o
%
o% o

EidINatLangLab

CMPT 413/713: Natural Language Processing

Recurrent Neural Networks

How to model sequences using neural networks?

Spring 2024
2024-01-31

Adapted from slides from Anoop Sarkar, Danqi Chen, Karthik Narasimhan, and Justin Johnson
(Some slides adapted from Chris Manning, Abigail See, Andrej Karpathy)

Overview

e What is a recurrent neural network (RNN)?
e Simple RNNs

e Backpropagation through time

e Applications

e Variants: Stacked RNNs, Bidirectional RNNs

What are recurrent neural
networks?

Recurrent neural networks (RNNs)

How can we model sequences using neural networks”?

HMM

MEMM

e Recurrent neural networks = A class of neural networks used to
model sequences, allows for handling of variable length inputs.

e Very crucial in NLP problems (different from images) because
sentences/paragraphs are variable-length, sequential inputs.

Recurrent neural networks (RNNs)

A class of neural networks allowing to handle variable length inputs

A function: y = RNN(X, X,, ..., X) € RY where X, ..., X, € R in

n

Core idea: apply the same weights repeatedly at different positions

RNNs vs Feedforward NNs

S

Feed-Forward Neural Network Recurrent Neural Network

Recurrent neural networks (RNNs)

Proven to be an highly effective approach to language modeling,
sequence tagging as well as text classification tasks:

Sequence tagging - Text classification
'\F
I-ORG O I-PER O O I-LOC O I
The s | h: - 1 h; ;= fh,_pX, ;)" T T T T T T T
I ! I I 1 ! I
Xt—3 Xt—2 Xt—1 I I
U.N. official Ekeus heads for Baghdad - The
W3 W2 Wi_1

movie sucks I
Form the basis for the modern approaches to machine translation,
question answering and dialogue:

RNNs for Language Modeling ~ +

Use a RNN to

e capture the history of the
previous words as a hidden
state

e use hidden state to estimate
the probability of the next
word

Pw,\wy,...,w_) = Pw,|h,_;)

Recall: Language Models

e Model the probability of a sequence of words

(4’
P(wy,wsa,...,wy,) = HP(wi\wl, W)
i=1

e kth order Markov assumption

Piww,...w)= HP(Wi W, ..ow.)

e N-grams

Bigram (1st order)
P(mat|the cat sat on the) ~ P(mat|the)

Trigram (2nd order)
P(mat|the cat sat on the) ~ P(mat|on the)

Issues with traditional n-grams

Consider:

As the proctor started the clock, the students opened their

For a 4-gram, the probability of the next word would be estimated by

As-the proetor-started-the-eloek;the students opened their

count(students opened their w)

P(w | students opened their w) = ,
count(students opened their)

Small n: not enough context for long range dependencies

Issues with traditional n-grams

e Example generation from trigram model

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

e Surprisingly grammatical!
e Butincoherent. Need to consider longer history to model language well.

Why can’t we just increase n”?

e Sparsity issues when n is large
e Model size (number of parameters) increases exponentially with n

e Takes up a lot of memory to store all those probabilities

Feedforward Neural Language Model

® P(mat | the cat sat on the) = ?

e Input layer (context size n = 5):

R d
€ = [ethe; €caty €saty €on; ethe] c R™
the —> concatenate word embeddings

R5d Rh

cat _’ g g e Hidden layer
\ 8 8 h = tanh(We + b;) € R”

sat »/8_’8 — P(w =1)?

O O

8 8 e Output layer (softmax)
on _> —/ -

z = Uh 4+ b ER|V|

the—> g P(w =i | context) = softmax;(z)

(Bengio et 2003): A Neural Probabilistic Language Model

12

Feedforward Neural Language Model

books

l laptops
output distribution :
y = softmax(Uh + by) € RV = _
U
nidden faver hxnd ~ (00eee00000000)
h=f(We+b) WER _
1%
concatenated word embeddings
e — [V ;6 o) (0000 0000 0000 0000 |
o y y 9 N\ N\ N\ N\
Fixed window LM
words / one-hot vectors the students opened their
m(1)7 m(Q), ;,3(3)’ 7 (4) (1) 7 (2) 7 (3) 7 (4)

Slide credit: Chris Manning

Issues with fixed-window neural LM

Improvements over n-gram LMs

e NO SpaI'Slty pI‘Oblem p(aardvark|...) p(fish|...) p(for|...) p(zebral...)
1 1 1 1
e Don’t need to store all observed n-grams Outputiayer ((5) ... o B GadaOy)| v
U IVIxdy,
Hidden layer |
Remaining issues S L dwad
e Fixed window is still limited in size (too small) embeddingy | Ceo1eS® ESgmey @emesie i
h d E embedding for embedding for embedding for
: : e word Wor: word
e Enlarging window increases parameters: W < R**" [> s 45180]
. . . v . . for all the ?7 |.£
e Each word in the window is multiplied by a different set of weights o> o o W,
—-
e No symmetry in how the inputs are processed D e B

the 3 embeddings together to get the 1 X Nd unit input layer x for the network. The output of the network is a
probability distribution over the vocabulary representing the models belief with respect to each word being the
next possible word.

What we I'eally want: “all the” appears in different positions of two sliding windows

e Neural network to handle input sequences of arbitrary length!

Language Modeling

Predict probability of sequence of words with neural networks
T
P(s) = P(wy,...,wp) = HP(wt\w<t) p(we | wer) = p(w | p(wy, ..., wi—1))
t=1
with Nn-grams with fixed window
P(wi|wet) = P(we|wWe—n+t1,t-1) Pwi|w<y) =~ P(we|p(ws—ni1,6-1))
with HMMs with RNNs

P(wt‘w<t) ~ P(wt‘ht)P(ht‘ht—n—l—l,t—l) P(’wt|w<t) ~ P(wt‘ht>aht — f(ht—laxt)

15

Simple RNINs

Components of RNN cells

d i o it o .
hO - R 1S dIl lnltlal state fuInC'non W|th We|ghts W

v od
//vht = Jw(h,_, Xa) € R
new state old state \input at time t
h, : hidden states which store information from X; to X,

Output label for each time step: Denote y, = softmax(W _h,), W_ & RILIXd

Unrolling the RNN

Structure of cell and weights are shared across time steps

Types of sequence processing problems

one to one one to many many to one

Vanilla | Text
Neural Text Generation Classification
Networks

many {o many

Neural Machine
Translation

many to many

Sequence
Tagging

Simple (vanilla) RNNs

d i o it o .
hO - R 1S dIl lnltlal state fulnC'non W|th We|ghts W

v od
//vht = Jw(h,_, Xa) € R
new state old state \input at time t
h, : hidden states which store information from X; to X,

Output label for each time step: Denote y, = softmax(W _h,), W_ & RILIXd

X Simple (vanilla) RNNs:
(h) h, = g(W,h_, + W x, +b) € R4
g E g: nonlinearity (e.g. tanh),
—>

W, € R*W_e& R b e R?

RNN Language Model T P ok et oot et

l laptops
output distribution :
§® = softmax (Uh(t) n b2) c RV OUtpUt label size: ‘V‘ — -
<a A Z(;O
U
h() h(L h(2) h(3) h(4)
hidden states @ ® O O O
(t) _ (t—1) (t) o W, |0 W, l@|Wr |@| Wr |@
h _a(Whh + Wee +b1) O >l @ >‘ >. >‘
h(9) is the initial hidden state O O O O O
. O O O O
word embeddings e(1) O e(2) O e(3)| O e(4) @) Use word
) — Fap®) O O O O .
O O O O embeddings
Te = T s
words / one-hot vectors the students opened their
() ¢ RIVI (1) 7 (2) 7 (3) 7 (4)

Slide credit: Chris Manning

RNNSs: pros and cons

e Advantages:
e Can process any length input
e Computation for step t can (in theory) use information from many steps back
e Model size doesn’t increase for longer input context
e Same weights applied on every timestep (symmetry in how inputs are processed)

¢ Disadvantages:
e Recurrent computation is slow (can’t parallelize) Can parallelize with transformers!
e In practice, difficult to access information from many steps back

Progress on language models

On the Penn Treebank (PTB) dataset ppl(S) = ’12" where
Metric: perplexity X = — i Z log, P(Si)
W 4
KN5: Kneser-Ney 5-gram =1

Modedl [Tndividual

KNS5 141.2
KNS5 + cache 125.7

Feedforward NNLM

Log-bilinear NNLM
Syntactical NNLM
Recurrent NNLM

RNN-LDA LM 113.7

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

https://ieeexplore.ieee.org/author/37298983000

