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Want computer friendly representation for

applications
the cat sat n yato Kabloe oto
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(encoding, parsing, feature extraction) (decoding, generating)



Encoder-Decoder Model
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Seq2Seq Tasks and Applications

Task/Application Input

Machine Translation French
Summarization Document
Dialogue Utterance
Parsing Sentence

Question Answering Context + Question

Output
English
Short Summary

Response

Parse tree
(as sequence)

Answer



Cross-Modal Seq2Seq

Task/Application Input Output
Speech Recognition  Speech Signal Transcript

Image Captioning Image Text

Video Captioning Video Text

Vision-Language

. Text Actions
Navigation



Cross-modal sequence generation

e \ideo captioning (video frames to text)

1 1
Encoding stage Decoding stage

e Embodied Al (text + frames to actions)

VLN:

T

Move inside and ... formal dining table



Seq2Seq Tasks and Applications

Task/Application Input Output
Machine Translation French English
Summarization Document Short Summary
Dialogue Utterance Response
Parsing Sentence Parse tree

(as sequence)

Question Answering Context + Question Answer



Sequence to sequence models
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Neural Machine Translation

> A single neural network is used to translate from source
to target

» Architecture: Encoder-Decoder
> Two main components:

» Encoder: Convert source sentence (input) into a vector/
matrix

» Decoder: Convert encoding into a sentence in target
language (output)

11



Sequence to Sequence learning
(Seg2seq)

thought

vector
encoder reht | 11 <[s>

I I I I I I

I Y Y I I Y I 1 I I

hello how are you <s> hallo wie geht es dir

decoder

» Encode entire input sequence into a single vector (using an RNN)
- Decode one word at a time (again, using an RNN!)
- Beam search for better inference

« Learning is not trivial! (vanishing/exploding gradients)

. (Sutskever et al., 2014)



Encoder

Sentence: This cat is cute

em\lgveocfjing @ @ @ @
This cat 1S cute
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Encoder

Sentence: This cat is cute

()~
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i ©000)  (0000)  (e00e] (0000
embedding

This cat IS cute
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Encoder

Sentence: This cat is cute

() — ()
RO

i ©000)  (0000)  (e00e] (0009
embedding

This cat IS cute
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Encoder

Sentence: This cat is cute (encoded representation)
I henc

| I!
A
A

This cat IS cute

word
embedding
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Decoder

word @

embedding
<S>
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word @

embedding
<S>

Decoder
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Decoder

word @

embedding
<S>

xn

ce



Decoder

e A conditioned language model

ce chat est mignon <e>

e Ml N o
)R CY RN Y 0
(0000 (0000 (0000 (0000 (0000

chat est mignon

word
embeddlng
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>

Seg2seq training

Similar to training a language model!

Minimize cross-entropy loss:

I

2 — 10 P(y, | Yisevvs Vi 15 X5 e nns X))

=1

Back-propagate gradients through both decoder and encoder

Need a really big corpus

36M sentence pairs

. B

Russian: MalwuHHbIM nepeBoA - 3TO KpyTo!

KQL English: Machine translation is cool! J




Seg2seq training

= negative log = negative log = negative log

Encoder RNN

. T prob of “he” prob of “with” prob of <END>
]=FZ]t = Jil+ 2 + 3 #Ja |+ Js + Jo + J7
] 7,y A A A A A 3
YW Y Y3 Vo U5 V6 Iy
A A A A A A A
O
D
O O S
>
o[1o :
O O -
z
—
il m’  entarté <START> he hit me  with a pie
\ J %
Y Y

Source sentence (from corpus)

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end-to-end”.
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Efficient Training: Batching

e Apply RNNs to batches of sequences

e Present data as 3D tensor of (T X B X F)
¢ Use mask matrix to aid with computations that ignore padded zeros

Padded sequences Lengths
1 1 1 1 0 0 4
1 0 0 0 0 0 1

23



Batching

e Sorting (partially) can help to create more efficient mini-batches
e However, the input is less randomized

Unsorted

C padding 1[5, 10 = [10, 15) s (15, 20) - 20, 25) - (25, 20)

| | . £ £ ’
| —
o — p ‘ J —
B4 ‘ i 7 0
Al 1l w Aum Pan 1T 7

3 padding 1 [5,10) L [10, 15) | 15, 20) - 20, 25) (25, 30)

Sorted

il il AR e A i

8, B+ 8¢ &, 8g [ Bio
Elweomrd Durrleomtimm Cotrmtmmie D =bin ~ Avsra D L B
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Decoding strategies
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Generation

How can we use our model (decoder) to
generate sentences?

e Sampling: Try to generate a random sentence
according the the probability distribution

e Argmax: Try to generate the best sentence,
the sentence with the highest probability

20



Decoding Strategies

> Ancestral sampling
> Greedy decoding
> Exhaustive search

» Beam search

27



Ancestral Sampling

e Randomly sample words one by one

e Provides diverse output (high variance)

One symbol at a time from Z; ~ z¢|z4_1,...,21,Y
Until Z; = (eos) The cat

(figure credit: Luong, Cho, and Manning)
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Greedy decoding

he hit me  with a pie <END>
A A A A A A A

= s = e = = =

Z Z Z Z Z Z Z

8 o 8 8 ° 8 8
e O

oo 1o e[ e[ ]0 @

0 0 O O O ol :|o

<START> he hit me with a pie

> Compute argmax at every step of decoder to
generate word

> What’s wrong??
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Exhaustive search?

. Find arg max P(y,...,yp|X(,...,X,)

> Requires computing all possible sequences
> O(V") complexity!

> Too expensive
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Recall: Beam search (a middle ground)

Key idea: At every step, keep track of the k most
probable partial translations (hypotheses)

Score of each hypothesis = log probability
J
Z log Py Y15 -+ s Vi1 X15 -+ 25 %)
=1

Not guaranteed to be optimal

More efficient than exhaustive search

31



Beam decoding

t
Beam size = k = 2. Blue numbers = score(y1,...,y%) = » log Pum(uilys, - - - yi-1,2)
=3

-0.7
he

N\

<START>

Vv

-0.9

30 (slide credit: Abigail See)



Beam decoding

Beam size = k = 2. Blue numbers = score(ys,. ..,

-0.7

-1.7

he

hit

<

N\

<START>

struck

-2.9

-1.6

nd

was

<

-0.9

got

-1.8

33
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Beam decoding

=1

-4.0 -4.8

tart In
-2.8 i
Z pie with -4.3

-1.7 a
: _ pie
0.7 bir < 3.4 4.5
he < me 2.8 -3.7 tart
/ struck Hc with , P
-2.9 :
<START> -2.9 on one 50
\ Rt hit -3.5 -4.3 pie
was <
/ < struck tart
0.9 got 3.8 &
-1.8

24 (slide credit: Abigail See)



Backtrack

-4.3

pie

tart

t
Beam size = k = 2. Blue numbers = score(yi,...,y:) = Zlog Pim(yilyry .-« » ¥i-1,%)
=1
-4.0 -4.8
tart in
2.8 . / .
17 pie with
| a
07 A < 3.4 4.5
he < me 3.3 3.7
struck .
/' 2.5 with a
-2.9 :
<START> -2.9 on one
-1.6 ;
\ hit 3.5 4.3
was <
/ < struck
0.9 got 3.8
-1.8
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(slide credit: Abigail See)




Beam decoding

> Different hypotheses may produce {eos) (end) token at different time steps

> When a hypothesis produces (eos), stop expanding it and place it aside

» Continue beam search until:

> All k hypotheses produce {eos) OR

> Hit max decoding Iimit T

> Select top hypotheses using the normalized likelihood score

1 L
TZIOgP(yt\yp---»yt—l’xl""’x”)

=1

> Otherwise shorter hypotheses have higher scores

36



Beam Search Pitfalls

« Beam search can still be very repetitive.
* Heuristic Is to penalize repeated n-grams in the output.

 Manually set the probability of next words that could create an already seen
n-gram to O

* n should be greater than 2 or 3
 The choices in beam search may not be very diverse.

o Similar continuations can happen due to common sub-trees in different
branches

 These issues are referred to as model degeneration



Sampling

e Sampling is represented by the operator ~

exp(logits(w | wi.,_1))
wa exp(logits(w" | wy,_1))

. We pick the next word w, ~ P(w | wm_1) —

* (Generation is no longer deterministic.

exp(logits(w | wy.,_)/T)

Sampling can generate gibberish. Solution: use temperature -
’ 2. expllogits(w' | wy,_)/T)

0.5 0.5
0.4
0.3
0.2
0.1 D
nice dog car drives is turns

The car drives



Top-k Sampling

K most likely next words are filtered and we re-normalize over the K words

e GPT2 showed that this worked better than beam search

J..O";"
Z”LUEV'(.O[)-K P({IU‘ “Tlle”) — 068 Zwé vtO[.)-K P(?U‘ “Tlle”7 “Ca’r”) — 099
e N e N
' N ' M
0.0 -+ = — —

nice dog car woman guy man people big house cat drives is turns stops down a not the small told

P(w|“The”) P(w|“The”, “car”)




Top-p Nucleus Sampling

 Choose the smallest set of words whose cumulative probability exceeds a threshold
probability p. The probability mass is redistributed among this set of words.

* The size of the set being sampled from grows and shrinks depending on the
probability distribution.

1.0

2 wE Vi, (W] The™) = 0.94 D wEViapp £ (w]“The”, “car”) = 0.97

N F_/%
'z T

0.0 --+- . e [—
nice dog car woman guy man people big house cat drives is turns stops down a not the small told

P(w|“The”) P(w|“The”, “car”)




Summary of sampling for text generation

Sampling
Randomly sample words from distribution at each time step ¢
e Basic/pure sampling: sample from P,(w) directly
® (Can get some very bad samples

Repetitive e No control
A: Where are you going? e Top-n sampling: sample from P, truncated to top n words
B: I’'m going to the restroom. ® Increase n to get more diverse/risky output
A: See you later. e Decrease n to get more generic/safe output
B: See you later. o Top-p (nucleus) sampling: sample from P, restricted to top p
A: See you later. proportion of words
B: See you later. e Better when probability distribution 1s spread

¢ Temperature based:
® Increase 7 to get more diverse/risky output (P, 1s more uniform)

Sample and Rank ® Decrease 7 to get more generic/sate output (£, 1s more spiky)
1. Sample N candidate
2. Rank candidate and select best one Pt (W) — N (SW/ T)

ZW'EV CXp (SW'/T)

41 (@adapted from slides: Stanford CS224N, Chris Manning)



Evaluating text generation
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Evaluating translation quality

e [wO main criteria:

e Adequacy: Translation w should adequately reflect the linguistic

content of w®

e Fluency: Translation w should be fluent text in the target language

Adequate? Fluent?

To Vinay it like Python yes no
Vinay debugs memory leaks no yes
Vinay likes Python yes yes

Different translations of A Vinay le gusta Python

43



Evaluation metrics

e Manual evaluation is most accurate, but expensive
e Automated evaluation metrics:
e Compare system hypothesis with reference translations
e BilLingual Evaluation Understudy (BLEU) (Papineni et al., 2002)

e Modified n-gram precision

number of n-grams appearing in both reference and translations

bn = number of n-grams appearing in the translation

44



BLEU

N n-gram precision
BLEU-N = exp 1 ) logp 4
N n=1 :

™~ geometric mean over several values of n

Example (up to N=4)
Reference: Vinay likes programming in Python
Hypothesis/Candidate p1 P2 BLEU-2
Vinay likes Python 3/3 1/2 0.7071
To Vinay it like Python 2/5 0 277

https://www.aclweb.org/anthology/P02-1040.pdf
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BLEU

Nn-gram precision
n

BLEU-N = exp — E lo

n=1

T dificat _ ™~ geometric mean over several values of n
WO moadairications. (up to N=4)

e To avoid log 0, all precisions are smoothed Various smoothing techniques
add 1 to numerator/denominator

e Each n-gram in reference can be used at most once

e EX. Hypothesis: to to to to to vs Reference: to be or not to be

should not get a unigram precision of 1 (p, = 2/5) 2

. T £ 08

Co _ _ clipped count g 0.6
Precision-based metrics favor short translations g o
0

0.2 0.4 0.6 0.8 1 1.2

e Solution: Multiply score with a brevity penalty for translations s won

shorter than reference, BP = e¢!™"* _ teference length, h = hypothesis length

46



BLEU

e Correlates somewhat well with human judgements

(variant of BLEU)

NIST Score

® Adequacy

© Fluency

Human Judgmﬁlts

(G. Doddington, NIST)



BLEU scores

https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Sample BLEU scores for various system outputs BP = !
Length Translation p1 P2 p3 ps BP BLEU
5 Reference  Vinay likes programming in Python
I4 Sys1 To Vinay it like to program Python 0 0 0 1 .21
3 Sys2 Vinay likes Python s & 0 0 51 33
6 Vinay likes programming in his pajamas 5 £ 2 3

Example from: https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Issues?
e Alternatives have been proposed: e Number is not that meaningful
(BLEU will be higher for some
e METEOR: weighted F-measure language than others)

e Does not account for different word
, - choices (synonyms
* Translation Error Rate (TER): Edit distance between , . nOE gccoalnt fZ:r morphology

hypothesis and reference * Does not penalize omitting

. important words



BLEU useful despite issues

- easy to compute
- automated [ |Perfect
- consistent Minor mistakes
" 10- Some aspects
- No relation
=
/)
)
P
B 5 -
-
O
0
0 -
0.0 0.2 0.4 0.6
Minor note about <UNK> BLEU SCOres
Make sure you compare against the original reference Re-evaluating Automatic Metrics for Image Captioning

(Don’t have <UNK>s in your reference) 49 [Kilickaya et al, EACL 2017]



Sequence to sequence models with
attention

50



Issues with vanilla seq2seq

encoder hallc reht din <[s>

I I I I I I

I W Y I I T I I I I

hello how are you <s> hallo wie geht es dir

decoder

» A single encoding vector, 1", needs to capture all the
iInformation about source sentence

> Longer sequences can lead to vanishing gradients

> Qverfitting

51



Issues with vanilla seq2seq

encoder hallo wie geht X dir </s>

I I I I I I

I I I Y I I l I I I

hello how are you <s> hallo wie geht es dir

decoder

» A single encoding vector, 1", needs to capture all the
iInformation about source sentence

> Longer sequences can lead to vanishing gradients

> Qverfitting

52



Attention

> The neural MT equivalent of alignment models

> Key idea: At each time step during decoding, focus on a
particular part of source sentence

» This depends on the decoder’s current hidden state (i.e.
notion of what you are trying to decode)

» Usually implemented as a probabillity distribution over the
hidden states of the encoder ( 4, )

53



Attention

Encoder

Scores

j

RNN

Seq2seq with attention

dot product

sl (S| Slf5 8
o)
ol e el le @
o o) o) o) o)
N\ AN\ N\ N N\
il a m’  entarté <START>
N )

Y

Source sentence (input)

54
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(slide credit: Abigail See)



Attention

Attention

Encoder

distribution

SCores

RNN

Seg2seq with attention

On this decoder timestep, we're

mostly focusing on the first
encoder hidden state (“he”)

A 7y vy vy
Take softmax to turn the scores
Into a probability distribution

3
o| /o Jo| .[¢ 3 &
O o
O o o O ’l o - @
@) 0] 0] O @) -
A ) A ) A il

>
il a m’  entarté <START>
1\ )

Y

Source sentence (input)

55 (slide credit: Abigail See)



Attention

Attention

Encoder

distribution

SCOEES

RNN

A

Seg2seq with attention

< Attenti

: SO Use the attention distribution to take a

o) output weighted sum of the encoder hidden
. states.

.*
.
-
.
.
.t Ll
ot &
-
-
.
”
-
-
.
«®

The attention output mostly contains

A Y Y - information from the hidden states that

received high attention.

1
sl (3] felfe] 8 15
@) o
O o le@ O ’l o -
@) O O @) @) -
A A A A A -~ P
-
il a m’  entarté <START>
L )
Y

Source sentence (input)

56 (slide credit: Abigail See)



Attention

Attention

Encoder

distribution

Scores

RNN

Seg2seq with attention

e rYYY

"
B
.
.
.
"
-
.
. L
B
-
o
.
B
-
-
.
«®
.

Attention
output

™ -
N .
.. .
. e
- *
L
.
*
s .
i .
- .,
- .
i .
B

y Y T v 3

*
*
.
*
.
*
*
E‘E

he

N

J

Source sentence (input)

?\?%
el (3] (3] f3
@)
@) O O @)
@) @) O @)
A A A A
il a m’  entarté
L

Y

Y1

V
> 0000

<

Concatenate attention output

<START>

57

with decoder hidden state, then
use to compute Yy, as before

Y
NNY J9po2ag

Can also use Y, as input
for next time step

(slide credit: Abigail See)



Seg2seq with attention

Decoder RNN

A

4 \

0000 |«

O0O0O0 |«

O

O
7 )

O

O
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O O

0000

)
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W
S +
d
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.“’ ................
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Y
uonnglaisip
uoI UMY

Q000 <

[

leoe@e® <

[
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[

\ J
Y

S92J02JS

UoIUANY

A& #
Y

NNd
1apoou3

a

with

me

hit

<START> he

entarté

ml

il

Y
Source sentence (input)

(slide credit: Abigail See)
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Computing attention

. > Encoder hidden states: /1;", ..., 1"
Attention

‘@
-

output
® P
2.

» Decoder hidden state at time #: 17

{ > First, get attention scores for this time step (we will see what g is soon!):
A 7 A A ol — [g(hlenc, htdeC), L g(h’snc, hta’eC)]

Attention
distribution

Obtain the attention distribution using softmax:
a' = softmax (¢') € R"

Attention
scores
\ —
’_b
%..
o
\ 4

O o) o) o) o) O
s Z < i —lei—lelle > o > Compute weighted sum of encoder hidden states:
STl e (o (o | o L
R EP R
i=1
hlenc il a m’ entarté <START>
\ v / > Finally, concatenate with decoder state and pass on to output layer:

Source sentence (input) [a : hdec] = th
'
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Types of attention

>~ Assume encoder hidden states /1, h,, . . ., h, and decoder hidden state
1. Dot-product attention: Simplest (no extra parameters)
gh,2)=z7"h; e R requires Z and h. to be same size

more efficient
(Mmatrix 2. Bilinear / multiplicative attention: More flexible

multiplication) g(h;,z) = zTWhi e R, where Wis a weight matrix ~ than dot-product
(W is trainable)

3. Additive attention (essentially MLP):

h.7) = vitanh (W, h. + W,72) € R
g, 2) (Wil + Wa2) Perform better for
where W}, W, are weight matrices and v is a weight vector  |3rger dimensions

60



Attention can be applied to other
modalities

o1



Attention on other modalities

e Images

feature

CNN
I map
10

2048

e Agent experience

RNN

a;

E

10

: j—

Object
Grid based proposals

Image Credit: Peter Anderson



Image captioning example

14x14 Feature Map LA |

‘Bll‘a \

flying
over

d
body
of
water
L. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation

63



Soft vs Hard Attention

» Soft: Each attention candidate is weighted by «;

25 Kk
V= 1= 1alvl

* Easy to train (smooth and differentiable)
» But can be expensive over large input

| f

* Hard: Use a; as a sample probability to pick one
attentlon candidate as input to subsequent layers

» Trainable with REINFORCE approaches (Xu et al. ICML
2015), or Gumbel-Softmax (Jang et al. ICLR 2017)

o4

bird

Soft

Hard



Global vs Local Attention

» Global: attention over the entire input
» Local: attention over a window (or subset) ot the input

Context vector suis Context vector suis

?

""""
Yo

[

am a student _ Je a student _

|

Global: all source states. Local: subset of source states.

Luong et al, 2015

65



Self-Attention

e Attention (correlation) with ditferent parts of itself

The The The The
animal animal animal animal
didn’t didn’t didn’t didn’t
Cross Cross Cross Cross
the the the the
street street street street
because because because because
it it it it

was was was was
too too too too
tired tired wide wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

* Transtormers: modules with scaled dot-product self-attention

66



Nx

Positional
Encoding

Transformers: self-attention

Output
Probabilities

| Linear |

Add & Norm

Feed
Forward

.

Add & Norm

Multi-Head

Attention

1

f
Add & Norm <=~

Feed
Forward

=

Input
Embeddlng

lnputs

Output
Embedding

Outputs
(shifted right)

t y
| Add &INorm J
Multi-Head
Attention
N x
_J
| Add & Norm h
Masked
Multi-Head
Attention
k _J
Positional
Encoding

e More recent models (e.g. Transformer,
Vaswani et al., 2017) have replaced
RNNSs entirely with attention
mechanisms

e Theoretically limiting (since recurrence
can help handle arbitrarily long
sequences)

e Huge gains in practical performance

67



Issues with vanilla seq2seq

encoder hallc vie geht X di </s>

I I I I I I

I Y I I I I I I I I

hello how are you <s> hallo wie geht es dir

decoder

» A single encoding vector, 1", needs to capture all the
iInformation about source sentence

> Longer sequences can lead to vanishing gradients

> Overfitting

63



Exposure bias

<END>
e Discrepancy in model input between
training and generation time

¢ During training, model inputs are gold
context tokens

T
Lyvre =—) log P(y {yZ,})
t=1

\<END>

e At generation time, inputs are previously- ] Fa =
decoded tokens -~ Text Gbnération Model
= : A S Ve sl S we
Laee =~ log P(51 {71 })

t=1

|
s

Y2 Y Yo Y1 Y2 Yr-4 Yr-3 Yr-2 Yr-1
<START>' / ! $ s $ s

Student forcing: use predicted tokens during training
Scheduled sampling: use decoded token with some probability p, increase p over time



l

0.9 ' ]Exponent[ial decayl i
08 L Inverse sigmoid gecay B d I d S I .
' iInear aeca
y— Scheduled Sampling
0.6 |
0.5 -
0.4 - N
0.3 o
0.2 N
0.1 | |

0 200 400 600 800 1000

- Loss Loss

Possible decay schedules \ —— /
(probability using true y decays over time) y(t-1) y(t)

h(1) h(t-1) h(t)
X J
A
sampled y(t-2) true y(t-2) true y(t-1)

- (figure credit: Bengio et al, 2015)



Regularization

Weight decay
Label smoothing
Dropout

Ensembling

/1



Weight decay

> Weight decay

> Decays weights @ exponentially

d
Ot =1 =)o — yn—L(6
( ) "de (0)

> For SGD, weight decay and L2
regularization are equivalent

(2



Weight decay and SGD

» SGD > SGD with L2 regularization
d d

» 01 =0, — ’7%14(‘9) » O =0, - ”IELLZ(H)
> ' ' d

L2 regularization 0., = (1 = 2na)0, — r]EL(H)

> Lo = L(0) + al|0]|5 ,

L2 regularization with & = — gives
dL dL(6 g
R RGN 21
d do

d
0., = —-410,—n—L(O
+1 ( )0, ndé’()
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Weight decay

> Weight decay > Weight decay and L2 regularization
are not necessarily equivalent for
> DeCays WelghtS 0 expOnentiaIIy adaptive optimizers
d > '
07 = (1 = ) — n—L(0) Can c.:IecoupIe weight decay and
do learning rate parameters
> For SGD, weight decay and L2 > AdamW

regularization are equivalent

> But for this to hold, the weight decay
and learning rate are coupled for a
desired L2 regularization

74



Label smoothing

> Cross entropy loss Lo\Be[ Smoo‘th?mj
S Instonce #1 Instance #1
CL=-) q(klogpk)
k=1 / Lo
> Ground-truth g(k) = 6(y) = 1[y = k] . . I
» Label smoothin g v s y“’f;b v ¢ y{;" C\;"@ o 4 \U(;;j@? & c y‘ﬁ ;‘05;7‘0
> Smoothed distribution for training Figure from https://blog.dailydoseofds.com/p/label-smoothing-the-overlooked-and

> q(k) = eo(y) + (1 — €)u(k)
., u(k) is prior - simplest prior is the uniform distribution: u(k) = %
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Regularization: Dropout

> Form of regularization for RNNs (and any NN in general)
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> ldea: “Handicap” NN by removing hidden units
stochastically
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> set each hidden unit in a layer to O with probability p

during training (p = 0.5 usually works well)

> scale outputs by 1/(1 — p)

> hidden units forced to learn more general patterns

> Test time: Use all activations (no need to rescale)
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Dropout and attention improves translation

System Ppl BLEU
Winning WMT’ 14 system — phrase-based + large LM (Buck et al., 2014) 20.7
Existing NMT systems
RNNsearch (Jean et al., 2015) 16.5
RNNsearch + unk replace (Jean et al., 2015) 19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015) 21.6
Our NMT systems
Base 10.6 11.3
Base + reverse 9.9 1 12.6 (+1.3
Base + reverse + dropout I

‘Base + reverse + dropout + global attention (location) 7.3 | 16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input 6.4 | 18.1 (+1.3)

" Base + reverse + dropout + local-p attention (general) + feed input 18 '5_9' 19.0 (+0.9) |
Base + reverse + dropout + local-p attention (general) + feed input + unk replace 1 20.9 (+1.9)

' Ensemble 8 models + unk replace I [230(+2])

WMT’14 English to German Results
(Luong et al, 2015)
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Other challenges with NMT

Out of vocabulary (OQV)

Low-resource languages

Long-term context

Common sense knowledge (e.g. hot dog, paper jam)
Fairness and bias

Interpretability
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Out of vocabulary (OOV)

e Subword-modeling ¢ Copy mechanism
e Character level GRU
] . X (1 — Pgen) j—ﬂ-—i.lg.-: - “ Pgen §
e Byte-pair encoding g
Fully Character-Level Neural Machine ﬁ - ] I ~
Translation without Explicit Segmentation 22 ' % { - |
Jason Lee, Kyunghyun Cho, Thomas Hoffmann. 2017. "i; - 54_*
Encoder as below; decoder is a char-level GRU L. T T | T A
RNX(Te/) 4‘ [] N__ N sazgﬁec?z:;mw m Sourc.;g Text Partial g;mmary
| | L .. J Féujayer Source Target BLEU
SO~ N -7~ - R I S * Probability of generating from
w1 F— E\ ey Char Char 225 vocabulary or copying from input
Saan---anax B * Probability of copying specific word

(similar to attention)

(Lee et al, 2017)
79 (See et al, 2017)






