CMPT 4I3/7I3: Natural Language Processing

Sequence to Sequence Models (Seq2Seq)

Spring 2024
2024-02-05

Adapted from slides from Danqi Chen and Karthik Narasimhan

 (with some content from slides from Abigail See, Graham Neubig)
Overview

- Sequence generation tasks
- Seq2Seq models - Encoder/Decoder
- Decoding strategies
- Evaluating text generation
- Attention

Sequence Generation

Want computer friendly representation for applications

the cat sat on the table

Understanding what is said (encoding, parsing, feature extraction)

Deciding what to say
(decoding, generating)

Encoder-Decoder Model

Seq2Seq Tasks and Applications

Task/Application
Input
French
Document
Dialogue
Parsing
Utterance
Sentence
Question Answering Context + Question

Output
English
Short Summary

Response
Parse tree (as sequence)

Answer

Cross-Modal Seq2Seq

Task/Application	Input	Output
Speech Recognition	Speech Signal	Transcript
Image Captioning	Image	Text
Video Captioning	Video	Text
Vision-Language Navigation	Text	Actions

Cross-modal sequence generation

- Video captioning (video frames to text)

- Embodied AI (text + frames to actions)

Seq2Seq Tasks and Applications

Task/Application	Input	Output
Machine Translation	French	English
Summarization	Document	Short Summary
Dialogue	Utterance	Response
Parsing	Sentence	Parse tree (as sequence)
Question Answering Context + Question	Answer	

Sequence to sequence models

Neural Machine Translation

- A single neural network is used to translate from source to target
- Architecture: Encoder-Decoder
- Two main components:
- Encoder: Convert source sentence (input) into a vector/ matrix
- Decoder: Convert encoding into a sentence in target language (output)

Sequence to Sequence learning (Seq2seq)

- Encode entire input sequence into a single vector (using an RNN)
- Decode one word at a time (again, using an RNN!)
- Beam search for better inference
- Learning is not trivial! (vanishing/exploding gradients)

Encoder

Sentence: This cat is cute

is

0000
cute

Encoder

Sentence: This cat is cute

Encoder

Sentence: This cat is cute

Encoder

Sentence: This cat is cute
(encoded representation)

Decoder

$$
h^{e n c}
$$

embedding

```
<S>
```


Decoder

Decoder

Decoder

- A conditioned language model

Seq2seq training

- Similar to training a language model!
- Minimize cross-entropy loss:

$$
\sum_{t=1}^{T}-\log P\left(y_{t} \mid y_{1}, \ldots, y_{t-1}, x_{1}, \ldots, x_{n}\right)
$$

- Back-propagate gradients through both decoder and encoder
- Need a really big corpus

36M sentence pairs

Russian: Машинный перевод - это круто!

English: Machine translation is cool!

Seq2seq training

Seq2seq is optimized as a single system.
Backpropagation operates "end-to-end".

Efficient Training: Batching

- Apply RNNs to batches of sequences
- Present data as 3D tensor of $(T \times B \times F)$
- Use mask matrix to aid with computations that ignore padded zeros

Padded sequences

| 1 | 1 | 1 | 1 | 0 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 6 |
| 1 | 1 | 1 | 0 | 0 | 0 | 3 |

Batching

- Sorting (partially) can help to create more efficient mini-batches
- However, the input is less randomized

Unsorted

Sorted

Decoding strategies

Generation

How can we use our model (decoder) to generate sentences?

- Sampling: Try to generate a random sentence according the the probability distribution
- Argmax: Try to generate the best sentence, the sentence with the highest probability

Decoding Strategies

- Ancestral sampling
- Greedy decoding
- Exhaustive search
- Beam search

Ancestral Sampling

- Randomly sample words one by one
- Provides diverse output (high variance)

One symbol at a time from $\tilde{x}_{t} \sim x_{t} \mid x_{t-1}, \ldots, x_{1}, Y$
Until $\tilde{x}_{t}=\langle\mathrm{eos}\rangle \quad$ The

$$
Y=h_{7}=
$$

Greedy decoding

- Compute argmax at every step of decoder to generate word
- What's wrong?

Exhaustive search?

, Find arg max $P\left(y_{1}, \ldots, y_{T} \mid x_{1}, \ldots, x_{n}\right)$

$$
y_{1}, \ldots, y_{T}
$$

- Requires computing all possible sequences
- $O\left(V^{T}\right)$ complexity!
- Too expensive

Recall: Beam search (a middle ground)

- Key idea: At every step, keep track of the k most probable partial translations (hypotheses)
- Score of each hypothesis = log probability

$$
\sum_{t=1}^{j} \log P\left(y_{t} \mid y_{1}, \ldots, y_{t-1}, x_{1}, \ldots, x_{n}\right)
$$

- Not guaranteed to be optimal
- More efficient than exhaustive search

Beam decoding

$$
\text { Beam size }=\mathrm{k}=2 \text {. Blue numbers }=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)
$$

Beam decoding

$$
\text { Beam size }=\mathrm{k}=2 \text {. Blue numbers }=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)
$$

Beam decoding

Backtrack

Beam size $=\mathrm{k}=2$. Blue numbers $=\operatorname{score}\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{t} \log P_{\mathrm{LM}}\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x\right)$

Beam decoding

- Different hypotheses may produce $\langle e o s\rangle$ (end) token at different time steps
- When a hypothesis produces $\langle e o s\rangle$, stop expanding it and place it aside
- Continue beam search until:
- All k hypotheses produce $\langle e o s\rangle$ OR
- Hit max decoding limit T
- Select top hypotheses using the normalized likelihood score

$$
\frac{1}{T} \sum_{t=1}^{T} \log P\left(y_{t} \mid y_{1}, \ldots, y_{t-1}, x_{1}, \ldots, x_{n}\right)
$$

- Otherwise shorter hypotheses have higher scores

Evaluating text generation

Evaluating translation quality

- Two main criteria:
- Adequacy: Translation $w^{(t)}$ should adequately reflect the linguistic content of $w^{(s)}$
- Fluency: Translation $w^{(t)}$ should be fluent text in the target language

	Adequate?	Fluent?
To Vinay it like Python	yes	no
Vinay debugs memory leaks	no	yes
Vinay likes Python	yes	yes

Different translations of A Vinay le gusta Python

Evaluation metrics

- Manual evaluation is most accurate, but expensive
- Automated evaluation metrics:
- Compare system hypothesis with reference translations
- BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002)
- Modified n-gram precision
$p_{n}=\frac{\text { number of } n \text {-grams appearing in both reference and hypothesis translations }}{\text { number of } n \text {-grams appearing in the hypothesis translation }}$

BLEU

$$
\begin{aligned}
\text { BLEU-N }=\exp \frac{1}{N} \sum_{n=1}^{N} \log p_{n}^{\ell} \\
\\
\text { geometric mean over several values of } \mathrm{n} \\
\text { (up to } \mathrm{N}=4 \text {) }
\end{aligned}
$$

Example

Reference: Vinay likes programming in Python

Hypothesis/Candidate	p_{1}	p_{2}
Vinay likes Python	$3 / 3$	$1 / 2$
To Vinay it like Python	$2 / 5$	0
https://www.aclweb.org/anthology/P02-1040.pdf		

BLEU-2
0.7071

BLEU

$$
\begin{array}{r}
\text { BLEU-N }=\exp \frac{1}{N} \sum_{n=1}^{N} \log p_{n} \\
\begin{array}{c}
\text { geometric mean over several values of } \mathrm{n} \\
\text { (up to } \mathrm{N}=4 \text {) }
\end{array}
\end{array}
$$

- To avoid $\log 0$, all precisions are smoothed Various smoothing techniques add 1 to numerator/denominator
- Each n-gram in reference can be used at most once
- Ex. Hypothesis: to to to to to vs Reference: to be or not to be should not get a unigram precision of $1\left(p_{1}=2 / 5\right)$

Precision-based metrics favor short translations

- Solution: Multiply score with a brevity penalty for translations shorter than reference, $B P=e^{1-r / h}$ $r=$ reference length, $h=$ hypothesis length

BLEU

- Correlates somewhat well with human judgements

BLEU scores

https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Length	Sample BLEU scores for various system outputs						$B P=e^{1-}$	
		Translation	p_{1}	p_{2}	p_{3}	p_{4}	BP	BLEU
5	Reference	Vinay likes programming in Python						
7	Sys1	To Vinay it like to program Python	$\frac{2}{7}$	0	0	0	1	. 21
3	Sys2	Vinay likes Python	$\frac{3}{3}$	$\frac{1}{2}$	0	0	. 51	. 33
6	Sys3	Vinay likes programming in his pajamas	$\frac{4}{6}$	$\frac{3}{5}$	$\frac{2}{4}$	$\frac{1}{3}$	1	. 76

Example from: https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

- Alternatives have been proposed:
- METEOR: weighted F-measure
- Translation Error Rate (TER): Edit distance between hypothesis and reference

Issues?

- Number is not that meaningful (BLEU will be higher for some language than others)
- Does not account for different word choices (synonyms)
- Does not account for morphology
- Does not penalize omitting important words

BLEU useful despite issues

- easy to compute
- automated
- consistent

Minor note about <UNK>

Sequence to sequence models with attention

Issues with vanilla seq2seq

- A single encoding vector, $h^{e n c}$, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

Issues with vanilla seq2seq

- A single encoding vector, $h^{\text {enc }}$, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

Attention

- The neural MT equivalent of alignment models
- Key idea: At each time step during decoding, focus on a particular part of source sentence
- This depends on the decoder's current hidden state (i.e. notion of what you are trying to decode)
- Usually implemented as a probability distribution over the hidden states of the encoder ($h_{i}^{e n c}$)

Seq2seq with attention

Seq2seq with attention

NNY дәроэə๐

Seq2seq with attention

Seq2seq with attention

Seq2seq with attention

Computing attention

- Encoder hidden states: $h_{1}^{\text {enc }}, \ldots, h_{n}^{\text {enc }}$
- Decoder hidden state at time $t: h_{t}^{\text {dec }}$
- First, get attention scores for this time step (we will see what g is soon!):

$$
e^{t}=\left[g\left(h_{1}^{e n c}, h_{t}^{d e c}\right), \ldots, g\left(h_{n}^{e n c}, h_{t}^{d e c}\right)\right]
$$

- Obtain the attention distribution using softmax:

$$
\alpha^{t}=\operatorname{softmax}\left(e^{t}\right) \in \mathbb{R}^{n}
$$

- Compute weighted sum of encoder hidden states:

$$
a_{t}=\sum_{i=1}^{n} \alpha_{i}^{t} h_{i}^{e n c} \in \mathbb{R}^{h}
$$

- Finally, concatenate with decoder state and pass on to output layer: $\left[a_{t} ; h_{t}^{d e c}\right] \in \mathbb{R}^{2 h}$

Types of attention

- Assume encoder hidden states $h_{1}, h_{2}, \ldots, h_{n}$ and decoder hidden state z

1. Dot-product attention:
more efficient

$$
g\left(h_{i}, z\right)=z^{T} h_{i} \in \mathbb{R}
$$

Simplest (no extra parameters) requires z and h_{i} to be same size
(matrix
multiplication)
2. Bilinear / multiplicative attention:

$$
g\left(h_{i}, z\right)=z^{T} W h_{i} \in \mathbb{R}, \text { where } W \text { is a weight matrix }
$$

3. Additive attention (essentially MLP):

$$
g\left(h_{i}, z\right)=v^{T} \tanh \left(W_{1} h_{i}+W_{2} z\right) \in \mathbb{R}
$$

where W_{1}, W_{2} are weight matrices and v is a weight vector

More flexible than dot-product (W is trainable)

Perform better for larger dimensions

Attention can be applied to other modalities

Attention on other modalities

- Images

Object proposals

Image Credit: Peter Anderson

- Agent experience

$C=\left\{\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{5}\right\}$
$C=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{6}\right\}$

Image captioning example

Xu et al. ICML 2015

Soft vs Hard Attention

- Soft: Each attention candidate is weighted by α_{i}

$$
\widehat{\boldsymbol{v}}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{v}_{i}
$$

- Easy to train (smooth and differentiable)
- But can be expensive over large input
- Hard: Use α_{i} as a sample probability to pick one attention candidate as input to subsequent layers
- Trainable with REINFORCE approaches (Xu et al. ICML

bird
Xu et al. ICML 2015 2015), or Gumbel-Softmax (Jang et al. ICLR 2017)

Global vs Local Attention

- Global: attention over the entire input
- Local: attention over a window (or subset) of the input

Global: all source states.

Local: subset of source states.

Self-Attention

- Attention (correlation) with different parts of itself

The	The	The	The
animal	animal	animal	animal
didn't	didn't	didn't	didn't
cross	cross	cross	cross
the	the	the	the
street	street	street	street
because	cause	because	because
it			
was	was	was	was
too	too	too	too
tired	tired	wide	wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

- Transformers: modules with scaled dot-product self-attention

Transformers: self-attention

- More recent models (e.g. Transformer, Vaswani et al., 2017) have replaced RNNs entirely with attention mechanisms
- Theoretically limiting (since recurrence can help handle arbitrarily long sequences)
- Huge gains in practical performance

Issues with vanilla seq2seq

- A single encoding vector, $h^{e n c}$, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

Exposure bias

- Discrepancy in model input between training and generation time
- During training, model inputs are gold context tokens

$$
\mathcal{L}_{M L E}=-\sum_{t=1}^{T} \log P\left(y_{t}^{*} \mid\left\{y_{<t}^{*}\right\}\right)
$$

- At generation time, inputs are previouslydecoded tokens

$$
\mathcal{L}_{d e c}=-\sum_{t=1}^{T} \log P\left(\hat{y}_{t} \mid\left\{\hat{y}_{<t}\right\}\right)
$$

Student forcing: use predicted tokens during training Scheduled sampling: use decoded token with some probability p, increase p over time

Regularization

- Weight Decay
- Dropout
- Ensembling

Regularization: Dropout

- Form of regularization for RNNs (and any NN in general)
- Idea: "Handicap" NN by removing hidden units stochastically
- set each hidden unit in a layer to 0 with probability p during training ($p=0.5$ usually works well)
- scale outputs by $1 /(1-p)$
- hidden units forced to learn more general patterns
- Test time: Use all activations (no need to rescale)

(a) Standard Neural Net

(b) After applying dropout.

Dropout and attention improves translation

System	Ppl	BLEU
Winning WMT' 14 system - phrase-based + large LM (Buck et al., 2014)		20.7
Existing NMT systems		
RNNsearch (Jean et al., 2015)		16.5
RNNsearch + unk replace (Jean et al., 2015)		19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6
Our NMT systems		
Base	10.6	11.3
Base + reverse	9.9	12.6 (+ 1.3)
Base + reverse + dropout	8.1	14.0 (+1.4)
Base + reverse + dropout + global attention (location)	7.3	16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input	6.4	18.1 (+ 1.3)
$\overline{\text { Base }}+\overline{\text { reverse }}+$ dropout + local-p attention (general $)+$ feed input	5.9	19.0 $\overline{0}+{ }^{\text {+ }}$ - 9.9$)$
Base + reverse + dropout + local-p attention (general) + feed input + unk replace	5.9	$20.9(+1.9)$
Ensemble $\overline{8}$ models + unk replace		$\mathbf{2 3 . 0}$ (+2.1)

WMT'14 English to German Results

Other challenges with NMT

- Out of vocabulary (OOV)
- Low-resource languages
- Long-term context
- Common sense knowledge (e.g. hot dog, paper jam)
- Fairness and bias
- Interpretability

Out of vocabulary (OOV)

- Subword-modeling
- Character level GRU
- Byte-pair encoding

Fully Character-Level Neural Machine

 Translation without Explicit SegmentationJason Lee, Kyunghyun Cho, Thomas Hoffmann. 2017.
Encoder as below; decoder is a char-level GRU

- Copy mechanism

- Probability of generating from vocabulary or copying from input
- Probability of copying specific word (similar to attention)

