
Transformers and Self-Attention

Spring 2025

2025-02-10

CMPT 413/713: Natural Language Processing

SFUNatLangLab

Adapted from slides from Danqi Chen and Karthik Narasimhan 

(with some content from slides from Chris Manning and Abigail See)

1



Review of attention in 
sequence to sequence models
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Attentive machine translation summary

3 (slide credit: Peter Anderson)



Attentive machine translation summary

4 (slide credit: Peter Anderson)

Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒄𝑖 ht
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖



Summary of attention
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(or values)

Final attention output

Attention weights:  (normalized) 𝜶

Weighted sum of context features

Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention score ( , )  
how well does the attention 
candidate  match the query  

𝑒𝑖 =  𝑔 𝒄𝑖 𝒛

𝒄𝑖 𝒛

• Dot-product attention: 
                      
• Neural network                    

Attention scores:  (unnormalized) 𝒆



Attention can be used to copy from input

6 (See et al, 2017)

• Probability of generating from vocabulary or copying from input


• Probability of copying specific word (similar to attention)



Motivation of attention

• How much does this attention candidate match the query vector?


• Motivated by biological attention and alignment in machine translation
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the agreement on the

get a representation that is a weighted sum over the 
attention candidates based on a query vector



Attention is a general deep learning technique

‣ Given a set of value vectors and a query vector, attention is a way to compute 
a weighted sum of the values dependent on the query.


‣ The query determines what values to focus on, 


‣ We say: the query “attends” to the values 


‣ In NMT, each decoder hidden state (query) attends to all the encoder hidden 
state (values)


‣ A more general form: use a set of keys and values


‣ The keys are used to compute the attention scores 

‣ The values are used to compute the output vector
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Attention is always computed the same way

• Assume that we have a set of key-value pairs ,
, and a query vector 


• Computing attention consists of the following steps:


• Compute the attention scores:


• Take softmax to get the attention distribution


• Use attention distribution to take weighted sum of values

k1, …, kn ∈ ℝdk

v1, …, vn ∈ ℝdv q ∈ ℝdq
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ei = g(ki,q), e 2 Rn
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Query-Value-Key view of attention
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Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒌𝑖 𝒒
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒗𝑖

  𝒒 = 𝑊𝑄 𝒛
𝒌𝑖 = 𝑊𝐾 𝒄𝑖
𝒗𝑖 = 𝑊𝑉 𝒄𝑖

Projected query,key,value
  𝒒 = 𝑊𝑄 𝒛

𝐾 = 𝑊𝐾 𝐶𝑇

𝑉 = 𝑊𝑉 𝐶𝑇

Matrix form



General form of attention: key-value-query

‣ Attention is a way to compute a weighted sum of the values dependent on 
the query and the corresponding keys.


‣ All of these (key value query) are represented using vectors 

‣ The query and key are used for addressing (contains partial information).  
While the values provide more complete information 


• The weighted sum is a selective summary of the information found in 
the values.


• It is a way to obtain a fixed-sized representation of an arbitrary set of 
representations (values) based on some other representation (the query)
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Transformers
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Transformers are everywhere!
• Vision

• Reinforcement Learning

An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale, Dosovitskiy et al, ICLR 2021 

Trajectory Transformer [Janner et al, 2021] Decision Transformer [Chen et al, 2021]



Transformers for Language Modeling
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P (wt|w<t) ⇡ P (wt|�(wt�n+1,t�1))
Notes 
• Transformers can’t actually handle arbitrary length 
• But they are built up with modules that share weights 
• They have self-attention that allow them to have better representations of context 
• They can be parallelized and trained on large amounts of data 

Transformer

SOS the students opened

Self-attention neural module that transforms  
token representation via many layers



Transformers

• NIPS’17: Attention is All You Need 
• Originally proposed for NMT (encoder-

decoder framework) 
• Used in most LLMs! 
• Key idea: Multi-head self-attention 
• No recurrence structure any more so it 

trains much faster

Encoder Decoder
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Understanding transformers

• From attention to self-attention 
• From self-attention t0 multi-headed 

self-attention 
• Transformer encoder  
• Transformer decoder 
• Putting the pieces together

Encoder Decoder

16



Multi-head self-attention
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• Each Transformer block has two-sublayers 
• Multi-Head self-attention 
• 2 layer feedforward NN (with ReLU) 

• Each sublayer has a residual connection and a 
layer normalization
• LayerNorm(x+SubLayer(x)) 

• Input layer has a positional encoding



Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads

18



Self Attention
(also referred to as Intra-Attention)

• Self-attention: let’s use each word as query and compute the attention 
with all the other words (other words are the keys and values)

= the word vectors themselves select each other

19



How to get key-value-query for each word?

‣ For each word, we have vectors for the key-value-query 


‣ These vectors are created by multiplying the word embedding by 
trained weight matrices

20

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

Stack into matrices and 
compute all at once!

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


• Can be any kind of attention 
function


• For transformers, this is the 
scaled dot-product attention 

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

• query, key, and value vectors 
created by multiplying learned 
weight matrices with embedding


21

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Scaled dot-product attention

‣ Assume keys  and query 


1. Dot-product attention (assumes equal dimensions for  and ): 
                    


2. Scaled dot-product attention:  

                    

k1, k2, . . . , kn q

ki q
g(ki, q) = qTki ∈ ℝ

g(ki, q) =
qTki

d
∈ ℝ

Scaled dot product will perform well

for larger dimensions

Scaling factor: d = dimension of hidden state

Scale of dot product increases 

(proportional to )


as dimension gets larger

Perform poorly for large d


Softmax has small gradient

d
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• Can be any kind of attention 
function


• For transformers, this is the 
scaled dot-product attention 

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

•  is the final vector of attended 
values for “Thinking” as the query
z1

23

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Self-attention in equations

• A self-attention layer maps a sequence of input vectors  to a 
sequence of n vectors: 


• Note: this is similar as an RNN layer and can be used to replace an RNN layer

x1, …, xn ∈ ℝd1

y1, …, yn ∈ ℝd2

24

qi = WQxi, WQ ∈ ℝdq×d1

ki = WKxi, WK ∈ ℝdk×d1

vi = WVxi, WV ∈ ℝdv×d1

• First, construct a set of queries, keys, and values:


• Second, for each , compute attentions scores and 
attention distribution

qi

Scaled dot-product

so dk = dq

αi,j = softmax (
qi ⋅ kj

dk )
• Finally, compute the weighted sum:

yi =
n

∑
j=1

αi,jvj ∈ ℝdv dv = d2



Self-attention: matrix notation
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Note: the notation on this slide are following the original paper 

(= the transpose of the matrices in the previous slide)Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv

X ∈ ℝn×d1

Attention(Q, K, V) = softmax ( QKT

dk ) V

n × dq dk × n

n × dv

Be careful to make sure 

the softmax is over the correct dimension 

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

Each row corresponds a token


http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads

26



Multi-head self-attention
One head is not expressive enough. Let’s have multiple heads!

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i )

In practice, , h = 8
d = dout /h, WO ∈ ℝdout×dout

https://github.com/jessevig/bertviz
27

https://github.com/jessevig/bertviz


Why different heads?
• Different heads learn to attend to different things

28
Emergent linguistic structure in artificial neural networks trained by self-supervision, Manning et al, PNAS 2019



Multiple heads

• Multiple (different) representations 
for each query, key, and values 

• Different weight matrices —> 
different vectors  

• Different ways for the words to 
interact with each other

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)29

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Multi-head attention

• In practice, we use a reduced dimension for each head.


• The total computational cost is similar to that of single-
head attention with full dimensionality

30

WQ
i ∈ ℝd1×dq, WK

i ∈ ℝd1×dk, WV
i ∈ ℝd1×dv

dq = dk = dv = d/h

WO ∈ ℝd×d2

 = hidden size,  = # of headsd h

If we stack multiple layers, usually d1 = d2 = d

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i )



Transformer Encoder

• Each Transformer block has two sub-layers 
• Multi-head attention

31

Without FFNN: No non-linearity! 

• 2-layer feedforward NN (with ReLU)



Adding nonlinearities

32



Transformer Encoder

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and 
a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

residual connection

33
(He et al, 2016): Residual connections



Residual Connections
Add input of a layer to output of that layer

• 


• Local gradient is 1 for the identity function


• Easier to learn the difference from the identity function than to learn the 
function from scratch.

zℓ+1 = f(zℓ) + zℓ

He+ 2015 https://arxiv.org/abs/1512.03385

https://arxiv.org/pdf/1712.09913.pdf



Residual connections and Layer Normalization

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

LayerNorm 
• changes input features to have mean 0 and 

variance 1 per layer. 
• Adds two more parameters 

(Ba et al, 2016): Layer Normalization35

• For more stable and efficient training 

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Add & Norm
Residual Connections and Layer Norm

• Combine residual connection and layer norm into a single "Add & Norm" 
component


• Two choices:


• Pre-norm (input): 


• Pre-norm (output): 


• Post-norm: 


• Pre-norm leads to faster training.

zℓ+1 = f(LN(zℓ)) + zℓ

zℓ+1 = LN( f(zℓ)) + zℓ

zℓ+1 = LN( f(zℓ) + zℓ)

https://arxiv.org/abs/2002.04745

https://arxiv.org/abs/2111.09883

https://arxiv.org/abs/1706.03762



Transformer Encoder

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and 
a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

37
(He et al, 2016): Residual connections

Necessary for the model to 

know the position of the token



Positional encoding

t = position 
d = embedding dimension 
i = embedding index (0 to d-1) Sine Cosine 
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Positional encoding

t = position 
d = embedding dimension 
i = embedding index (0 to d-1)

Embedding index i 

Po
si

tio
n 

t 

-1 

+1 
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Positional encoding 

• Fixed absolute encoding 
• Words that are closer to each other 

have higher dot product (relative 
attention is high) 

• Can scale to long sequences 
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<latexit sha1_base64="PfrLurCUXx4t2B9BPej/0ngwWzk="></latexit>

ωk =
1

100002k/d

<latexit sha1_base64="XyrlCZf8FqFp9o2HuF0af1IAa8Y="></latexit>

p(i)t = f(t)(i) :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1

Dot product of positions



Transformer encoder

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and 
a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

• BERT_base: 12 layers, 12 heads, hidden size = 768, 110M parameters

• BERT_large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

• Input embedding is byte pair encoding (BPE) 

original

41

Transformer 
Non-recurrent,


deep model with

attention

(He et al, 2016): Residual connections



Transformer decoder

• Encoder-Decoder Attention, where queries 
come from previous decoder layer and keys 
and values come from output of encoder

• also 6 layers (in original paper) 

• Masked decoder self-attention on previously 
generated outputs

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-gpt2/)
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http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/


Do we need all these heads?

• Can we prune away some 
of the heads of a trained 
model during test time?

Are Sixteen Heads Really Better than One? 
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec 
6 layers, 16 heads each layer for each type 
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Do we need all these heads?

• Can we train a good MT 
model with less heads?

Are Sixteen Heads Really Better than One? 
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec 
6 layers, 16 heads each layer for each type 
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RNNs vs Transformers

the movie was terribly exciting !

Transformer layer 3

Transformer layer 2

Transformer layer 1

RNN Transformer
45



Useful Resources

nn.Transformer:

nn.TransformerEncoder:

The Annotated Transformer:
http://nlp.seas.harvard.edu/2018/04/03/attention.html 

A Jupyter notebook which explains how Transformer works line by line in PyTorch! 

46

Other details

• Learning rate with 

warmup and decay




• Label smoothing

Pytorch (https://pytorch.org/docs/stable/nn.html#transformer-layers)

https://github.com/
huggingface/transformers

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://pytorch.org/docs/stable/nn.html#transformer-layers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Perfomance on machine translation

47

Attention is all you need 
Vaswani et al, NeurIPS 2017



Transformer Pros and Cons

• Pros 
• Easier to capture dependencies: we draw attention between every pair of words 
• Easier to parallelize (matrix operations) 

• Cons 
• Quadratic computation in self-attention  

• Can become very slow when the sequence length is large

 
• Are these positional representations enough to capture positional information? 
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Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv



Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

49

• Language models
• Can’t condition on future 

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaDered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objecOves and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt
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