &4

Slide Credit: Stefan Lee

Expected

discounted

return

How much better is taking the action a
than the average?

Some Notation

13

Model – What will happen when the agent acts?
• Learn to mimic the transition function I: *×, → Ω#

Rollout – What happens if we let the policy act for a while?
• Trajectory J = (5& , 6& , 5&'% , 6&'%, …)
• K ∼ ∏ℙ 5&'% 5& , 6& <(6&|5&) M 55 often written J ∼ <
• Can also consider states visited by policy: M 5 < or s ∼ <

Common Terminology and Definitions

Slide Credit: Stefan Lee

Essentially need to build a model of the world

Some Notation

14Slide Credit: David Silver

Some Notation

15

Policy

Slide Credit: David Silver

Some Notation

16

Value

Slide Credit: David Silver

Some Notation

17

Model

Slide Credit: David Silver

Getting a Handle on These Definitions

18

1. If we have a policy < and know the true C) 5, 6 -- can we derive
a new policy <′ that is as good or better than <?

2. Fill in a simple algorithm to improve a policy:

Increase the probability <(6|5) if ____________________.

Decrease the probability <(6|5) if ____________________.

Set < 6′ 5 = 1 if a′ = 67RS6T C) 5, 6

Recall that !! ", $ is the expected reward of taking action a in state s

7 5, 6 > 0 ?

7 5, 6 < 0 ?

Slide Credit: Sergey Levine

Getting a Handle on These Definitions

Slide Credit: Stefan Lee 19

Immediate reward is not a particularly useful signal
in many task settings.

Doesn’t matter if

you got one

apple if you got

eaten by a tiger

Getting a Handle on These Definitions

20

1. If we have a policy < and know the true C) 5, 6 -- can we derive
a new policy <′ that is as good or better than <?

2. Fill in a simple algorithm to improve a policy:

Increase the probability <(6|5) if ____________________.

Decrease the probability <(6|5) if ____________________.

C) 5, 6 > =)(5)

C) 5, 6 < =)(5)

Set < 6′ 5 = 1 if a′ = 67RS6T C) 5, 6

Recall that !! ", $ is the expected reward of taking action a in state s

Recall that %! " is the expected reward of following & from state "

Slide Credit: Sergey Levine

Getting a Handle on These Definitions

21

1. If we have a policy < and know the true C) 5, 6 -- can we derive
a new policy <′ that is as good or better than <?

2. Fill in a simple algorithm to improve a policy:

Increase the probability <(6|5) if ____________________.

Decrease the probability <(6|5) if ____________________.

Y) 5, 6 > 0

Y) 5, 6 < 0
Recall A! 7", 8 = :! 7", 8 − <! 7"

Set < 6′ 5 = 1 if a′ = 67RS6T C) 5, 6

Recall that !! ", $ is the expected reward of taking action a in state s

Slide Credit: Sergey Levine

Getting a Handle on These Definitions

22

3. Given an accurate deterministic world model s='% = I(5& , 6&)
and value function =) 5& , how should an agent act in state 5&?

For each possible action 6,
Compute =) 5&'% for 5&'% = I(5& , 6)

Select action with highest value.

Slide Credit: Sergey Levine

Relies on having a
model of the
transition probabilities

Markov Decision Processes

23

Challenges of Markov Decision Processes

Reward is very often discontinuous

! ", $ − not smooth

&' $ = ()!* !+,ℎ(= .

Turn Right

Turn Left

(", $

/)! ! ", $ − smooth in .

Slide Credit: Stefan Lee

Markov Decision Processes

24

Challenges of Markov Decision Processes

Reward is often sparse and delayed

Taking an action at time t
Doesn’t pay off till time t+k

Slide Credit: Stefan Lee

Markov Decision Processes

25

Challenges of Markov Decision Processes

Reward is often sparse and delayed

Taking an action at time t
Doesn’t pay off till time t+k

Slide Credit: Stefan Lee

Markov Decision Processes

26

Challenges of Markov Decision Processes

State and action spaces can be huge
(or infinite)

2.08×10170 Legal Board Configurations

Slide Credit: Stefan Lee

A General Embodied Agent

27

Agent

Environment

Action

Observation

Goal

Reward
Agent

Environment

Action

Observation

Goal

Reinforcement Learning

• Environment provides feedback
• No examples of optimal policy

Imitation Learning

• Have expert demonstrations
(possibly interactive)

Slide Credit: Stefan Lee

Reinforcement Learning

28

Approaches to Reinforcement Learning

• Policy-based RL
• Search directly for the optimal policy &∗

• Value-based RL
• Estimate the optimal action-value function 0∗(", $)

• Under some fixed policy (e.g. epsilon-greedy)

• Model-based RL
• Build a model of the world

• State transition, reward probabilities
• Plan (e.g. by look-ahead) using model

Slide Credit: Dhruv Batra

Deep RL: have little (or large)

neural networks model these

A General Embodied Agent

29

Agent

Environment

Action

Observation

Goal

Reward
Agent

Environment

Action

Observation

Goal

Reinforcement Learning

• Environment provides feedback
• No examples of optimal policy

Imitation Learning

• Have expert demonstrations
(possibly interactive)

Slide Credit: Stefan Lee

Can treat as supervised learning problem

Imitation Learning

Imitation Learning

31

Imitation Learning

• Assume access to an expert demonstrator 3∗ at some point or another and
to varying levels of interactivity Does not assume reward function is given!

Slide Credit: Stefan Lee

Imitation Learning

32

Imitation Learning

• Assume access to an expert demonstrator 3∗ at some point or another
and to varying levels of interactivity

• Does not assume reward function is given!

• Behavior Cloning / Inverse Reinforcement Learning
• Given dataset of expert trajectories 4 = "+, $+, ",, $,, … , "-, $- . ./,

0

• Direct Policy Learning / Interactice Expert
• Assume queryable expert 3∗ during training

Slide Credit: Stefan Lee

Imitation Learning
Behavior Cloning

Imitation Learning – Behavior Cloning

Slide Credit: Yisong Yue 34

Imitation Learning – Behavior Cloning

35

Behavior Cloning

• Given dataset of trajectories 4 = "+, $+, ",, $,, … , "-, $- . ./,
0 from an

expert demonstration policy &∗
• Break things down to individual state-action pairs "1, $1 and directly train a

policy 6$1 = & "1 using supervised learning:

Z∗ = 67RS[\>]
,

^ <>(6& 5& , <∗(6&|5&))

• Interpretations:
• Assuming perfect imitation so far, learn to continue imitating perfectly
• Minimize 1-step deviation for states the expert visits

Z∗ = 67RS[\>>0∼)∗ ^ <> 5 , <∗(5)

Slide Credit: Yisong Yue

Imitation Learning – Behavior Cloning

Slide Credit: Katerina Fragkiadaki 36

Data Distribution Mis-match

Supervised Learning Behavior Cloning

Train 7, 8 ~: ;, < ~3∗

Test 7, 8 ~: ;, < ~32

Distributions of states the agent will encounter during test may differ from training!

Imitation Learning – Behavior Cloning

37

Behavior Cloning: Use set of demonstrations as targets for a
supervised learning task while minimizing 1-step error

• Strengths:
• Dead simple. Seriously. It is just supervised learning.
• Works well when minimizing 1-step deviation is sufficient.

• Weaknesses:
• Compounding errors.
• Data distribution mis-match.

Slide Credit: Stefan Lee

Imitation Learning – Behavior Cloning

38

Data Distribution Mis-match

Image Credit: Yisong Yue

Worse: errors compound!
Suppose !! achieves an error rate of " for states induced by !∗,
then over a T length trajectory the expected number of errors is

$%&'()*& = ,(.$")

Imitation Learning – Behavior Cloning

39

Behavior Cloning: Use set of demonstrations as targets for a
supervised learning task while minimizing 1-step error

• Strengths:
• Dead simple. Seriously. It is just supervised learning.
• Works well when minimizing 1-step deviation is sufficient.

• Weaknesses:
• Compounding errors.
• Data distribution mis-match.

• When to use this?
• When the state space is well-covered by the demonstrator.
• When recovering from 1-step deviations is easy.
• To pre-train before doing a full RL approach.

Slide Credit: Stefan Lee

Imitation Learning
Direct Policy Learning

Imitation Learning – Direct Policy Learning

41

Data Distribution Mis-match

Slide Credit: Yisong Yue

Imitation Learning – Interactive Direct Policy Learning

42

Why is this a problem for Behavior Cloning?

Train a policy that behaves the same in states the demonstrations visit.

What if we had a demonstration policy we could query?

!∗ = #$%&'(")#∼%∗ * +" , , +∗(,)

!∗ = #$%&'(")#∼%" * +" , , +∗(,)

Removes state mis-match, but requires us to evaluate &∗ " for arbitrary states.

Slide Credit: Stefan Lee

43

A Naïve Algorithm

Estimate state space = ∼ 32 and collect
demonstrations

Rollout &'
. to generate a set of states, query

&∗ to generate a new dataset 4.3,

!∗ = #$%&'(")#∼%" * +" , , +∗(,)

Estimate policy &' parameters
Train a policy &'

. using behavior cloning 4.

Not guaranteed to converge / might oscillate.

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee

44

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Collect Data

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee

45

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Behavior
Cloning

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee

46

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Not an actual convex combination.
Expert chooses controls with probability @#

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee

47

DAGGER is a Dataset Aggregation based approach.

Alternative approaches do Policy Aggregation

SMILe from Efficient Reductions for Imitation Learning, 2010
SEARN from Search-based Structured Prediction, 2009

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee

48

Interactive Direct Policy Learning

Iteratively perform behavior cloning and then query an expert
demonstrator to label newly entered states.

• When to use this?
• When querying the expert is cheap!
• Why not just use that expert? Some cases “expert actions” are easy

to compute, but their relation to the observed state may not be.
• When executing a possibly bad policy is safe.

Imitation Learning – Interactive Direct Policy Learning

Slide Credit: Stefan Lee

Imitation Learning
Inverse Reinforcement Learning

Imitation Learning – Inverse Reinforcement Learning

50

Inverse Reinforcement Learning

Given dataset of trajectories 4 = "+, $+, ",, $,, … , "-, $- . ./,
0 from an

expert policy &∗, find a reward function ! ", $ such that:

<∗ = 67RS6T) >0,A∼)& 7(5, 6)

Learn
Reward
Function

Run RL
to Learn
Policy

Compare
Policy
with

Expert

Slide Credit: Stefan Lee

51

Inverse Reinforcement Learning

Given dataset of trajectories 4 = "+, $+, ",, $,, … , "-, $- . ./,
0 from an

expert policy &∗, find a reward function ! ", $ such that:

<∗ = 67RS6T) >0,A∼)& 7(5, 6)

Learn
Reward
Function

Run RL
to Learn
Policy

Compare
Policy
with

Expert

Imitation Learning – Inverse Reinforcement Learning

Slide Credit: Stefan Lee

Reinforcement Learning

A General Embodied Agent

53

Agent

Environment

Action

Observation

Goal

Reward
Agent

Environment

Action

Observation

Goal

Reinforcement Learning

• Environment provides feedback
• No examples of optimal policy

Imitation Learning

• Have expert demonstrations
(possibly interactive)

Slide Credit: Stefan Lee

Taxonomy
Model-Free RL: Don’t know how
our action will affect the state

Figure Credit: David Silver

Model-Based RL: Need to build a
model of how our action will
affect the state

Taxonomy

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Reinforcement Learning

56

Approaches to Reinforcement Learning

• Policy-based RL
• Search directly for the optimal policy &∗

• Value-based RL
• Estimate the optimal action-value function 0∗(", $)

• Under some fixed policy (e.g. epsilon-greedy)

• Model-based RL
• Build a model of the world

• State transition, reward probabilities
• Plan (e.g. by look-ahead) using model

Slide Credit: Dhruv Batra

Reinforcement Learning

57

Deep Reinforcement Learning

• Policy-based RL
• Learn a policy network & "; .∗ ≈ &∗(") parameterized by .

• Value-based RL
• Learn a network 0 ", $; .∗ ≈ 0∗(", $) parameterized by .

• Under some fixed policy (e.g. epsilon-greedy)

• Model-based RL
• Learn a transition function A "; .∗ ≈ ℙ(")
• Plan (e.g. by look-ahead) using model

Slide Credit: Dhruv Batra

Policy-Based RL
REINFORCE

Policy-Based Reinforcement Learning

Slide Credit: Dhruv Batra 59

Goal: Learn a policy network + ,; !∗ such that:

!∗ = argmax")##,ℙ 6
&
7&'($(,& , #&)

_(Z)

How to optimize Z to maximize _ Z ?

Gradient Ascent! !! = ! + $%" & !

Policy Gradient Methods

60

Let’s write 8 ! =))∼## $(9)

Where !(C) is the reward of trajectory C = (s!, a!, s", a", s#, …)

: 9; ! = ∏: ,+,(,+ , #+ +-(#+ , ,+)

= <
)
: 9; ! $ 9 =9

Slide Credit: Dhruv Batra

Model and optimize
the policy directly

Policy Gradient Methods

61

8 ! = <
)
: 9; ! $ 9 =9Expected rewards of policy & ⋅ ⋅ ; . :

Let’s differentiate with respect to .: >-8 ! = <
)
>-: 9; ! $ 9 =9

Intractable

Slide Credit: Dhruv Batra

REINFORCE Algorithm

62

Let’s differentiate with respect to .: >-8 ! = <
)
>-: 9; ! $ 9 =9

>-: 9; !

1

: 9; !
: 9; !

= : 9; !
>-: 9; !
: 9; !

= : 9; ! >-log : 9; !

A useful identity/trick:

(Williams, 1992)

Slide Credit: Dhruv Batra

REINFORCE Algorithm

63

Let’s differentiate with respect to .:

>-8 ! = <
)
: 9; ! >-log : 9; ! $ 9 =9

>-8 ! = <
)
>-: 9; ! $ 9 =9

Slide Credit: Dhruv Batra

(Williams, 1992)

REINFORCE Algorithm

64

Let’s differentiate with respect to .:

>-8 ! = <
)
: 9; ! >-log : 9; ! $(9) =9

>-8 ! =))∼## $(9) >-log : 9; !

>-8 ! = <
)
>-: 9; ! $ 9 =9

Slide Credit: Dhruv Batra

(Williams, 1992)

REINFORCE Algorithm

Slide Credit: Stefan Lee 65

>-8 ! =))∼## $(9) >-log : 9; !

>-8 ! = >-))∼## $(9)

Transformed the gradient of an expectation
into the expectation of a gradient

(Williams, 1992)

REINFORCE Algorithm

66

>-8 ! =))∼## $(9) >-log : 9; !

Computing G$log K C; . :

: 9; ! = ∏: ,+,(,+ , #+ +-(#+ , ,+)

log : 9; ! =6log : ,+,(,+ , #+ + log +-(#+ , ,+)

>-log : 9; ! =6>- log +-(#+ , ,+)

No model needed! Model-free RL.

Slide Credit: Stefan Lee

(Williams, 1992)

does not depend on θ

REINFORCE Algorithm

67

>-8 ! =))∼## 6
.$,/$ ∈)

>-log +(#&|,&; !) $(9)

>-8 ! ≈6
1

6
.$,/$ ∈)%

>- log + #& ,&; ! $(91)

Monte Carlo Approximation:

Slide Credit: Stefan Lee

(Williams, 1992)

sample some trajectories

REINFORCE Algorithm

68

>-8 ! ≈6
1

6
.$,/$ ∈)%

>- log + #& ,&; ! $(91)

Intuition:

• If trajectory reward is positive, push up the probabilities of the action
• If trajectory reward is negative, push down the probabilities of the action

All actions in trajectory move in same direction based on reward?!?

I know it seems too simple but it averages out.

Slide Credit: Dhruv Batra

(Williams, 1992)

REINFORCE Algorithm

69

1. Perform rollout to collect trajectory C = (s!, a!, s", a", s#, …) and reward r C
2. Compute gradient estimate G$M . ≈ ∑&∑ '",)" ∈+# G$ log & $, ",; . !(C&)
3. Update policy parameters .- = . + PG$ M .

While not converged:

REINFORCE Algorithm (Williams, 1992)

Slide Credit: Stefan Lee

(Williams, 1992)

REINFORCE In Action

70
Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from Pixels

REINFORCE In Action

71
Image Credit: http://karpathy.github.io/2016/05/31/rl/

Pong from Pixels

REINFORCE In Action

72
Image Credit: http://karpathy.github.io/2016/05/31/rl/

What’s wrong with policy gradients?

73

>-8 ! ≈6
1

6
.$,/$ ∈)%

>- log + #& ,&; ! $(91)

High variance! Trajectories are long samples.
Rewards are often sparse and for the whole trajectory.

Slide Credit: Stefan Lee

Reducing Variance

Slide Credit: Sergey Levine 74

>̀_ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z 7(JB)

Causality:
Policy at time D2can’t affect rewards at time D < D2

>̀_′ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z]
&-,

/,/&7 5& , 6&

Reducing Variance

75

Baselines:
What happens if the reward of “good samples” is negative?

Slide Credit: David Silver

Reducing Variance

76

Baselines:
What if the variance in reward is huge?

>̀_ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z 7(JB)

-0.01 1000

Slide Credit: Stefan Lee

Reducing Variance

77

Baselines:

>̀_ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z 7 JB − f
Baseline

Q =
1
S
T!(C)Average reward:

Are we allowed to do this? Still solving the same problem?

Unbiased in Expectation!

Slide Credit: Sergey Levine

Policy Gradient Methods

78

REINFORCE Recap:

Simple algorithm that formalizes the notion ”repeat actions that lead to
high rewards, avoid actions that lead to low rewards”. The approach is
model-free. Big problems are with variance of the estimate, applying

causality and baselines can help.

• When to use this?
• When reward functions are well-defined and simulation is cheap.
• If you don’t have time to implement the next thing we will talk about.

Slide Credit: Stefan Lee

Policy-Based RL
Actor-Critic Methods

REINFORCE Algorithm

80

1. Perform rollout to collect trajectory C = (s!, a!, s", a", s#, …) and reward r C
2. Compute gradient estimate G$M . ≈ ∑&∑ '",)" ∈+# G$ log & $, ",; . !(C&)
3. Update policy parameters .- = . + PG$ M .

While not converged:

REINFORCE Algorithm (Williams, 1992)

Slide Credit: Stefan Lee

(Williams, 1992)

Actor-Critic Methods

81

>̀_ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z]
&-,

/,/&7 5& , 6&

“reward from here”

Causality:

Better estimate of expected rewards from a state-action pair?

F# ,+ , #+ = $,+ , #+ + 7).&'(~ℙ G#(,+,()

Slide Credit: Sergey Levine

Actor-Critic Methods

82

>̀_ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z C) 5& , 6&

What about a baseline?

=) 5& = >)]
,-&

/,/& 7(5, , 6,)

Y) 5& , 6& = C) 5& , 6& − =) 5&Advantage:

How much better than average is this action?

Slide Credit: Stefan Lee

Actor-Critic Methods

83

>̀_ Z ≈]
B

]
0',A' ∈D(

>̀ log < 6, 5,; Z Y) 5& , 6&

Y) 5& , 6& = 7 5& , 6& + />0!"#~ℙ =)(5&'%) − =)(5&)

C) 5& , 6&

Just need to estimate the value function!
Let’s throw a neural network at it!

Y) 5& , 6& = 7 5& , 6& + /=)(5&'%) − =)(5&)

Slide Credit: Stefan Lee

Actor-Critic Methods

84

;.

2(G$|3$) JK (3$)

Agent
Agent predicts both action

probabilities and value estimates

Slide Credit: Stefan Lee

Critic: estimate how good the state (or state-action) is

by estimating the value (or Q) function

Actor: models the

policy (what to do)

Actor-Critic Methods

85

G$M . ≈T
&

T
'",)" ∈+#

G$ log & $, ",; . UV/ "0, $0

Gradient step for parameters with respect to policy parameters:

How to train the value estimator?

<!∗ 7" = L! M
&'"

N&(" O(7&, 8&) ≈ M
)
M
&'"

N&(" O(7&, 8&)

ℒQ Z = h= 5& − =)∗ 5&
R

;.

2(G$|3$) JK (3$)

Agent

Slide Credit: Stefan Lee

Actor-Critic Methods

86

G$M . ≈T
&

T
'",)" ∈+#

G$ log & $, ",; . UV/ "0, $0

Gradient step for parameters with respect to policy parameters:

How to train the value estimator?

ℒQ Z = h= 5& −]
,-&

/,/& 7(5, , 6,)
R

Just supervised regression with data &!, ∑S-!iS/! (&S, !S

;.

2(G$|3$) JK (3$)

Agent

<!∗ 7" = L! M
&'"

N&(" O(7&, 8&) ≈ M
)
M
&'"

N&(" O(7&, 8&)

Slide Credit: Stefan Lee

Actor-Critic Methods

87

1. Perform rollout to collect trajectory C = (s!, a!, s", a", s#, …) and reward r C
2. Fit WX/ " to sampled rewards
3. Evaluate UV/ "0, $0 = ! "0, $0 + WX/("01") − WX/("0)
4. Compute gradient estimate G$M . ≈ ∑&∑ '",)" ∈+# G$ log & $, ",; . UV/ "0, $0
5. Update policy parameters .- = . + PG$ M .

While not converged:

Advantage Actor-Critic (A2C) Algorithm

Slide Credit: Stefan Lee

88

;.

2(G$|3$) JK (3$)

Agent
<!∗ 7" = L! M

&'"
N&(" O(7&, 8&) ≈ M

)
M
&'"

N&(" O(7&, 8&)

ℒQ Z = h= 5& − =)∗ 5&
R

ℒQ Z = h= 5& −]
,-&

/,/& 7(5, , 6,)
R

high variance!

Slide Credit: Stefan Lee

Actor-Critic Methods – Bootstrap Targets / Temporal Differences

89

;.

2(G$|3$) JK (3$)

Agent

Bootstrap target:

ℒQ Z = h= 5& − =)∗ 5&
R

=)∗ 5& = // $,+, #+ + 7G#∗ ,+,(

”biased bootstrap estimate”

This is a temporal difference target. Biased but lower variance.

≈ $,+ , #+ + 7G#∗ ,+,(
≈ $,+ , #+ + 7 HG# ,+,(

Monte Carlo

Value Estimate

Slide Credit: Stefan Lee

Actor-Critic Methods – Bootstrap Targets / Temporal Differences

90

;.

2(G$|3$) JK (3$)

Agent

Bootstrap target:

ℒQ Z = h= 5& − 7 5& , 6& + / h=) 5&'%
R

Just supervised regression with data &!, (&S, !S + ijH2 &S'T

X/∗ "0 = L! 7 5&, 6& + /=)∗ 5&'%

”biased bootstrap estimate”

≈ 7 5& , 6& + / h=) 5&'%

Slide Credit: Stefan Lee

Actor-Critic Methods – Bootstrap Targets / Temporal Differences

Policy Gradient Methods

91

Actor-Critic Recap:

Policy gradient method that trades off variance for bias in gradient
estimates by using a simultaneously learned value function. With clever
choices of baselines, we repeat actions that are better than average and

avoid those that are worse (through advantage estimate).

• When to use this?
• When reward functions are well-defined and simulation is cheap.
• Any time you are doing policy gradients, might as well do this.

Slide Credit: Stefan Lee

Value-Based RL
Deep Q-Learning

Value-Based RL – Deep Q-Learning

93

1. If we have a policy < and know the true C) 5, 6 -- can we derive
a new policy <′ that is as good or better than <?

Set < 6′ 5 = 1 if a′ = 67RS6T hC) 5, 6

Recall that 3! 4, 5 is the expected reward of taking action a in state s

Earlier today….

If we can estimate kU l, m why do we even need an explicit policy?

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

94

If we can estimate kU∗ l, m why do we even need an explicit policy?

;.

JV* (3$)

Deep
Net

C)∗ 5& = 7 5& , 6& + /=)∗(5&'%)

ℒW Z = hC) 5& , 6& − C)∗ 5& , 6&
R

Recall our implicit policy is a′ = 67RS6T C) 5, 6

=)∗ 5& = >) C)∗ (5& , 6&) = max
A
C)∗ (5& , 6&)

ℒW Z ≈ hC) 5& , 6& − 7 5& , 6& +max
A

hC)(5&'%, 6&'%)
R

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

95

1. Perform rollout to collect trajectory C = (s!, a!, s", a", s#, …) and reward r C
2. Compute loss from samples ℒ+ Y ≈ Z:! 7", 8" − O 7", 8" +max,

Y0/(7"-., 8"-.)
/

3. Update Q-network parameters .- = . + PG$ℒ6 . with gradient decent

While not converged:

Simplest DQN Algorithm

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

96

Weaknesses in our Simple DQN:

Limited exploration:

1. Perform rollout to collect trajectory 7 = (s", a", s#, a#, s$, …) and reward r 7

Recall our implicit policy <> is a′ = 67RS6T C)& 5, 6

1 1 1 1 1S00010

ℒW Z ≈ hC) 5& , 6& − 7 5& , 6& +max
A

hC) (5&'%, 6&'%)
R

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

97

p-greedy policy:

+4(,+) = I
argmax5 HF## s6, a with probability ϵ
~ uniform over A with probabiliy 1 − ϵ

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

98

Off-policy DQN:

Exploration policy is <_, but we evaluate based on <>

1. Rollout 3? to collect trajectory C = (s!, a!, s", a", s#, …) and reward r C

2. Compute loss from samples ℒ6 . ≈ Y[@$;., <. − ! "0, $0 +max
)

Y[@$(;.1A, <.1A)
#

3. Update Q-network parameters .- = . + PG$ℒ6 . with gradient decent

While not converged:

On-policy: Exploration policy == evaluation policy

Off-policy: Exploration policy != evaluation policy

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

99

p-greedy vs. argmax:

-1 -1 -1 -1 -1-1-1-1-1-1

-1 -1 -1 -1 -1-1-1-1-1-1

-100 -100 -100 -100 Goal-100-100-100-10010

Consider the cliff-walking game:

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

100

Weaknesses in our Simple DQN:

Examples in a trajectory are correlated

C = (s!, a!, !!, s", a", r", s#, a#, r#, …)

…

Gradient updates are highly correlated and can lead to oscillation.

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

101

Experience Replay:

^_K`$a b)cc_! = "0
B, $0

B, !0
B, "01"

B

B

Idea: collect a buffer of trajectories and then randomly sample transitions
to perform our update

Q$(dℎ ~ ^_K`$a b)cc_!

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

102

Off-policy DQN with Experience Replay:

1. Rollout &C to collect trajectory C = ("!, $!, "", $", "#, …) and reward r C
2. Store transitions ("D, $D, rD, "D1") in replay buffer b
3. Sample N transitions from b and compute

ℒ6 . ≈ T
&E"

F

W0/! "0
&, $0& − ! "0&, $0& +f$g

)
W0/!("01"

& , $01"&)
#

4. Update Q-network parameters .- = . + PG$ℒ6 . with gradient decent

While not converged:

Tends to be more sample efficient than policy-gradient methods
because transitions are valid targets forever.

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

103

ℒ6 . ≈ T
&E"

F

Y[@$;.
G, <.G − ! "0&, $0& +max

)
Y[@$(;.1A

G , <.1A
G)

#

Weaknesses in our Simple DQN:

Chasing a non-stationary target:

Same network producing both.
Each update changes the targets.

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

104

Target networks:

Idea: Keep an old version of parameters around to estimate targets

;.

JV* (3$; a)

Deep
Net

;.

JV* (3$; a012)

Deep
Net (copy)

Fixed Target Network

ℒ+ Y ≈ M
)'.

3
JV*! 3$

4, G$4 − O 7"), 8") +max,
JV*!(3$-5

4 , G$-5
4)

/

Re-copy the target network
weights periodically.

Slide Credit: Stefan Lee

Value-Based RL – Double Q-Learning

105

Weaknesses in DQN:

ℒW Z ≈ hC) 5& , 6& − 7 5& , 6& +max
A
C)∗ (5&'%, 6&'%)

R

Tends to overestimates action values:

DQN Estimate

DQN True Value

Slide Credit: Stefan Lee

Value-Based RL – Deep Q-Learning

106

Deep Q-Learning:

Assume an implicit greedy policy and just learn its action-value function.
The approach is model-free and fairly general but does require some

tricks to overcome a few problems during training.

• When to use this?
• When reward functions are well-defined but rollouts are more expensive.
• Worried about sample efficiency and have strong exploration policy.
• … don’t mind trying to get it stable … which is a challenge sometimes

Bonus Concept: Experience replay to reduce correlation in
examples is broadly applicable.

Slide Credit: Stefan Lee

Model-based RL

Model-based RL

108

All the previous RL methods we discussed are model-free algorithms:

If we can estimate a model &!'T~$ lb, mb , can we be more efficient?

Agent

Environment

Action

Observation

Goal

Reward ?

Slide Credit: Stefan Lee

Model-based RL

Slide Credit: Sergey Levine 109

If we can estimate a model &!'T~$ lb, mb , can we be more efficient?

Dynamics are reward independent – changing
reward function isn’t a problem!

Model-based RL

110

Model-based Control Algorithm

1. Run base policy (possibly random or human) to collect samples
2. Fit a model h =H, iH using least squares or some other loss
3. Backprop through h =H, iH to optimize policy parameters

As with Behavior Cloning, we may suffer
from state distribution mis-match.

Slide Credit: Sergey Levine

Model-based RL

111

Model-based Control Algorithm (Iterative)

Run base policy (possibly random or human) to collect samples

While not converged:
1. Fit a model h =H, iH using least squares or some other loss
2. Backprop through h =H, iH to optimize policy parameters
3. Run this backprop derived policy and add samples to training set

Luckily, the world is an oracle with respect to the
model! No need to worry about querying an expert.

Slide Credit: Sergey Levine

Model-based RL

112

Model Predictive Control Algorithm (Iterative)

Run base policy (possibly random or human) to collect samples

While not converged:
1. Fit a model h =H, iH using least squares or some other loss

1. Backprop through h =H, iH to optimize policy parameters
2. Run this backprop derived policy and add samples to training set
3. Take a step with this policy then refit based on current state

A bit expensive to run this optimization every step.

Slide Credit: Sergey Levine

Value-Based RL – Deep Q-Learning

113

https://bair.berkeley.edu/blog/2019/05/20/solar/

Model-Based Reinforcement Learning from Pixels
with Structured Latent Variable Models 2019

Slide Credit: Stefan Lee

https://bair.berkeley.edu/blog/2019/05/20/solar/

Value-Based RL – Deep Q-Learning

114

https://planetrl.github.io

Learning Latent Dynamics for
Planning from Pixels 2019

Slide Credit: Stefan Lee

https://planetrl.github.io/

Model-based RL:

115

Model-based Recap:

Learn the dynamics model and then optimize for long-term rewards through
it (aka plan!). Very sample efficient and can be self-supervised. Some initial

work does it directly in pixel space (including goal specification).

• When to use this?
• When dynamics are unknown (e.g. physical systems) but modelable
• Very worried about sample efficiency (e.g. robotics)
• Want to transfer to different goals

Slide Credit: Stefan Lee

RL as Sequence Modeling

Doing RL with seq2seq at NeurIPS 2021

Offline RL

https://offline-rl.github.io/, https://offline-rl-neurips.github.io/

https://offline-rl.github.io/
https://offline-rl-neurips.github.io/

Offline RL

https://offline-rl.github.io/, https://offline-rl-neurips.github.io/

https://offline-rl.github.io/
https://offline-rl-neurips.github.io/

• “tokens” at each time step:
• Returns to go:
• State
• Action

• Linear layer projects each into embedding space
• Feed last K steps into transformer (GPT)
• Learn to predict action
• Cross-entropy loss for discrete actions
• MSE for continuous actions

Decision Transformer

Decision Transformer: Reinforcement Learning via Sequence Modeling, Chen et al, NeurIPS 2021

• Did not find predicting state or
returns to be useful
• Key difference from behavior

cloning
• Trajectories are not necessarily

“expert” trajectories
• Returns is available as input

https://github.com/kzl/decision-transformer

• Similar to Decision Transformer
• Tokens: State, Action, Last Reward
• Also include Returns to go for offline RL

• Predict state, action, reward (everything is discretized)
• Model-based (vs model free for DT)?

• Sampling with beam search
• Applied to settings of imitation learning, goal conditioned, offline

Trajectory Transformer

Offline Reinforcement Learning as One Big Sequence Modeling Problem, Janner et al, NeurIPS 2021

https://trajectory-transformer.github.io/

Performance of Seq2Seq RL Models
• Performance is on par with best previous RL methods

• BC (behavior cloning)
• MBOP (model-based offline planning, Argenson & Dulac-Arnold 2021)
• BRAC (behavior regularized actor-critic, Wu et al, 2019)
• CQL (conservative Q-learning – Kumar et al, 2020)

Offline Reinforcement Learning as One Big Sequence Modeling Problem, Janner et al, NeurIPS 2021

Performance of Seq2Seq RL Models

Offline Reinforcement Learning as One Big Sequence Modeling Problem, Janner et al, NeurIPS 2021

Resources

Fall 2019 124

• OpenAI intro to RL:
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

• Intro to Deep RL: https://arxiv.org/pdf/1811.12560.pdf

• Sergey Levine Lectures:
https://www.youtube.com/watch?v=JHrlF10v2Og&list=PL_iWQOs
E6TfURIIhCrlt-wj9ByIVpbfGc

• CMPT 729 at SFU?

Sutton and Barlo book

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://arxiv.org/pdf/1811.12560.pdf
https://www.youtube.com/watch?v=JHrlF10v2Og&list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc

Next time

• Project Milestones (3/14)

• Paper presentations (3/14)
• Mapping Instructions and Visual Observations to Actions with

Reinforcement Learning (Michael)
• ELLA: Exploration through Learned Language Abstraction (??)

• Wednesday (3/16): Instruction following – VLN

