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Overview

• Review of Vanilla RNN

• Training RNNs

• Issues with Gradient Flows

• LSTMs and GRUs

• Applications

• Variants: Stacked RNNs, Bidirectional RNNs



Simple RNNs
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Recurrent Neural Networks (RNNs)
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Structure of cell and weights are shared across time steps



Simple (vanilla) RNNs

h0 ∈ ℝd is an initial state

ht = fW(ht−1, xt) ∈ ℝd

ht = g(Whht−1 + Wxxt + b) ∈ ℝd

Simple (vanilla) RNNs:

Wh ∈ ℝd×d, Wx ∈ ℝd×din, b ∈ ℝd

: nonlinearity (e.g. tanh),g

ht : hidden states which store information from  to x1 xt

x

RNN

y

Output label for each time step: Denote , ŷt = softmax(Woht) Wo ∈ ℝ|L|×d

new state old state input at time t

function with weights W



RNN Language Model

Slide credit: Chris Manning

Use word 
embeddings

Output label size: |V|



Training the RNN
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Training an RNN Language Model

• Get a big corpus of text (sequence of words )


• Feed into RNN-LM and compute output distribution  for every step  (i.e 
predict for every word, given words so far)


• Loss function on step t is cross-entropy between predicted probability 
distribution , and the true next word  (one-hot for  )


            


• Average to get overall loss for the entire training set

x(1), …, x(T)

̂y(t) t

̂y(t) y(t) x(t+1)

J(t)(θ) = CE(y(t), ŷ(t)) = − ∑
w∈V

y(t)
w log ŷ(t)

w = − log ŷ(t)
xt+1

J(θ) =
1
T

T

∑
t=1

J(t)(θ) = −
1
T

T

∑
t=1

log ŷ(t)
xt+1



Training an RNN Language Model
=negative log prob 


of “students”   

Slide credit: Chris Manning



Training an RNN Language Model
=negative log prob 


of “opened”   

Slide credit: Chris Manning



Training an RNN Language Model
=negative log prob 


of “their”   

Slide credit: Chris Manning



Training an RNN Language Model
=negative log prob 


of “exams”   

Slide credit: Chris Manning



Training an RNN Language Model

Final Loss

Slide credit: Chris Manning



Training an RNN language Model

• Note that computing loss and gradients for the whole corpus at once is too 
expensive


• In practice, consider   for a sentence (or a document)

• Use batching to parallelize computation over sentences

• Use SGD to estimate parameters

• Use computation graph with backprop

x(1), …, x(T)



RNN Computation Graph
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Slide credit: Justin Johnson



h0 fW h1 fW h2
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RNN Computation Graph

Slide credit: Justin Johnson
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RNN Computation Graph

Slide credit: Justin Johnson
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Slide credit: Justin Johnson
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Slide credit: Justin Johnson
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Training RNNLMs

• Backpropagation? Yes, but not that simple!

• The algorithm is called Backpropagation Through Time (BPTT).

Slide credit: Justin Johnson



Backpropagation through time

Loss

Forward through entire sequence to compute loss, then 
backward through entire sequence to compute gradient



Truncated backpropagation through time

• Backpropagation is very expensive if you handle long sequences

• Run forward and backward through chunks of the sequence instead of whole sequence

• Carry hidden states forward in time forever, but only backpropagate for some smaller 
number of steps



Let’s consider the gradient wrt the 
weight matrix

∂J
∂Wh

= −
1
n

n

∑
t=1

∂J(t)

∂Wh

∂J(t)

∂Wh
=

t

∑
i=1

∂J(t)

∂Wh (i)

Gradient wrt a repeated weight is the 
sum of the gradient wrt each time it 
appears



Recall: Gradient sum at branches

Multivariate Chain Rule

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version



Recall: Gradient sum at branches



BPTT: Example for t=3

h1 = g(Whh0 + Wxx1 + b)
h2 = g(Whh1 + Wxx2 + b)
h3 = g(Whh2 + Wxx3 + b)
L3 = − log ŷ3(w4)

You should know how to compute: 
∂L3

∂h3

∂L3

∂Wh
=

∂L3

∂h3

∂h3

∂Wh
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂Wh
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂Wh

∂L
∂Wh

= −
1
n

n

∑
t=1

t

∑
i=1

∂Lt

∂ht

t

∏
j=i+1

∂hj

∂hj−1

∂hi

∂Wh

If  and  are far away, the gradients 
are likely to grow/shrink exponentially 
(called the exploding or vanishing 
gradient problem) 

i t

∂J(t)

∂Wh
=

t

∑
i=1

∂J(t)

∂Wh (i)

Lt = J(t)



Exploding and vanishing gradients
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Vanishing/exploding gradients 

• Consider the gradient of  at step , with respect to the hidden state  
at some previous step  ( ):

Lt t hk
k k < t

∂Lt

∂hk
=

∂Lt

∂ht ∏
t≥j>k

∂hj

∂hj−1

(advanced)

• (Pascanu et al, 2013) showed that if the largest eigenvalue of  is less than 1   
for , then the gradient will shrink exponentially. This problem is 
called vanishing gradients.

W
g = tanh

• In contrast, if the gradients are getting too large, it is called exploding 
gradients.

=
∂Lt

∂ht
× ∏

t≥j>k
(diag (g′￼(Whj−1 + Uxj + b)) W)



Gradient flow through Vanilla RNN cell

ht-1

xt

W

stack

tanh

ht

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013


<latexit sha1_base64="uOmytey8XqJrRockVJCg83P0Hts="></latexit>

ht = tanh(Whhht�1 +Whxxt)

= tanh

✓
(Whh Whx)

✓
ht�1

xt

◆◆

= tanh

✓
W

✓
ht�1

xt

◆◆

First, using matrix notation



Exploding and Vanishing Gradients

Computing gradient of  
involves many factors of 

(and repeated tanh)

h0

W

Largest singular value > 1: 
Exploding gradients


Largest singular value < 1: 
Vanishing gradients

31

Difficult for model to 
converge!



Why is exploding gradient a problem?

• Gradients become too big and we take a very large step in SGD.

• Solution: Gradient clipping — if the norm of the gradient is greater 
than some threshold, scale it down before applying SGD update.

Difficult for model to 
converge!



Exploding and Vanishing Gradients

Computing gradient of  
involves many factors of 

(and repeated tanh)

h0

W

Largest singular value > 1: 
Exploding gradients


Largest singular value < 1: 
Vanishing gradients
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Gradient clipping: 

Scale gradient if its norm is too big



Exploding and Vanishing Gradients

Computing gradient of  
involves many factors of 

(and repeated tanh)

h0

W

Largest singular value > 1: 
Exploding gradients


Largest singular value < 1: 
Vanishing gradients

34

Can’t capture long distance 
dependencies. 



Vanishing gradients
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<latexit sha1_base64="Maws8vewZ18IZPvCpd37UgwL1jc="></latexit>

ht = tanh

✓
W

✓
ht�1

xt

◆◆

Simple RNN

(Figure credit: Abigail See)



Vanishing Gradients

36 (Figure credit: Abigail See)

Focus more on recent past.

Can’t capture long distance 
dependencies. 



Exploding and Vanishing Gradients

Computing gradient of  
involves many factors of 

(and repeated tanh)

h0

W

Largest singular value > 1: 
Exploding gradients


Largest singular value < 1: 
Vanishing gradients

Gradient clipping: 

Scale gradient if its norm is too big

Change RNN architecture
37



Different RNN cells
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Long Short-term Memory (LSTM)
• A type of RNN proposed by Hochreiter and Schmidhuber 

in 1997 as a solution to the vanishing gradients problem

ht = f(ht−1, xt) ∈ ℝd

• Work extremely well in practice

• Basic idea: turning multiplication into addition

• Use “gates” to control how much information to add/erase

• At each timestep, there is a hidden state 
 and also a cell state 


•  stores long-term information


• We write/erase  after each step


• We read  from  

ht ∈ ℝd ct ∈ ℝd

ct

ct

ht ct



Long Short-term Memory (LSTM)

There are 3 gates and a memory cell:

• Input gate (how much to write): 
it = σ(W(i)ht−1 + U(i)xt + b(i)) ∈ ℝd

• Forget gate (how much to erase): 
ft = σ(W( f )ht−1 + U( f )xt + b( f )) ∈ ℝd

• Output gate (how much to reveal): 
ot = σ(W(o)ht−1 + U(o)xt + b(o)) ∈ ℝd

• New memory cell (what to write):  
gt = tanh(W(c)ht−1 + U(c)xt + b(c)) ∈ ℝd

• Final memory cell:  ct = ft ⊙ ct−1 + it ⊙ gt

• Final hidden cell:  ht = ot ⊙ tanh(ct)

element-wise product

Backpropagation from  to  
only element wise multiplication 
by , no matrix multiply by 

ct ct−1

f W

4 × (d2 + dm + d)

Matrix form

Use logistic for gating 
0 = filter out, 


1 = pass through

Use tanh for output

(zero-centered for 


feeding into next layer)   

How many parameters in total?
xt ∈ ℝm



LSTM cell intuitively
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-term Memory (LSTM)

• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but 
it does provide an easier way for the model to learn long-distance 
dependencies

• LSTMs were invented in 1997 but finally got working from 2013-2015.



Is the LSTM architecture optimal?

(Jozefowicz et al, 2015): An Empirical Exploration of Recurrent Network Architectures



Simple RNN vs GRU vs LSTM

Simple RNN GRU LSTM

44

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ht = g(Whhht−1 + Uxt + b)

<latexit sha1_base64="Fs4U4eBLfqk4ItYcr2PMeVkhEGE="></latexit>

rt = �(Wrht�1 +Urxt + br)

zt = �(Wzht�1 +Uzxt + bz)

h̃t = tanh(W(rt � ht�1) +Uxt + b)

ht = (1� zt)� ht�1 + zt � h̃t



Simple RNN vs GRU vs LSTM

Simple RNN GRU LSTM
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

<latexit sha1_base64="Maws8vewZ18IZPvCpd37UgwL1jc="></latexit>
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GRU

• If reset is close to 0, ignore previous hidden state 

• Allows model to drop information that is irrelevant in the future


• Update gate z controls how much of past state should matter now.	 

• If z close to 1,	 then we can copy information in that unit	 through	

many	 time steps!	Less vanishing	gradient!	 

• Units with short-term dependencies often have reset gates	very active

reset

update

final hidden state



On the Penn Treebank (PTB) dataset 
Metric: perplexity

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

KN5: Kneser-Ney 5-gram

Progress on language models

https://ieeexplore.ieee.org/author/37298983000


Progress on language models

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset 
Metric: perplexity



Overview

• Review of Vanilla RNN

• Training RNNs

• Issues with Gradient Flows

• LSTMs and GRUs

• Applications

• Variants: Stacked RNNs, Bidirectional RNNs



Application: Text Generation

You can generate text by repeated sampling. 

Sampled output is next step’s input.



Fun with RNNs

Andrej Karpathy “The Unreasonable Effectiveness of Recurrent Neural Networks”

Obama speeches Latex generation



Application: Sequence Tagging

P(yi = k) = softmaxk(Wohi) Wo ∈ ℝC×d

L = −
1
n

n

∑
i=1

log P(yi = k)

Input: a sentence of n words: x1, …, xn

Output: y1, …, yn, yi ∈ {1,…C}



Application: Text Classification

the movie was terribly exciting !

hn

P(y = k) = softmaxk(Wohn) Wo ∈ ℝC×d

Input: a sentence of n words

Output: y ∈ {1,2,…, C}



Application: Text classification



Conditional Text Generation



Multi-layer RNNs

• RNNs are already “deep” on one dimension (unroll over time 
steps)


• We can also make them “deep” in another dimension by 
applying multiple RNNs


• Multi-layer RNNs are also called stacked RNNs.



Stacking multi-layered RNNs

• The hidden states from RNN layer  are 
the inputs to RNN layer 

i
i + 1

• In practice, using 2 to 4 layers is common (usually better than 1 layer)

• Transformer-based networks can be up to 24 layers with lots of skip-connections. 



Bidirectional RNNs

• Bidirectionality is important in language representations:

terribly: 

• left context “the movie was” 

• right context “exciting !”



Bidirectional RNNs

ht = f(ht−1, xt) ∈ ℝd

h t = f1(h t−1, xt), t = 1,2,…n

h t = f2(h t+1, xt), t = n, n − 1,…1

ht = [h t, h t] ∈ ℝ2d



Bidirectional RNNs

• Sequence tagging: Yes!

• Text classification: Yes! With slight modifications.

• Text generation: No. Why?

terribly exciting !the movie was
terribly exciting !the movie was

Sentence encoding

element-wise mean/max element-wise mean/max


