CMPT 4I3/7I3: Natural Language Processing
 Recurrent Neural Networks LSTM and GRUs

How to model sequences using neural networks?
Spring 2024
2024-02-05

Overview

- Review of Vanilla RNN
- Training RNNs
- Issues with Gradient Flows
- LSTMs and GRUs
- Applications
- Variants: Stacked RNNs, Bidirectional RNNs

Simple RNNs

Recurrent Neural Networks (RNNs)

Structure of cell and weights are shared across time steps

Simple (vanilla) RNNs

$$
\mathbf{h}_{0} \in \mathbb{R}^{d} \text { is an initial state } \quad \text { function with weights } \mathrm{W}
$$

$$
\underset{\text { new state old state }}{\mathbf{h}_{t}=f_{\mathbf{W}}^{\downarrow}\left(\mathbf{h}_{t-1}, \mathbf{x}_{t}\right) \in \mathbb{R}^{d}}
$$

\mathbf{h}_{t} : hidden states which store information from \mathbf{x}_{1} to \mathbf{x}_{t}

Output label for each time step: Denote $\hat{\mathbf{y}}_{t}=\operatorname{softmax}\left(\mathbf{W}_{o} \mathbf{h}_{t}\right), \mathbf{W}_{o} \in \mathbb{R}^{|L| \times d}$
Simple (vanilla) RNNs:

$$
\mathbf{h}_{t}=g\left(\mathbf{W}_{h} \mathbf{h}_{t-1}+\mathbf{W}_{x} \mathbf{x}_{t}+\mathbf{b}\right) \in \mathbb{R}^{d}
$$

g : nonlinearity (e.g. tanh),

$$
\mathbf{W}_{h} \in \mathbb{R}^{d \times d}, \mathbf{W}_{x} \in \mathbb{R}^{d \times d_{i n}}, \mathbf{b} \in \mathbb{R}^{d}
$$

RNN Language Model

output distribution
$\hat{\boldsymbol{y}}^{(t)}=\operatorname{softmax}\left(\boldsymbol{U} \boldsymbol{h}^{(t)}+\boldsymbol{b}_{2}\right) \in \mathbb{R}^{|V|}$
Output label size: |V|

$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

hidden states
$\boldsymbol{h}^{(t)}=\sigma\left(\boldsymbol{W}_{h} \boldsymbol{h}^{(t-1)}+\boldsymbol{W}_{e} \boldsymbol{e}^{(t)}+\boldsymbol{b}_{1}\right)$ $\boldsymbol{h}^{(0)}$ is the initial hidden state
word embeddings
$\boldsymbol{e}^{(t)}=\boldsymbol{E} \boldsymbol{x}^{(t)}$
words / one-hot vectors $\boldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$

Training the RNN

Training an RNN Language Model

- Get a big corpus of text (sequence of words $x^{(1)}, \ldots, x^{(T)}$)
- Feed into RNN-LM and compute output distribution $\hat{y}^{(t)}$ for every step t (i.e predict for every word, given words so far)
- Loss function on step t is cross-entropy between predicted probability distribution $\hat{y}^{(t)}$, and the true next word $y^{(t)}$ (one-hot for $x^{(t+1)}$)

$$
J^{(t)}(\theta)=C E\left(\mathbf{y}^{(t)}, \hat{\mathbf{y}}^{(t)}\right)=-\sum_{w \in V} \mathbf{y}_{w}^{(t)} \log \hat{\mathbf{y}}_{w}^{(t)}=-\log \hat{\mathbf{y}}_{x_{l+1}}^{(t)}
$$

- Average to get overall loss for the entire training set

$$
J(\theta)=\frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)=-\frac{1}{T} \sum_{t=1}^{T} \log \hat{\mathbf{y}}_{x_{t+1}}^{(t)}
$$

Training an RNN Language Model

=negative log prob

Training an RNN Language Model

Training an RNN Language Model

=negative log prob

Training an RNN Language Model

Training an RNN Language Model

Training an RNN language Model

- Note that computing loss and gradients for the whole corpus at once is too expensive
- In practice, consider $x^{(1)}, \ldots, x^{(T)}$ for a sentence (or a document)
- Use batching to parallelize computation over sentences
- Use SGD to estimate parameters
- Use computation graph with backprop

RNN Computation Graph

Training RNNLMs

- Backpropagation? Yes, but not that simple!

- The algorithm is called Backpropagation Through Time (BPTT).

Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated backpropagation through time

- Backpropagation is very expensive if you handle long sequences

- Run forward and backward through chunks of the sequence instead of whole sequence
- Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Let's consider the gradient wrt the weight matrix

$$
\frac{\partial J}{\partial \mathbf{W}_{h}}=-\frac{1}{n} \sum_{t=1}^{n} \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}} \quad \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}}=\left.\sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}}\right|_{(i)}
$$

Gradient wrt a repeated weight is the sum of the gradient wrt each time it appears

Recall: Gradient sum at branches

Multivariate Chain Rule

$$
\underbrace{\frac{d}{d t} f(x(t), y(t))}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Derivative of composition function
One final output $f(x(t), y(t))$
$\underset{\substack{\text { outputs }}}{\text { Two intermediate }} \mathfrak{X}(\boldsymbol{t})$
$y(t)$
One input
t

Recall: Gradient sum at branches

Apply the multivariable chain rule:

$$
=1
$$

$$
\begin{aligned}
\frac{\partial J^{(t)}}{\partial \boldsymbol{W}_{h}} & =\left.\sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \boldsymbol{W}_{h}}\right|_{(i)} \frac{\left.\partial \boldsymbol{W}_{h}\right|_{(i)}}{\partial \boldsymbol{W}_{h}} \\
& =\left.\sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \boldsymbol{W}_{h}}\right|_{(i)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}}=\left.\sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \mathbf{W}_{h}}\right|_{(i)} \\
& L_{t}=J^{(t)} \text { BPTT: } \\
& \mathbf{h}_{1}=g\left(\mathbf{W}_{h} \mathbf{h}_{0}+\mathbf{W}_{x} \mathbf{x}_{1}+\mathbf{b}\right) \\
& \mathbf{h}_{2}=g\left(\mathbf{W}_{h} \mathbf{h}_{1}+\mathbf{W}_{x} \mathbf{x}_{2}+\mathbf{b}\right) \\
& \mathbf{h}_{3}=g\left(\mathbf{W}_{h} \mathbf{h}_{2}+\mathbf{W}_{x} \mathbf{x}_{3}+\mathbf{b}\right) \\
& L_{3}=-\log \hat{\mathbf{y}}_{3}\left(w_{4}\right)
\end{aligned}
$$

$$
\text { BPTT: Example for } \mathrm{t}=3
$$

You should know how to compute: $\frac{\partial L_{3}}{\partial \mathbf{h}_{3}}$

$$
\frac{\partial L_{3}}{\partial \mathbf{W}_{h}}=\frac{\partial L_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{W}_{h}}+\frac{\partial L_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{W}_{h}}+\frac{\partial L_{3}}{\partial \mathbf{h}_{3}} \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{h}_{1}} \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{W}_{h}}
$$

$$
\frac{\partial L}{\partial \mathbf{W}_{h}}=-\frac{1}{n} \sum_{t=1}^{n} \sum_{i=1}^{t} \frac{\partial L_{t}}{\partial \mathbf{h}_{t}}\left(\prod_{j=i+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}}\right) \frac{\partial \mathbf{h}_{i}}{\partial \mathbf{W}_{h}}
$$

Exploding and vanishing gradients

(advanced)
 Vanishing/exploding gradients

- Consider the gradient of L_{t} at step t, with respect to the hidden state \mathbf{h}_{k} at some previous step $k(k<t)$:

$$
\begin{aligned}
\frac{\partial L_{t}}{\partial \mathbf{h}_{k}} & =\frac{\partial L_{t}}{\partial \mathbf{h}_{t}}\left(\prod_{r \geq j>k} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}}\right) \\
& =\frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \times \prod_{t \geq \gg k}\left(\operatorname{diag}\left(g^{\prime}\left(\mathbf{W} \mathbf{h}_{j-1}+\mathbf{U} \mathbf{x}_{j}+\mathbf{b}\right)\right) \mathbf{W}\right)
\end{aligned}
$$

- (Pascanu et al, 2013) showed that if the largest eigenvalue of \mathbf{W} is less than 1 for $g=\tanh$, then the gradient will shrink exponentially. This problem is called vanishing gradients.
- In contrast, if the gradients are getting too large, it is called exploding gradients.

Gradient flow through Vanilla RNN cell

First, using matrix notation

$$
\begin{aligned}
\mathbf{h}_{t} & =\tanh \left(\mathbf{W}_{h h} \mathbf{h}_{t-1}+\mathbf{W}_{h x} \mathbf{x}_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
\mathbf{W}_{h h} & \mathbf{W}_{h x}
\end{array}\right)\binom{\mathbf{h}_{t-1}}{\mathbf{x}_{t}}\right) \\
& =\tanh \left(\mathbf{W}\binom{\mathbf{h}_{t-1}}{\mathbf{x}_{t}}\right)
\end{aligned}
$$

Exploding and Vanishing Gradients

Computing gradient of h_{0} involves many factors of W

Largest singular value >1 :
Exploding gradients

Difficult for model to converge!

Largest singular value <1 :
Vanishing gradients

Why is exploding gradient a problem?

- Gradients become too big and we take a very large step in SGD.

Difficult for model to converge!

- Solution: Gradient clipping - if the norm of the gradient is greater than some threshold, scale it down before applying SGD update.

```
    \(\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}\)
    if \(\|\hat{\mathbf{g}}\| \geq\) threshold then
        \(\hat{\mathbf{g}} \leftarrow \frac{\text { threshold }}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}\)
    end if
```

Algorithm 1 Pseudo-code for norm clipping

Exploding and Vanishing Gradients

Gradient clipping:
Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1 :
Exploding gradients

Scale gradient if its norm is too big
grad_norm $=$ np.sum(grad * grad)
if grad_norm > threshold: grad *= (threshold / grad_norm)

Largest singular value <1 :
Vanishing gradients ${ }_{33}$

Exploding and Vanishing Gradients

Computing gradient of h_{0}
involves many factors of W
(and repeated tanh)

Largest singular value >1 :
Exploding gradients

Largest singular value <1 :

Vanishing gradients

Simple RNN

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
$$

Vanishing Gradients

Can't capture long distance dependencies.

> Gradient signal from faraway is lost because it's much smaller than gradient signal from close-by.
So model weights are updated only with respect to near effects, not long-term effects.

Exploding and Vanishing Gradients

Different RNN cells

Long Short-term Memory (LSTM)

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients problem
- Work extremely well in practice
- Basic idea: turning multiplication into addition
- Use "gates" to control how much information to add/erase

$$
\mathbf{h}_{t}=f\left(\mathbf{h}_{t-1}, \mathbf{x}_{t}\right) \in \mathbb{R}^{d}
$$

- At each timestep, there is a hidden state $\mathbf{h}_{t} \in \mathbb{R}^{d}$ and also a cell state $\mathbf{c}_{t} \in \mathbb{R}^{d}$
- \mathbf{c}_{t} stores long-term information
- We write/erase \mathbf{c}_{t} after each step
- We read \mathbf{h}_{t} from \mathbf{c}_{t}

Long Short-term Memory (LSTM)

Use logistic for gating o = filter out, $1=$ pass through

Use tanh for output (zero-centered for feeding into next layer)

There are 3 gates and a memory cell:

- Input gate (how much to write): $\mathbf{i}_{t}=\sigma\left(\mathbf{W}^{(i)} \mathbf{h}_{t-1}+\mathbf{U}^{(i)} \mathbf{x}_{t}+\mathbf{b}^{(i)}\right) \in \mathbb{R}^{d}$
- Forget gate (how much to erase):

$$
\mathbf{f}_{t}=\sigma\left(\mathbf{W}^{(f)} \mathbf{h}_{t-1}+\mathbf{U}^{(f)} \mathbf{x}_{t}+\mathbf{b}^{(f)}\right) \in \mathbb{R}^{d}
$$

- Output gate (how much to reveal):

$$
\mathbf{o}_{t}=\sigma\left(\mathbf{W}^{(o)} \mathbf{h}_{t-1}+\mathbf{U}^{(o)} \mathbf{x}_{t}+\mathbf{b}^{(o)}\right) \in \mathbb{R}^{d}
$$

- New memory cell (what to write):
$\mathbf{g}_{t}=\tanh \left(\mathbf{W}^{(c)} \mathbf{h}_{t-1}+\mathbf{U}^{(c)} \mathbf{x}_{t}+\mathbf{b}^{(c)}\right) \in \mathbb{R}^{d}$
element-wise product
- Final memory cell: $\mathbf{c}_{t}=\mathbf{f}_{t} \odot \mathbf{c}_{t-1}+\mathbf{i}_{t} \odot \mathbf{g}_{t}$
- Final hidden cell: $\mathbf{h}_{t}=\mathbf{o}_{t} \odot \tanh \left(\mathbf{c}_{t}\right)$

Backpropagation from \mathbf{c}_{t} to \mathbf{c}_{t-1} only element wise multiplication
by \mathbf{f}, no matrix multiply by \mathbf{W}

$$
\begin{aligned}
\left(\begin{array}{c}
i \\
f \\
o \\
g
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}} \\
c_{t} & =f \odot c_{t-1}+i \odot g \\
h_{t} & =o \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

How many parameters in total?
$4 \times\left(d^{2}+d m+d\right)$

LSTM cell intuitively

You can think of the LSTM equations visually like this:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-term Memory (LSTM)

Uninterrupted gradient flow!

- LSTM doesn't guarantee that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies
- LSTMs were invented in 1997 but finally got working from 2013-2015.

Is the LSTM architecture optimal?

MUT1:

$$
\begin{aligned}
z & =\operatorname{sigm}\left(W_{\mathrm{xz}} x_{t}+b_{\mathrm{z}}\right) \\
r & =\operatorname{sigm}\left(W_{\mathrm{xr}} x_{t}+W_{\mathrm{hr}} h_{t}+b_{\mathrm{r}}\right) \\
h_{t+1} & =\tanh \left(W_{\mathrm{hh}}\left(r \odot h_{t}\right)+\tanh \left(x_{t}\right)+b_{\mathrm{h}}\right) \odot z \\
& +h_{t} \odot(1-z)
\end{aligned}
$$

MUT2:

$$
\begin{aligned}
z & =\operatorname{sigm}\left(W_{\mathrm{xz}} x_{t}+W_{\mathrm{hz}} h_{t}+b_{\mathrm{z}}\right) \\
r & =\operatorname{sigm}\left(x_{t}+W_{\mathrm{hr}} h_{t}+b_{\mathrm{r}}\right) \\
h_{t+1} & =\tanh \left(W_{\mathrm{hh}}\left(r \odot h_{t}\right)+W_{x h} x_{t}+b_{\mathrm{h}}\right) \odot z \\
& +h_{t} \odot(1-z)
\end{aligned}
$$

MUT3:

$$
\begin{aligned}
z & =\operatorname{sigm}\left(W_{\mathrm{xz}} x_{t}+W_{\mathrm{hz}} \tanh \left(h_{t}\right)+b_{\mathrm{z}}\right) \\
r & =\operatorname{sigm}\left(W_{\mathrm{xr}} x_{t}+W_{\mathrm{hr}} h_{t}+b_{\mathrm{r}}\right) \\
h_{t+1} & =\tanh \left(W_{\mathrm{hh}}\left(r \odot h_{t}\right)+W_{x h} x_{t}+b_{\mathrm{h}}\right) \odot z \\
& +h_{t} \odot(1-z)
\end{aligned}
$$

Arch.	Arith.	XML	PTB
Tanh	0.29493	0.32050	0.08782
LSTM	0.89228	0.42470	0.08912
LSTM-f	0.29292	0.23356	0.08808
LSTM-i	0.75109	0.41371	0.08662
LSTM-o	0.86747	0.42117	0.08933
LSTM-b	0.90163	0.44434	0.08952
GRU	0.89565	0.45963	0.09069
MUT1	$\mathbf{0 . 9 2 1 3 5}$	$\mathbf{0 . 4 7 4 8 3}$	0.08968
MUT2	0.89735	$\mathbf{0 . 4 7 3 2 4}$	0.09036
MUT3	0.90728	0.46478	$\mathbf{0 . 0 9 1 6 1}$

Arch.	5M-tst	10M-v	20M-v	20M-tst
Tanh	4.811	4.729	4.635	$4.582(97.7)$
LSTM	4.699	4.511	4.437	$4.399(81.4)$
LTM-f	4.785	4.752	4.658	$4.606(100.8)$
LSTM-i	4.755	4.558	4.480	$4.444(85.1)$
LSTM-o	4.708	4.496	4.447	$4.411(82.3)$
LSTM-b	4.698	4.437	4.423	$\mathbf{4 . 3 8 0}(79.83)$
GRU	4.684	4.554	4.559	$4.599(91.7)$
MUT1	4.699	4.605	4.594	$4.550(4.4 .6$
MUT2	4.707	4.539	4.538	$4.503(90.2)$
MUT3	4.692	4.523	4.530	$4.494(89.47)$

Simple RNN vs GRU vs LSTM

$\mathbf{h}_{t}=g\left(\mathbf{W}_{h h} \mathbf{h}_{t-1}+\mathbf{U} \mathbf{x}_{t}+\mathbf{b}\right)$

$$
\mathbf{i}_{t}=\sigma\left(\mathbf{W}^{i} \mathbf{h}_{t-1}+\mathbf{U}^{i} \mathbf{x}_{t}+\mathbf{b}^{i}\right)
$$

$$
\mathbf{r}_{t}=\sigma\left(\mathbf{W}^{r} \mathbf{h}_{t-1}+\mathbf{U}^{r} \mathbf{x}_{t}+\mathbf{b}^{r}\right)
$$

$$
\mathbf{f}_{t}=\sigma\left(\mathbf{W}^{f} \mathbf{h}_{t-1}+\mathbf{U}^{f} \mathbf{x}_{t}+\mathbf{b}^{f}\right)
$$

$$
\mathbf{o}_{t}=\sigma\left(\mathbf{W}^{o} \mathbf{h}_{t-1}+\mathbf{U}^{o} \mathbf{x}_{t}+\mathbf{b}^{o}\right)
$$

$$
\mathbf{g}_{t}=\tanh \left(\mathbf{W}^{g} \mathbf{h}_{t-1}+\mathbf{U}^{g} \mathbf{x}_{t}+\mathbf{b}^{g}\right)
$$

$$
\mathbf{c}_{t}=\mathbf{c}_{t-1} \odot \mathbf{f}_{t}+\mathbf{g}_{t} \odot \mathbf{i}_{t}
$$

$$
\mathbf{h}_{t}=\tanh \left(\mathbf{c}_{t}\right) \odot \mathbf{o}_{t}
$$

Simple RNN

GRU

LSTM

Simple RNN vs GRU vs LSTM

$$
\begin{aligned}
\binom{r}{z} & =\binom{\sigma}{\sigma} W_{1}\binom{h_{t-1}}{x_{t}} \\
h_{t} & =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right) \\
\tilde{h}_{t} & =\tanh \left(W_{2}\binom{r \odot h_{t-1}}{x_{t}}\right) \\
h_{t} & =z_{t} \odot h_{t-1}+\left(1-z_{t}\right) \odot \tilde{h}_{t}
\end{aligned}\left(\begin{array}{c}
i \\
f \\
o \\
g
\end{array}\right)=\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}}
$$

Simple RNN

GRU

LSTM

GRU

$$
\begin{array}{lr}
z_{t}=\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) & \text { update } \\
r_{t}=\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) & \text { reset } \\
\tilde{h}_{t}=\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) & \\
h_{t}=\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t} & \text { final hidden state }
\end{array}
$$

- If reset is close to o, ignore previous hidden state
- Allows model to drop information that is irrelevant in the future
- Update gate z controls how much of past state should matter now.
- If z close to 1 , then we can copy information in that unit through many time steps! Less vanishing gradient!
- Units with short-term dependencies often have reset gates very active

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

$$
\begin{gathered}
\operatorname{ppl}(S)=2^{x} \text { where } \\
x=-\frac{1}{W} \sum_{i=1}^{n} \log _{2} P\left(S^{i}\right)
\end{gathered}
$$

KN5: Kneser-Ney 5-gram	Model	Individual	+KN5	+KN5+cache
	KN5	141.2	-	-
	KN5 + cache	125.7	-	-
	Feedforward NNLM	140.2	116.7	106.6
	Log-bilinear NNLM	144.5	115.2	105.8
Syntactical NNLM	131.3	110.0	101.5	
	124.7	105.7	97.5	
Recurrent NNLM	113.7	98.3	92.0	
RNN-LDA LM				

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

Model	\#Param	Validation	Test
Mikolov \& Zweig (2012) - RNN-LDA + KN-5 + cache	$9 \mathrm{M}^{\ddagger}$	-	92.0
Zaremba et al. (2014) - LSTM	20M	86.2	82.7
Gal \& Ghahramani (2016) - Variational LSTM (MC)	20M	-	78.6
Kim et al. (2016) - CharCNN	19M	-	78.9
Merity et al. (2016) - Pointer Sentinel-LSTM	21M	72.4	70.9
Grave et al. (2016) - LSTM + continuous cache pointer ${ }^{\dagger}$	-	-	72.1
Inan et al. (2016) - Tied Variational LSTM + augmented loss	24M	75.7	73.2
Zilly et al. (2016) - Variational RHN	23M	67.9	65.4
Zoph \& Le (2016) - NAS Cell	25M	-	64.0
Melis et al. (2017) - 2-layer skip connection LSTM	24M	60.9	58.3
Merity et al. (2017) - AWD-LSTM w/o finetune	24M	60.7	58.8
Merity et al. (2017) - AWD-LSTM	24M	60.0	57.3
Ours - AWD-LSTM-MoS w/o finetune	22M	58.08	55.97
Ours - AWD-LSTM-MoS	22M	56.54	54.44
Merity et al. (2017) - AWD-LSTM + continuous cache pointer ${ }^{\dagger}$	24M	53.9	52.8
Krause et al. (2017) - AWD-LSTM + dynamic evaluation ${ }^{\dagger}$	24M	51.6	51.1
Ours - AWD-LSTM-MoS + dynamic evaluation ${ }^{\dagger}$	22M	48.33	47.69

[^0]
Overview

- Review of Vanilla RNN
- Training RNNs
- Issues with Gradient Flows
- LSTMs and GRUs
- Applications
- Variants: Stacked RNNs, Bidirectional RNNs

Application:Text Generation

You can generate text by repeated sampling.
Sampled output is next step's input.

Fun with RNNs

Obama speeches

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American people that will share the fact that we created the problem. They were attacked and so that they have to say that all the task of the final days of war that I will not be able to get this done. The promise of the men and women who were still going to take out the fact that the American people have fought to make sure that they have to be able to protect our part. It was a chance to stand together to completely look for the commitment to borrow from the American people. And the fact is the men and women in uniform and the millions of our country with the law system that we should be a strong stretcks of the forces that we can afford to increase our spirit of the American people and the leadership of our country who are on the Internet of American lives.

Thank you very much. God bless you, and God bless the United States of America.

Latex generation

Application: Sequence Tagging

Input: a sentence of n words: x_{1}, \ldots, x_{n}
Output: $y_{1}, \ldots, y_{n}, y_{i} \in\{1, \ldots C\}$

$$
\begin{aligned}
P\left(y_{i}\right. & =k)=\operatorname{softmax}_{k}\left(\mathbf{W}_{o} \mathbf{h}_{i}\right) \quad \mathbf{W}_{o} \in \mathbb{R}^{C \times d} \\
L & =-\frac{1}{n} \sum_{i=1}^{n} \log P\left(y_{i}=k\right)
\end{aligned}
$$

Application:Text Classification

Input: a sentence of n words
Output: $y \in\{1,2, \ldots, C\}$

$$
P(y=k)=\operatorname{softmax}_{k}\left(\mathbf{W}_{o} \mathbf{h}_{n}\right) \quad \mathbf{W}_{o} \in \mathbb{R}^{C \times d}
$$

Application:Text classification

Conditional Text Generation

Multi-layer RNNs

- RNNs are already "deep" on one dimension (unroll over time steps)
- We can also make them "deep" in another dimension by applying multiple RNNs
- Multi-layer RNNs are also called stacked RNNs.

Stacking multi-layered RNNs

RNN layer 3

- The hidden states from RNN layer i are the inputs to RNN layer $i+1$

- In practice, using 2 to 4 layers is common (usually better than 1 layer)
- Transformer-based networks can be up to 24 layers with lots of skip-connections.

Bidirectional RNNs

- Bidirectionality is important in language representations:

terribly:
- left context "the movie was"
- right context "exciting !"

Bidirectional RNNs

Bidirectional RNNs

- Sequence tagging: Yes!
- Text classification: Yes! With slight modifications.

- Text generation: No. Why?

[^0]: (Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

