
DNA:

A New Language for LLMs to Learn

Presenter: Chuanqi Tang

Date: March 26, 2025

= Thymine

= Cytosine

= Guanine

= Phosphate backbone

a language with just four letters:

A/T/C/G

abc

Natural Language

Letters (a, b, c...)

Words

Sentence

DNA

Bases (A, T, C, G)

k-mers (ATG, GTC,...)

DNA barcode

DNA is a language — and we're teaching machines to read it.

If LLMs Could Understand DNA...

What Could We Do?

Functional annotation of unknown regions

- Model how species are related
- Accelerate species discovery

Accelerate species discovery

~2.3 million known species — insects alone: 1 million+

Estimated total: 8–10 million, maybe 100 million

That means >80% of life remains unknown

^{1.} Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How Many Species Are There on Earth and in the Ocean? *PLoS Biology*, 9(8), e1001127. https://doi.org/10.1371/journal.pbio.1001127. Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. *Proceedings of the National Academy of Sciences*, 113(21), 5970–5975. https://doi.org/10.1073/pnas.1521291113. Wiens, J. J. (2022). How many species are there on Earth and how many are left to describe? *PLoS Biology*, 20(7), e3001760. https://doi.org/10.1371/journal.pbio.3001760

BarcodeBERT: Transformers for Biodiversity Analyses

Pablo Millan Arias^{1,*}, Niousha Sadjadi^{1,*}, Monireh Safari^{1,*}, ZeMing Gong^{3,†}, Austin T. Wang^{3,†}, Joakim Bruslund Haurum⁶, Iuliia Zarubiieva^{2,4}, Dirk Steinke², Lila Kari^{1,‡}, Angel X. Chang^{3,5}, Scott C. Lowe^{4,‡}, and Graham W. Taylor^{2,4,‡,‡}

*Joint first author

[†]Joint second author

[‡]Joint senior author

[‡]Corresponding authors: gwtaylor@uguelph.ca,

lila@uwaterloo.ca

¹University of Waterloo

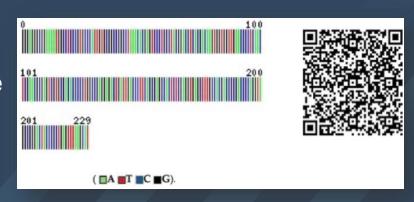
²University of Guelph

³Simon Fraser University

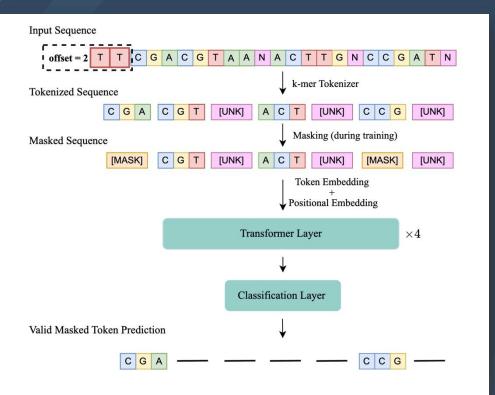
⁴Vector Institute

⁵Alberta Machine Intelligence Institute (Amii)

⁶Aalborg University and Pioneer Centre for AI



BarcodeBERT: Transformers for Biodiversity Analyses


A transformer-based language model from NLP

BarcodeBERT: Transformers for Biodiversity Analyses

- A short, standardized DNA sequence
- Works like a biological "ID code"
- Used to identify species

Architecture of BarcodeBERT

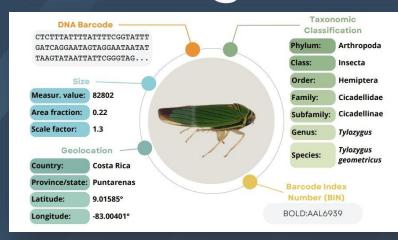
Input: DNA barcode sequence

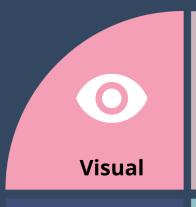
k-mer Tokenization = making "DNA words"

Masked tokens = the blanks the model must learn to fill

Transformer layers = learning context and structure

Output: predicted DNA tokens

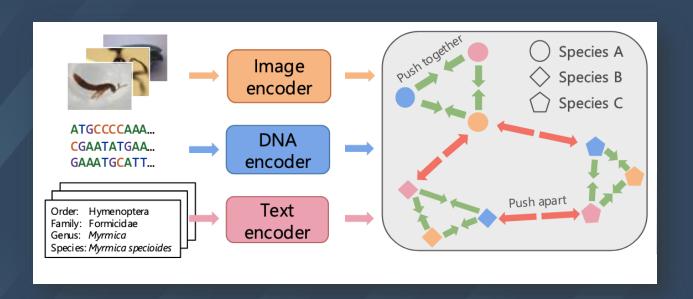

Performance Comparison of BarcodeBERT and Baseline Models


Model	#Param.	TPS (seq/s)	Species-level acc (%) of seen species			Genus-level 1-NN probe of unseen species		BIN reconstruction accuracy (%)
			Finetuned	Linear probe	Dur (s)	Acc (%)	Dur (s)	ZSC probe
BLAST	N/A	N/A	99.7*		1495	83.9	602	N/A
CNN encoder	1.8 M	934	98.2	51.8	13	47.0	<u>55</u>	26.8
DNABERT	88.1 M	50	(k=6) 99.5	(k=4) 47.1	248	(k=6) 48.1	1021	79.3
DNABERT-2	118.9 M	134	99.7	87.2	101	23.5	381	38.1
DNABERT-S	117.1 M	134	99.7	93.1	101	30.6	381	62.7
HyenaDNA-tiny	1.6 M	1167	99.2	93.5	11	37.5	44	25.8
Nucleotide Transformer	55.9 M	95	99.5	65.1	140	40.1	536	22.4
BarcodeBERT (4-4-4)	29.1 M	484	99.7	99.0	27	<u>78.5</u>	108	73.2

55× faster

Multimodal Learning

Read/Write



Auditory

Kinesthetic

CLIBD: Bridging Vision and Genomics for Biodiversity Monitoring at Scale

Gong, ZeMing, et al. "CLIBD: Bridging Vision and Genomics for Biodiversity Monitoring at Scale." *arXiv preprint arXiv:2405.17537* (2024).

Conclusion

- 2. LLMs like BarcodeBERT can learn this language
- 3. Multimodal AI takes it further

Thanks!

Do you have any questions?