
Recurrent Neural Networks
LSTM and GRUs

Spring 2024

2024-02-05

CMPT 413/713: Natural Language Processing

How to model sequences using neural networks?

(Some slides adapted from Chris Manning, Abigail See, Andrej Karpathy)

SFUNatLangLab

Adapted from slides from Danqi Chen, Karthik Narasimhan, and Justin Johnson

Overview

• Review of Vanilla RNN

• Training RNNs

• Issues with Gradient Flows

• LSTMs and GRUs

• Applications

• Variants: Stacked RNNs, Bidirectional RNNs

Simple RNNs

3

Recurrent Neural Networks (RNNs)

x

RNN

y

h0

x1

y1

h1

x2

y2

h2

x3

y3

h3

xn

yn

hn…

Structure of cell and weights are shared across time steps

Simple (vanilla) RNNs

h0 ∈ ℝd is an initial state

ht = fW(ht−1, xt) ∈ ℝd

ht = g(Whht−1 + Wxxt + b) ∈ ℝd

Simple (vanilla) RNNs:

Wh ∈ ℝd×d, Wx ∈ ℝd×din, b ∈ ℝd

: nonlinearity (e.g. tanh),g

ht : hidden states which store information from to x1 xt

x

RNN

y

Output label for each time step: Denote , ŷt = softmax(Woht) Wo ∈ ℝ|L|×d

new state old state input at time t

function with weights W

RNN Language Model

Slide credit: Chris Manning

Use word
embeddings

Output label size: |V|

Training the RNN

7

Training an RNN Language Model

• Get a big corpus of text (sequence of words)

• Feed into RNN-LM and compute output distribution for every step (i.e
predict for every word, given words so far)

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for)

• Average to get overall loss for the entire training set

x(1), …, x(T)

̂y(t) t

̂y(t) y(t) x(t+1)

J(t)(θ) = CE(y(t), ŷ(t)) = − ∑
w∈V

y(t)
w log ŷ(t)

w = − log ŷ(t)
xt+1

J(θ) =
1
T

T

∑
t=1

J(t)(θ) = −
1
T

T

∑
t=1

log ŷ(t)
xt+1

Training an RNN Language Model
=negative log prob

of “students”

Slide credit: Chris Manning

Training an RNN Language Model
=negative log prob

of “opened”

Slide credit: Chris Manning

Training an RNN Language Model
=negative log prob

of “their”

Slide credit: Chris Manning

Training an RNN Language Model
=negative log prob

of “exams”

Slide credit: Chris Manning

Training an RNN Language Model

Final Loss

Slide credit: Chris Manning

Training an RNN language Model

• Note that computing loss and gradients for the whole corpus at once is too
expensive

• In practice, consider for a sentence (or a document)

• Use batching to parallelize computation over sentences

• Use SGD to estimate parameters

• Use computation graph with backprop

x(1), …, x(T)

RNN Computation Graph

h0 fW h1

x1

Slide credit: Justin Johnson

h0 fW h1 fW h2

x2x1

RNN Computation Graph

Slide credit: Justin Johnson

h0 fW h1 fW h2 fW h3

x3

…
x2x1

hT

RNN Computation Graph

Slide credit: Justin Johnson

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

hT

y3y2y1

RNN Computation Graph

Slide credit: Justin Johnson

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

hT

y3y2y1 L1 L2 L3 LT

RNN Computation Graph

Slide credit: Justin Johnson

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

RNN Computation Graph

Training RNNLMs

• Backpropagation? Yes, but not that simple!

• The algorithm is called Backpropagation Through Time (BPTT).

Slide credit: Justin Johnson

Backpropagation through time

Loss

Forward through entire sequence to compute loss, then
backward through entire sequence to compute gradient

Truncated backpropagation through time

• Backpropagation is very expensive if you handle long sequences

• Run forward and backward through chunks of the sequence instead of whole sequence

• Carry hidden states forward in time forever, but only backpropagate for some smaller
number of steps

Let’s consider the gradient wrt the
weight matrix

∂J
∂Wh

= −
1
n

n

∑
t=1

∂J(t)

∂Wh

∂J(t)

∂Wh
=

t

∑
i=1

∂J(t)

∂Wh (i)

Gradient wrt a repeated weight is the
sum of the gradient wrt each time it
appears

Recall: Gradient sum at branches

Multivariate Chain Rule

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Recall: Gradient sum at branches

BPTT: Example for t=3

h1 = g(Whh0 + Wxx1 + b)
h2 = g(Whh1 + Wxx2 + b)
h3 = g(Whh2 + Wxx3 + b)
L3 = − log ŷ3(w4)

You should know how to compute:
∂L3

∂h3

∂L3

∂Wh
=

∂L3

∂h3

∂h3

∂Wh
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂Wh
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂Wh

∂L
∂Wh

= −
1
n

n

∑
t=1

t

∑
i=1

∂Lt

∂ht

t

∏
j=i+1

∂hj

∂hj−1

∂hi

∂Wh

If and are far away, the gradients
are likely to grow/shrink exponentially
(called the exploding or vanishing
gradient problem)

i t

∂J(t)

∂Wh
=

t

∑
i=1

∂J(t)

∂Wh (i)

Lt = J(t)

Exploding and vanishing gradients

28

Vanishing/exploding gradients

• Consider the gradient of at step , with respect to the hidden state
at some previous step ():

Lt t hk
k k < t

∂Lt

∂hk
=

∂Lt

∂ht ∏
t≥j>k

∂hj

∂hj−1

(advanced)

• (Pascanu et al, 2013) showed that if the largest eigenvalue of is less than 1
for , then the gradient will shrink exponentially. This problem is
called vanishing gradients.

W
g = tanh

• In contrast, if the gradients are getting too large, it is called exploding
gradients.

=
∂Lt

∂ht
× ∏

t≥j>k
(diag (g′￼(Whj−1 + Uxj + b)) W)

Gradient flow through Vanilla RNN cell

ht-1

xt

W

stack

tanh

ht

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

<latexit sha1_base64="uOmytey8XqJrRockVJCg83P0Hts=">AAADZnictVJNb9QwEPUmfLQByrYV4sDFYgXaCrFKUFW4IFVw4VgktltpvYocZ7Kx6jiR7VRdhfxJbpy58DNwslm16fbKWJZHM2/mPY8mKgTXxvd/Dxz3wcNHj3d2vSdPn+09H+4fnOu8VAymLBe5uoioBsElTA03Ai4KBTSLBMyiy69NfnYFSvNc/jCrAhYZXUqecEaNDYX7g58kgiWXFRV8KSGuPZJRk0ZJldahwW8/Y2KoTMeb6KwOqzSt8S1UZd4HNX6He5DrG8i1bXSECfFsM6/thomAxIzxdtfm9Nsc2ZoW7W2EKkVXdcV6StcaCOmRegRk3OExUXyZNjo27z16bqj/H+k63Q07HI78id8a3naCzhmhzs7C4S8S56zMQBomqNbzwC/MwtIZzgRYdaWGgrJLuoS5dSXNQC+qdk1q/MZGYpzkyl5pcBu9XVHRTOtVFllk8yF9N9cE78vNS5N8WlRcFqUBydZESSmwyXGzczjmCpgRK+tQprjVillKFWXGbqZnhxDc/fK2c/5hEpxMjr8fj06/dOPYQa/QazRGAfqITtE3dIamiA3+OLvOgXPo/HX33BfuyzXUGXQ1h6hnLv4H6sEVcQ==</latexit>

ht = tanh(Whhht�1 +Whxxt)

= tanh

✓
(Whh Whx)

✓
ht�1

xt

◆◆

= tanh

✓
W

✓
ht�1

xt

◆◆

First, using matrix notation

Exploding and Vanishing Gradients

Computing gradient of
involves many factors of

(and repeated tanh)

h0

W

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

31

Difficult for model to
converge!

Why is exploding gradient a problem?

• Gradients become too big and we take a very large step in SGD.

• Solution: Gradient clipping — if the norm of the gradient is greater
than some threshold, scale it down before applying SGD update.

Difficult for model to
converge!

Exploding and Vanishing Gradients

Computing gradient of
involves many factors of

(and repeated tanh)

h0

W

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

33

Gradient clipping:

Scale gradient if its norm is too big

Exploding and Vanishing Gradients

Computing gradient of
involves many factors of

(and repeated tanh)

h0

W

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

34

Can’t capture long distance
dependencies.

Vanishing gradients

35

<latexit sha1_base64="Maws8vewZ18IZPvCpd37UgwL1jc=">AAACSHicbVBLS+wwGE3Hd69XR126CQ6Cd3GHVkXdCKIblwqOI0yHkma+ToNpWpKv4lDm57lx6c7f4MaFIu7MjBV8HQg5nPM9khPlUhj0vHunNjE5NT0zO+f+mf+7sFhfWj43WaE5tHgmM30RMQNSKGihQAkXuQaWRhLa0eXRyG9fgTYiU2c4yKGbsr4SseAMrRTWwyREuk8DhGsskalkSAMJMW7Q9gdxgwj6QpVMazYYlnzoJmGJ/31bGVD3OkQ3ANWrbDfQop/gP1rdYb3hNb0x6E/iV6RBKpyE9bugl/EiBYVcMmM6vpdj105HwSXY+YWBnPFL1oeOpYqlYLrlOIghXbdKj8aZtkchHaufO0qWGjNII1uZMkzMd28k/uZ1Coz3uqVQeYGg+PuiuJAUMzpKlfaEBo5yYAnjWti3Up4wzTja7F0bgv/9yz/J+WbT32lunW43Dg6rOGbJKlkjG8Qnu+SAHJMT0iKc3JAH8kSenVvn0XlxXt9La07Vs0K+oFZ7A3tksQQ=</latexit>

ht = tanh

✓
W

✓
ht�1

xt

◆◆

Simple RNN

(Figure credit: Abigail See)

Vanishing Gradients

36 (Figure credit: Abigail See)

Focus more on recent past.

Can’t capture long distance
dependencies.

Exploding and Vanishing Gradients

Computing gradient of
involves many factors of

(and repeated tanh)

h0

W

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping:

Scale gradient if its norm is too big

Change RNN architecture
37

Different RNN cells

38

Long Short-term Memory (LSTM)
• A type of RNN proposed by Hochreiter and Schmidhuber

in 1997 as a solution to the vanishing gradients problem

ht = f(ht−1, xt) ∈ ℝd

• Work extremely well in practice

• Basic idea: turning multiplication into addition

• Use “gates” to control how much information to add/erase

• At each timestep, there is a hidden state
 and also a cell state

• stores long-term information

• We write/erase after each step

• We read from

ht ∈ ℝd ct ∈ ℝd

ct

ct

ht ct

Long Short-term Memory (LSTM)

There are 3 gates and a memory cell:

• Input gate (how much to write):
it = σ(W(i)ht−1 + U(i)xt + b(i)) ∈ ℝd

• Forget gate (how much to erase):
ft = σ(W(f)ht−1 + U(f)xt + b(f)) ∈ ℝd

• Output gate (how much to reveal):
ot = σ(W(o)ht−1 + U(o)xt + b(o)) ∈ ℝd

• New memory cell (what to write):
gt = tanh(W(c)ht−1 + U(c)xt + b(c)) ∈ ℝd

• Final memory cell: ct = ft ⊙ ct−1 + it ⊙ gt

• Final hidden cell: ht = ot ⊙ tanh(ct)

element-wise product

Backpropagation from to
only element wise multiplication
by , no matrix multiply by

ct ct−1

f W

4 × (d2 + dm + d)

Matrix form

Use logistic for gating
0 = filter out,

1 = pass through

Use tanh for output

(zero-centered for

feeding into next layer)

How many parameters in total?
xt ∈ ℝm

LSTM cell intuitively

41

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-term Memory (LSTM)

• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but
it does provide an easier way for the model to learn long-distance
dependencies

• LSTMs were invented in 1997 but finally got working from 2013-2015.

Is the LSTM architecture optimal?

(Jozefowicz et al, 2015): An Empirical Exploration of Recurrent Network Architectures

Simple RNN vs GRU vs LSTM

Simple RNN GRU LSTM

44

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ht = g(Whhht−1 + Uxt + b)

<latexit sha1_base64="Fs4U4eBLfqk4ItYcr2PMeVkhEGE=">AAADsnichZJNj9MwEIbdhI+lfHXhyMWiArVCWxJUARekFVw4LhLZrmi6keO4ibWOE9kTRBvl/3Hmxr/BadNuuqVgKdL4nfE8M5MJc8E1OM7vjmXfun3n7tG97v0HDx897h0/OddZoSjzaCYydRESzQSXzAMOgl3kipE0FGwSXn2q/ZPvTGmeya+wyNksJbHkc04JGCk47vz0QxZzWRLBY8miquunBJJwXqoqAPzyA/Y1j1My2MiT6lLhzSWpghJO3Aq/2kpe2/+jznHtC41viH1/y1geZCz/w1j+g7FcM4CLiJXXaTYsIDJpofCg1XEJFfazKIM9/HCHf5i+01/SMAcuPsHtpocHKK1Uq9k0Ufut1IV2fSaj7Y8Len1n5KwO3jfcxuij5pwFvV9+lNEiZRKoIFpPXSeHWUkUcCqYWYRCs5zQKxKzqTElSZmelauVq/ALo0R4ninzScArtf2iJKnWizQ0kXXV+qavFv/mmxYwfz8rucwLYJKuQfNCYMhwvb844opREAtjEKq4qRXThChCwWx51wzBvdnyvnH+ZuS+HY2/jPunH5txHKFn6DkaIBe9Q6foMzpDHqLWa8uzLq3AHtvfbGLTdajVad48RTvHFn8A8R00Dg==</latexit>

rt = �(Wrht�1 +Urxt + br)

zt = �(Wzht�1 +Uzxt + bz)

h̃t = tanh(W(rt � ht�1) +Uxt + b)

ht = (1� zt)� ht�1 + zt � h̃t

Simple RNN vs GRU vs LSTM

Simple RNN GRU LSTM

45

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

<latexit sha1_base64="Maws8vewZ18IZPvCpd37UgwL1jc=">AAACSHicbVBLS+wwGE3Hd69XR126CQ6Cd3GHVkXdCKIblwqOI0yHkma+ToNpWpKv4lDm57lx6c7f4MaFIu7MjBV8HQg5nPM9khPlUhj0vHunNjE5NT0zO+f+mf+7sFhfWj43WaE5tHgmM30RMQNSKGihQAkXuQaWRhLa0eXRyG9fgTYiU2c4yKGbsr4SseAMrRTWwyREuk8DhGsskalkSAMJMW7Q9gdxgwj6QpVMazYYlnzoJmGJ/31bGVD3OkQ3ANWrbDfQop/gP1rdYb3hNb0x6E/iV6RBKpyE9bugl/EiBYVcMmM6vpdj105HwSXY+YWBnPFL1oeOpYqlYLrlOIghXbdKj8aZtkchHaufO0qWGjNII1uZMkzMd28k/uZ1Coz3uqVQeYGg+PuiuJAUMzpKlfaEBo5yYAnjWti3Up4wzTja7F0bgv/9yz/J+WbT32lunW43Dg6rOGbJKlkjG8Qnu+SAHJMT0iKc3JAH8kSenVvn0XlxXt9La07Vs0K+oFZ7A3tksQQ=</latexit>

ht = tanh

✓
W

✓
ht�1

xt

◆◆

<latexit sha1_base64="izIFcMR71ykBV3NCbumPPzRIeBI=">AAADGHicdVLLbtQwFHXCq4TXFJZsLEagqRCjBBCwQarKhmWRmE6l8ShyHCex6tiRfYMYRfmMbvorbFiAKrbd8Tc4UyNBO71SrKNz7zk5uXHWSGEhjn8H4bXrN27e2rod3bl77/6D0fbDA6tbw/iMaanNYUYtl0LxGQiQ/LAxnNaZ5PPs6MPQn3/hxgqtPsOq4cualkoUglFwVLodTEnGS6E6KkWpeN5HRPICJvgvbQxd9R3rI4EJwcVw6OEoI8JV7vuYGFFWsIOfvcdXGhArypoO2o0IqKo2eUbzKx2rtIMXST/Iv6awUUxIxFIYcrnoOteAmRc9x8IzpTNwXusp7bl1nImT7nhbv550NI6n8brwZZB4MEa+9tPRGck1a2uugElq7SKJG1i6mCCY5G4rreUNZUe05AsHFa25XXbrH9vjp47JcaGNe5SLPrD/KjpaW7uqMzdZU6jsxd5AbuotWijeLTuhmha4YucvKlqJQePhluBcGM5ArhygzAiXFbOKGsrA3aXILSG5+MmXwcHLafJm+urT6/Hunl/HFnqMnqAJStBbtIs+on00Qyw4Dr4FP4Kf4Un4PTwNf52PhoHXPEL/VXj2BxYp91A=</latexit>0

BB@

i
f
o
g

1

CCA =

0

BB@

�
�
�

tanh

1

CCAW

✓
ht�1

xt

◆

ct = f � ct�1 + i� g

ht = o� tanh(ct)

<latexit sha1_base64="qB4/Z2ehVRj7hwCSx5ncTKxadjA=">AAADYnichVJBb9MwFHYTxkaArWVHOFhUoE5oVTLQ4II0wYXjkOg6qa4ix3ESa44T2S/Tuih/khsnLvwQnDZI3daKJ1n+9D1/33t+elEphQHf/9Vz3Ec7j3f3nnhPnz3fP+gPXlyYotKMT1ghC30ZUcOlUHwCAiS/LDWneST5NLr62uan11wbUagfsCj5PKepEolgFCwVDno3JOKpUDWVIlU8bjwieQIj/I/Wmi6amjWexoTgW49wFXcsJlqkGRzht5/xVhkxIs1pq+3QJgdvGgZbHbKwhuOgaS1uQtgoJ8QjIGTM66wJoe2HAFUZ7iyn4cn2Bu2/irgA/P8y6+WyVZlbe92Vv8Oj4NjSRx2/1lfn2Q067A/9sb8M/BAEHRiiLs7D/k8SF6zKuQImqTGzwC9hbnsEwSS3k64MLym7oimfWahozs28Xq5Ig99YJsZJoe1RgJfsuqKmuTGLPLIvcwqZuZ9ryU25WQXJp3ktVFkBV2xVKKkkhgK3+4ZjoTkDubCAMi1sr5hlVFMGdis9O4Tg/pcfgouTcXA6fv/9w/DsSzeOPfQSvUYjFKCP6Ax9Q+dogljvt7Pj7DsHzh/Xcwfu4eqp0+s0h+hOuK/+Alr6DzI=</latexit>✓
r
z

◆
=

✓
�
�

◆
W1

✓
ht�1

xt

◆

h̃t = tanh

✓
W2

✓
r � ht�1

xt

◆◆

ht = zt � ht�1 + (1� zt)� h̃t

GRU

• If reset is close to 0, ignore previous hidden state

• Allows model to drop information that is irrelevant in the future

• Update gate z controls how much of past state should matter now.	

• If z close to 1,	 then we can copy information in that unit	 through	

many	 time steps!	Less vanishing	gradient!	

• Units with short-term dependencies often have reset gates	very active

reset

update

final hidden state

On the Penn Treebank (PTB) dataset
Metric: perplexity

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

KN5: Kneser-Ney 5-gram

Progress on language models

https://ieeexplore.ieee.org/author/37298983000

Progress on language models

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset
Metric: perplexity

Overview

• Review of Vanilla RNN

• Training RNNs

• Issues with Gradient Flows

• LSTMs and GRUs

• Applications

• Variants: Stacked RNNs, Bidirectional RNNs

Application: Text Generation

You can generate text by repeated sampling.

Sampled output is next step’s input.

Fun with RNNs

Andrej Karpathy “The Unreasonable Effectiveness of Recurrent Neural Networks”

Obama speeches Latex generation

Application: Sequence Tagging

P(yi = k) = softmaxk(Wohi) Wo ∈ ℝC×d

L = −
1
n

n

∑
i=1

log P(yi = k)

Input: a sentence of n words: x1, …, xn

Output: y1, …, yn, yi ∈ {1,…C}

Application: Text Classification

the movie was terribly exciting !

hn

P(y = k) = softmaxk(Wohn) Wo ∈ ℝC×d

Input: a sentence of n words

Output: y ∈ {1,2,…, C}

Application: Text classification

Conditional Text Generation

Multi-layer RNNs

• RNNs are already “deep” on one dimension (unroll over time
steps)

• We can also make them “deep” in another dimension by
applying multiple RNNs

• Multi-layer RNNs are also called stacked RNNs.

Stacking multi-layered RNNs

• The hidden states from RNN layer are
the inputs to RNN layer

i
i + 1

• In practice, using 2 to 4 layers is common (usually better than 1 layer)

• Transformer-based networks can be up to 24 layers with lots of skip-connections.

Bidirectional RNNs

• Bidirectionality is important in language representations:

terribly:

• left context “the movie was”

• right context “exciting !”

Bidirectional RNNs

ht = f(ht−1, xt) ∈ ℝd

h t = f1(h t−1, xt), t = 1,2,…n

h t = f2(h t+1, xt), t = n, n − 1,…1

ht = [h t, h t] ∈ ℝ2d

Bidirectional RNNs

• Sequence tagging: Yes!

• Text classification: Yes! With slight modifications.

• Text generation: No. Why?

terribly exciting !the movie was
terribly exciting !the movie was

Sentence encoding

element-wise mean/max element-wise mean/max

