o
%
o% o

EidINatLangLab

CMPT 413/713: Natural Language Processing

Recurrent Neural Networks
LSTM and GRUs

How to model sequences using neural networks?

Spring 2024
2024-02-05

Adapted from slides from Danqi Chen, Karthik Narasimhan, and Justin Johnson
(Some slides adapted from Chris Manning, Abigail See, Andrej Karpathy)

Overview

Review of Vanilla RNN
Training RNNs

Issues with Gradient Flows
LSTMs and GRUs

Applications
Variants: Stacked RNNs, Bidirectional RNNs

Simple RNINs

Recurrent Neural Networks (RNNs)

w hy = hy =1 h;, " h; " h,

X

Structure of cell and weights are shared across time steps

Simple (vanilla) RNNs

d i o it o .
hO - R 1S dIl lnltlal state fulnC'non W|th We|ghts W

v od
//vht = Jw(h,_, Xa) € R
new state old state \input at time t
h, : hidden states which store information from X; to X,

Output label for each time step: Denote y, = softmax(W _h,), W_ & RILIXd

X Simple (vanilla) RNNs:
(h) h, = g(W,h_, + W x, +b) € R4
g E g: nonlinearity (e.g. tanh),
—>

W, € R*W_e& R b e R?

RNN Language Model T P ok et oot et

l laptops
output distribution :
§® = softmax (Uh(t) n b2) c RV OUtpUt label size: ‘V‘ — -
<a A Z(;O
U
h() h(L h(2) h(3) h(4)
hidden states @ ® O O O
(t) _ (t—1) (t) o W, |0 W, l@|Wr |@| Wr |@
h _a(Whh + Wee +b1) O >l @ >‘ >. >‘
h(9) is the initial hidden state O O O O O
. O O O O
word embeddings e(1) O e(2) O e(3)| O e(4) @) Use word
) — Fap®) O O O O .
O O O O embeddings
Te = T s
words / one-hot vectors the students opened their
() ¢ RIVI (1) 7 (2) 7 (3) 7 (4)

Slide credit: Chris Manning

Training the RNN

Training an RNIN Language Model

Get a big corpus of text (sequence of words x'V, ..., x1))

Feed into RNN-LM and compute output distribution $* for every step 7 (i.e
predict for every word, given words so far)

Loss function on step t is cross-entropy between predicted probability
distribution $, and the true next word y' (one-hot for x+1))

JOO) = CE(y?, §) = Z y1log §¥ = — log §

Xt+1
wevV

Average to get overall loss for the entire training set
T

1
JO) ==) J9O) =—-—=) logy?
(0) Tt—zf (0) Z gY¥x.,

Training an RNIN Language Model

=negative log prob
of “students”

Loss — | JW(g)] + JA@G) + JOO) + JHG) +.. = J(@):%ZJ“)(O)
A A A A —1
Predicted A . . .
() e e o
prob dists A A A N
U U U U
h(O)_ h(fl_)_ h(2) h(3) h(4)
O ® O O O
: Wh): Wi | @ Wh)' Wh | @ Wi
O O O
o O O O O
5 e
W, W, W, W,
(1) (2) 3) O (4)
€le|l “le| “le| e
@) O @) O
Te Tz Tz s
Corpus —> the students opened their exams
(1) p(2) 7 (3) p(4)

Slide credit: Chris Manning

Training an RNIN Language Model

=negative log prob

of “opened” .
Loss —— J)(g) + bIO0) + JO0O) 4. = TO)= 5> TO0)
A A A t=1

Predicted A . . .

R ¢} e e g@®
prob dists A A A N

U U U U

h(O)_ h(fl_)_ h(2) h(3) h(4)
O O O O O
: Wh): Wi | @ Wh)' Wh | @ Wi

O O O

o O O O O

. 5

W, W, W, W,
(1) (2) 3) O (4)

€le|l “ el “le| °|eo
@) O @) O

T & Tz (m

Corpus —> the students opened their exams
(1) 7 (2) 2 (3) p(4)

Slide credit: Chris Manning

Training an RNIN Language Model

=negative log prob

of “their” X
Loss — JO@) + J@) + JOG)| + JVOG) +.. = J0O) = %Z,ﬂ“(e)
A A N t=1

Predicted A 5 . .

() e e o
prob dists A A N N

U U U U

h(o)_ h(fl_)_\ h(2) h(3) h(4)
O O O O O
: Wh>: Wi | @ Wh)' Wh | @ Wi

O O O

L O O O O

5 e

W, W, W, W,
(1) (2) 3) O (4)

€le|l “ el “le| °|eo
O O O O

Te Tz Tz s

Corpus — the students opened their exams
(1) p(2) 7 (3) p(4)

Slide credit: Chris Manning

Training an RNIN Language Model

=negative log prob

of “exams” .
Loss —— JM(9) + JA@O) + JOG) IO +.. = IO =530
A A AN A t=1
Predicted 4 5@ §® G
prob dists A A A N
U U U U
h(O)_ h(fl_)_ h(2) h(3) h(4)
O O O O O
O Wh): Wh | @ Wh)' Wh | @ Wh
O O O O
o O O O O
5 .
W, W. W. W.
(1) (2) 3) O (4)
elel “le| “le|l e
@) O @) O
Te T& & s
Corpus —> the students opened their exams

(D) z(2) z(3) x4 Slide credit: Chris Manning

Training an RNIN Language Model

Loss — JW@) + JA@) + JOG) + JH@O) +..

AN AN AN AN
Predicted :t)(l) :l;l(z) g(3) g(4) Final Loss
prob dists A A A A
U U U U
h(o)_ h(fl_)_\ h(2) h(3) h(4)
O O O O O
O Wh>: Wh | @ Wh)' Wh | @ Wh
O O O O
O O O O O
— - N
W. W. W. W.
(1) (2) 3) O (4)
€le| “le| “le| ° e
O O @) O
Te T& & s
Corpus — the students opened their exams
(1) 7(2) 2(3) p(4)

Slide credit: Chris Manning

Training an RNN language Model

Note that computing loss and gradients for the whole corpus at once is too
expensive

In practice, consider xD_ . x™ for a sentence (or a document)
Use batching to parallelize computation over sentences

Use SGD to estimate parameters

Use computation graph with backprop

RNN Computation Graph

RNN Computation Graph

RNN Computation Graph

RNN Computation Graph

\P.

T

Y3

T

YT

T

Slide credit: Justin Johnson

RNN Computation Graph

\P.

T

Y3

T

YT

T

Slide credit: Justin Johnson

RNN Computation Graph

éL
e T / \
Y1 [L yo " Lo ys " L3 vt | Lt
T T T T

Training RNINLMs

e Backpropagation? Yes, but not that simple!

Y, 1L Y, L Ys 1 Ls Yr " Ly
T T T T
h0—>fW—>h1—>fW—>h2—>fW—>h3—> —>hT

e The algorithm is called Backpropagation Through Time (BPTT).

Slide credit: Justin Johnson

Backpropagation through time

Forward through entire sequence to compute loss, then
backward through entire sequence to compute gradient

—— /"

\\\\\\

Truncated backpropagation through time

e Backpropagation is very expensive if you handle long sequences

¢ Run forward and backward through chunks of the sequence instead of whole sequence

e Carry hidden states forward in time forever, but only backpropagate for some smaller
number of steps

Let’s consider the gradient wrt the
weight matrix

J(t)(g)
AN\
h,(0) h,(t—3) h,(t—2) h(t—1) h(t)
oJ 1 oJ® PY (Y () Gradient wrt a repeated weight is the
@Wh R @Wh oW, — lzzl oW, sum of the gradient wrt each time it

=1 (1) appears

Recall: Gradient sum at branches

Multivariate Chain Rule

One final output f(x(¢),y(t))

d of de Of dy
= fEl)u(t) =+ e
dt Or dt Oy dt
N —
Derivative of composition function Two intermediate
o Ollt‘(f)llts e L (t) y (t)

One input

\t/

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Recall: Gradient sum at branches

Apply the multivariable chain rule:

J(6) -1
Wh}(z) Wh|(t) (9 hl(i) oW,
Q
% t (¢)
®9us % 0\ I
/s $ eQ\ oW, Y

(1)

hl — g(Wth + WxXI + b)
h, = g(W;h; + W x; + b)
h3 — g(whhz T WXX3 T b)

Ly = —log y;(wy)

oL,

You should know how to compute: 8T
3

0Ly 0Ly oh; OL; ohy oh,

BPTT: Example for t=3

If 1 and are far away, the gradients
are likely to grow/shrink exponentially
(called the exploding or vanishing

gradient problem)

0L, oh, oh, oh,

= +

I
oh; oh, oh, oW,

Yy

=1 i=1

oh.

oh.

l

115

oW,

Exploding and vanishing gradients

(advanced)

Vanishing/exploding gradients

e Consider the gradient of L, at step 7, with respect to the hidden state h,
at some previous step k (k < 1):

0

oh, oh, | 2% ohy
oL
=Ty (diag (£Why_, +Ux; + b)) W)
oh, >i>k

e (Pascanu et al, 2013) showed that if the largest eigenvalue of W is less than 1

for g = tanh, then the gradient will shrink exponentially. This problem is
called vanishing gradients.

e In contrast, if the gradients are getting too large, it is called exploding
gradients.

Gradient flow through Vanilla RNN cell

First, using matrix notation

h, = tanh(Whhht_l -+ Wha:Xt)

h;_;

l ! — tanh ((Whh th) (

> stack > ht

Xt

)
Xt o (w (7))
t

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

)

Exploding and Vanishing Gradients

e D e N e
W*?Z tanh W_’?_’. tanh W—>?—>l tanh
No = > stack H——» hy 2 > stack “——» h, > stack H—
G T J - T / - T
X1 X2 X3

Largest singular value > 1:

Computing gradient of A Exploding gradients

involves many factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradient%

Difficult for model to

converge!

Why is exploding gradient a problem!?

e Gradients become too big and we take a very large step in SGD. Difficult for model to

| o N converge!
¢ Solution: Gradient clipping — if the norm of the gradient is greater

than some threshold, scale it down before applying SGD update.

Algorithm 1 Pseudo-code for norm clipping
A o€
& < B0
if ||g|| > threshold then

A threshold ~
< .
B gl 8
end if

|V L]||clipped

VL]

Exploding and Vanishing Gradients

4 R D s N s N
W—>O<—_> tanh W—>O<—_> tanh W—>O<—_> tanh W—>O<—_> tanh
h0< > stack H_—’ h1 < > stack H_—> h2 4 > stack H——» h3 > > stack H—-» h4
. T) T) . T . . T)
X1 X2 X3 X4
1 f s I I 1 Gradient clipping:
. . argest singular value > 1. Scale gradient if its norm is too big
Computing gradient of A _ . N2
PUting 9 0" Exploding gradients —> o

involves many factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradient%3

grad norm = np.sum(grad ~

1f grad norm > threshold:

grad

grad)

*= (threshold / grad norm)

> [IVL]]

Exploding and Vanishing Gradients

4 N 4 N 4 N 4 N
W—»?Z tanh W—»?z tanh W—»?z tanh W—»?: S
hO = > gstack T L—» h1 = > stack T L—» h2 = » stack T L—» h3 = » gstack T |__> h4
. T) . T) . T) . T)
X1 X2 X3 X4

Largest singular value > 1:

Computing gradient of A Exploding gradients

involves many factors of W
(and repeated tanh)

Largest singular value < 1 Can’t capture long distance

Vanishing gradients, dependencies.

Simple RNIN

iu,zztanh_<VV'<

ht—1

Lt

D,

tanh

)

Vanishing gradients

=
—
e
~—

>
—~~
bo
~—

>
~—
R
~—

cxexxy)
<

oJ\ Oh'?) Oh'®)
Oh(1) Oh(1) h(2)

What happens if these are small?

35

S
00e0)

()]1(4) 5)'/(1)
X

Oh®|" oh®

Vanishing gradient problem:

When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further

(Figure credit: Abigail See)

Can’t capture long distance
dependencies.

Vanishing Gradients

J@)(9) J(6)

N

Focus more on recent past.

h(1)

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are updated only with respect to near
effects, not long-term effects.

6 (Figure credit: Abigail See)

Exploding and Vanishing Gradients

~) B e B a B
W—»Oz tanh W—»OZ tanh W—»Oz tanh W-»Oz tanh

h0< > stack H_—’ h1 < > stack H_—> h2 4 > stack H——» h3 > > stack H—-» h4

. T) T) . T) . T)

X1 X2 X3 X4
_ Gradient clipping:
Computing gradient of / Largest singular value > 1: Scale gradient if its norm jswtgq big
0 Exploding gradients —> o Vet

involves many factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradients\%7

grad norm = np.sum(grad ~

1f grad norm > threshold:

grad

grad)

*= (threshold / grad norm)

> [IVL]]

—— Change RNN architecture

Different RNN cells

Long Short-term Memory (LSTM)

A type of RNN proposed by Hochreiter and Schmidhuber
in 1997 as a solution to the vanishing gradients problem

Work extremely well in practice

Basic idea: turning multiplication into addition

Use “gates” to control how much information to add/erase

h =f(h_,,x) € R?

At each timestep, there is a |

nidden state

h, € R? and also a cell state ¢, € R

¢, stores long-term information

We write/erase ¢, after each step

We read h, from c,

t-1

t-1

\
= G; — 1- — Ct
> f
= |
W_’CT>_ g}@ tavnh
- '
> stack
4 7 "o hT

Long Short-term Memory (LSTM)

Backpropagation from ¢, to ¢,_;

Use logistic for gatin . C e
o ° filter Ou%[, ® There are 3 gates and a memory cell: only element wise multiplication
1 = pass through ' i
P 5 ¢ Input gate (how much to write): by f, no matrix multiply by W
- i, = 6s(WWh,_, + U%, + b)) € R? 4 2
ﬁ Ct_1 . > (%—P 1;: Ct4 =
” e Forget gate (how much to erase): L f
J f,=c(WWh,_ + UYx, + b)) € R? .
| Il 5 1 1 | — | —L> \/
6 -4 -2 0 2 4 6 W_> _,_>® tanh
0 h h D: 3 :
Use tanh for output ~ ® utput gate (how much to reveal): ht-1 - stack | o h
(zero-centered for 0, = G(VV(O)ht_1 + U(O)Xt + b(O)) c R \ I t
feeding into next layer) ‘
bl X, Matrix form
e New memory cell (what to write): |
g = tanh(W9h_, + U9 + bl9) € R? /}\ - (; \ . (h, 1)
ol o \ oz
element-wise product \y/ \tanh) |
e Finalmemorycell: ¢,=1,Oc,_,;+1,0Og, ¢=fOc1+i®g

hy = o ® tanh(c;)

How many parameters in total? 4 X (dz + dm + d)

x, € R"

e Final hidden cell: h, = o, © tanh(c,)

LSTM cell intuitively

You can think of the LSTM equations visually like this:

Write some new cell content @

Forget some
cell content

=
Ct.1 =P P=—(X) S Ct
: C(tanh>
AP Wy W ¥ Wy Output some cell content
Compute the : to the hidden state
forget gate
h
Compute the @ Compute the Compute the
input gate new cell content output gate

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

41

Long Short-term Memory (LSTM)

Uninterrupted gradient flow!

-C

T

-C

2

e LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but

it does provide an easier way for the model to learn long-distance

dependencies

e LSTMs were invented in 1997 but finally got working from 2013-2015.

Is the LSTM architecture optimal?

Arch. Arith. XML PTB
MUTI: Tanh 0.29493 | 0.32050 | 0.08782
: = sigm(Wazs +b,) LSTM 0.89228 | 0.42470 | 0.08912
) ’ LSTM-f || 0.29292 | 0.23356 | 0.08808
ro= sigm(Wize + Wiche + ;) LSTM-i || 0.75109 | 0.41371 | 0.08662
hiv1 = tanh(Whn(r © he) + tanh(ze) +bn) © 2 LSTM-o || 0.86747 | 0.42117 | 0.08933
+ h®(1-2) LSTM-b || 0.90163 | 0.44434 | 0.08952
GRU 0.89565 | 0.45963 | 0.09069
MUT?2: MUTI 0.92135 | 0.47483 | 0.08968
MUT?2 0.89735 | 0.47324 | 0.09036
z = sigm(We,x, + Wy,hy +b,) MUTS3 0.90728 | 0.46478 | 0.09161
r = sigm(x; + Wyohe + by)
hiy1 = tanh(Wya(r © hy) + Wopx, +by) © 2 Arch. SM-tst | 1OM-v | 20M-v 20M-tst
+ oho(-2) Tanh 4811 | 4729 | 4.635 | 4.582(97.7)
LSTM | 4699 | 4511 | 4437 | 4399 (814)
LSTM-f | 4.785 | 4752 | 4.658 | 4.606 (100.8)
MUTS3: LSTM-i || 4755 | 4558 | 4.480 | 4.444 (85.1)
| , , LSTM-0 | 4.708 | 4.496 | 4.447 | 4411 (82.3)
2 = sigm(Wy,z, + Wi, tanh(h) + b,) LSTM-b | 4.698 | 4437 | 4.423 | 4380 (79.83)
r = sigm(Wieze + Wirhe + by) GRU 4.684 | 4554 | 4559 | 4519 (91.7)
hesr = tanh(Win(r ® hy) + Wopz, + by) © 2 MUTI 4.699 | 4605 | 4594 | 4.550(94.6)
_ MUT2 | 4707 | 4539 | 4538 | 4.503 (90.2)
+ he©(1-2) MUT3 | 4.692 | 4523 | 4530 | 4.494 (89.47)

(Jozefowicz et al, 2015): An Empirical Exploration of Recurrent Network Architectures

Simple RNN vs GRU vs LSTM

ri=0c(W'h;_1+U"x; +b")
z; = c(W?h;_1 + U*x; + b*)
h, = tanh(W (r; © hy_1) + Ux; + b)
h; = (1_Zt)@ht—1‘|‘zt@f1t

ht — g(Whhht—l —+ UXZ —+ b)

Simple RNN GRU

i = U(Wiht—l + U'x; + b")

f, = o(W'h,_; + U'x, + b?)

o; = o0(W°h;_1 + U’x; + b?)

g: = tanh(W%h;_; + U%x; + bY)
Ct =C—1 O + 8t Ol

h; = tanh(c;) ® o¢

LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ &+ o ke croeme e

44

Simple RNN vs GRU vs LSTM

()2

/;\

0,

Simple RNN GRU

\ 9 /

/g\

\ ta(;h)

= O 1+10g
ht = 0® tanh(ct)

LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ &+ o ke croeme e

45

GRU

hi
Zt — O (Wz ' :ht—la ZEt) Update
(X & _ _
re — O (Wr,a ' _ht—la CIZ’t_) reset
© ZM)
L T & he = tanh (W - [y % he_1, 24])
y he = (1 —2) *hy_1 + 2 xhy final hidden state

e Ifresetis close to 0, ignore previous hidden state
e Allows model to drop information that is irrelevant in the future
e Update gate z controls how much of past state should matter now.

e Ifzcloseto 1, then we can copy information in that unit through
many time steps! Less vanishing gradient!

e Units with short-term dependencies often have reset gates very active

Progress on language models

On the Penn Treebank (PTB) dataset ppl(S) =2* where
: . 1 & |
Metric: perplexity = —— ¥ l1oo. P(S
W ,=Z1 g, P(S)

Individual +KN5+cache

KN5: Kneser-Ney 5-gram

Feedforward NNLM
Log-bilinear NNLM
Syntactical NNLM

RNN-LDA LM 113.7 98.3 92.0

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

https://ieeexplore.ieee.org/author/37298983000

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

Model #Param Validation Test
Mikolov & Zweig (2012) —- RNN-LDA + KN-5 + cache OM* - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) — Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) — CharCNN 19M - 78.9
Merity et al. (2016) — Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2016) — LSTM + continuous cache pointer' - - 72.1
Inan et al. (2016) — Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) — Variational RHN 23M 67.9 65.4
Zoph & Le (2016) — NAS Cell 25M - 64.0

Melis et al. (2017) — 2-layer skip connection LSTM

60.9

58.3

Merity et al. (2017) — AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) - AWD-LSTM 24M 60.0 57.3
Ours — AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours — AWD-LSTM-MoS 22M 56.54 54.44
Merity et al. (2017) — AWD-LSTM + continuous cache pointer’ 24M 53.9 52.8
Krause et al. (2017) — AWD-LSTM + dynamic evaluation' 24M 51.6 51.1
Ours — AWD-LSTM-MoS + dynamic evaluation' 22M 48.33 47.69

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

Overview

Review of Vanilla RNN
Training RNNSs

Issues with Gradient Flows
LSTMs and GRUs

Applications
Variants: Stacked RNNs, Bidirectional RNNs

Application: Text Generation

favorite season is spring
Tsample Tsample Tsample Tsample
g(l) (2) g(‘ y(4
U iU iU iU
h(”,)_\ h(1) h(2) h(3) h(4)
O O O O O
: Wh>: Wh>: Wh): Wh>: Wh>
L O O O O
Iwe W. Iwe Iwe
o O O O
e(1) 8 e(2) 8 e(3) 8 e 8
o O O O
T e e Te
my favorite season is spring

You can generate text by repeated sampling.

Sampled output is next step’s input.

Fun with RNNs

Obama speeches

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will
not be able to get this done. The promise of the men and women who were still
going to take out the fact that the American people have fought to make sure
that they have to be able to protect our part. It was a chance to stand together
to completely look for the commitment to borrow from the American people.
And the fact is the men and women in uniform and the millions of our country
with the law system that we should be a strong stretcks of the forces that we can
afford to increase our spirit of the American people and the leadership of our

country who are on the Internet of American lives.

Thank you very much. God bless you, and God bless the United States of

America.

Latex generation

\begin{proof}

We may assume that \mathcal{I} is an abelian sheaf on $\mathcal{C}S$S.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let S$\mathfrak g$ be an abelian sheaf on $XS.

Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let \mathcal{F} be an abelian quasi-coherent sheaf on $\mathcal{C}S$.
Let \mathcal{F} be a coherent $\mathcal{0} X$-module. Then
S\mathcal{F}$ is an abelian catenary over $\mathcal{C}S$.

\item The following are equivalent

\begin{enumerate}

\item \mathcal{F} is an $\mathcal{O} X$-module.

\end{lemma}

Andrej Karpathy “The Unreasonable Effectiveness of Recurrent Neural Networks”

Application: Sequence Tagging

Input: a sentence of n words: x;, ..., x

Output: y, ...,y,,y; € {1,...C}

DT JJ NN VBN

N

O
—_

A A A

L R
O O
O O
O O
O O

O
—— o000} —>

L

the startled cat knocked over

~
>
M

P(y; = k) = softmax(W,h) W _ & RCxd

1 n
L=——§ﬁop.=k
nﬁlg(x)

—| 0000 — 2

vase

Application: Text Classification

Input: a sentence of n words

Output: y € {1,2,...,C}

-n

S S S Smm—

—> o — o [— —

o000 | —

0000

the movie was terribly exciting !

P(y = k) = softmax,(W _h) W e R

Application: Text classification

positive How to compute
A o
sentence encoding?
H Usually bett
O sually better:
Senter?ce 2 Take element-wise
encoding O
' max or mean of all
hidden states
° o O - o O O
2 o ® O O
o le| le| le[le[le| |e
O O O O O O O
" — " — " — —

overall / enjoyed the movie a lot

Conditional Text Generation

RNN-LM
R N
: what’s
Input (audio) ¢ the weather
‘| | ' e O O O
PRV condtionne 1g| o] e
a0 ® O O
| ‘ ‘ ‘
> 7 —

<START> what’s the

Multi-layer RNNs

RNNs are already “deep” on one dimension (unroll over time
steps)

We can also make them “deep” in another dimension by
applying multiple RNNs

Multi-layer RNNs are also called stacked RINNs.

Stacking multi-layered RNNs

0 ‘@ (@ 0 0) . .
RNN layer 3 0 0 0 | @ 0 0O e The hidden states from RNN layer i are
@) @) O 1@ O O . .
0 0 0 0 0 0 the inputs to RNN layer i + 1
e 5 " e 5
‘@ @ ‘@ 0 0))
RNN layer 2 ® ® ® > ® ® ®
y : . : : : : Layer |-2
@) :
= % = - = — skip-
connections
— PR B - . g S e, i Layer I-1
@) @) O @) O @) *
RNN layer 1 : > : : > : -~ : :
o) e o) L o) _.T “I”
the movie was terfib/y exciting /

e In practice, using 2 to 4 layers is common (usually better than 1 layer)
e Transformer-based networks can be up to 24 layers with lots of skip-connections.

Bidirectional RN Ns

e Bidirectionality is important in language representations:

O O O O O O
O Q. 5 Q| | @ O O
O O o 1@ O O
O O O O O O
the movie was terribly exciting /
terribly:

o left context “the movie was”
e right context “exciting !”

Bidirectional RN Ns

This contextual representation of “terribly”
has both left and right context!

Concatenated
hidden states

h =fh_,,x)eR?

........]\

g

]/g........]
Yj........}
}/i"-""']

RN
[]Cl(ht—laxt)atz 1,2,...n

ﬁ
t fZ(ht+1a X;)at = n,n— 1,1

Backward RNN

_)
h
&
h

;

\\{0000
\\itooc

{0000
—xD

Forward RNN

o000
XX}

Sl
~
.\

:

h,=[h,h]eR¥

~—e000

the movie

2

as terribly exciting !

Bidirectional RN Ns

e Sequence tagging: Yes!
e Text classification: Yes! With slight modifications.

o |
o)
—1 0 o
O Sentence encoding O
s (e[Sl e :
O O
O O o O
O O O O
O
O
o o lo| lo| [o| lo| |
° O O 0 0 0 O
@ O @ @ @ @
the movie was terribly exciting ! T T T T T
the movie was terribly exciting !

e Text generation: No. Why?

