
Transformers and Self-Attention

Spring 2025

2025-02-10

CMPT 413/713: Natural Language Processing

SFUNatLangLab

Adapted from slides from Danqi Chen and Karthik Narasimhan

(with some content from slides from Chris Manning and Abigail See)

1

Review of attention in
sequence to sequence models

2

Attentive machine translation summary

3 (slide credit: Peter Anderson)

Attentive machine translation summary

4 (slide credit: Peter Anderson)

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒄𝑖 ht
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Summary of attention

5

(or values)

Final attention output

Attention weights: (normalized) 𝜶

Weighted sum of context features

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention score (,)
how well does the attention
candidate match the query

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛

𝒄𝑖 𝒛

• Dot-product attention:

• Neural network

Attention scores: (unnormalized) 𝒆

Attention can be used to copy from input

6 (See et al, 2017)

• Probability of generating from vocabulary or copying from input

• Probability of copying specific word (similar to attention)

Motivation of attention

• How much does this attention candidate match the query vector?

• Motivated by biological attention and alignment in machine translation

7

the agreement on the

get a representation that is a weighted sum over the
attention candidates based on a query vector

Attention is a general deep learning technique

‣ Given a set of value vectors and a query vector, attention is a way to compute
a weighted sum of the values dependent on the query.

‣ The query determines what values to focus on,

‣ We say: the query “attends” to the values

‣ In NMT, each decoder hidden state (query) attends to all the encoder hidden
state (values)

‣ A more general form: use a set of keys and values

‣ The keys are used to compute the attention scores

‣ The values are used to compute the output vector

8

Attention is always computed the same way

• Assume that we have a set of key-value pairs ,
, and a query vector

• Computing attention consists of the following steps:

• Compute the attention scores:

• Take softmax to get the attention distribution

• Use attention distribution to take weighted sum of values

k1, …, kn ∈ ℝdk

v1, …, vn ∈ ℝdv q ∈ ℝdq

9

<latexit sha1_base64="Wkn3UmsJsiACET4Rhn1Dp1OBYMU=">AAAC53icbVHLbtNAFJ24PEp49MGSzagRUhFVZLdJ7CwqRbBhWRBpK8WhGk+uk1HHYzMzLo1G8w1ICCG2iK9hC6v+DZO4EU3KlSydOfcc3etzk4IzpX3/quat3bl77/76g/rDR4+fbGxubR+rvJQU+jTnuTxNiALOBPQ10xxOCwkkSzicJOevZ/2TC5CK5eK9nhYwzMhYsJRRoh11tnkYZ0RPktTEhBcTYvEhjjVcaqPyVGfk0u4uBGBf4JgJXL0T885+cP6G3/TnhW+D4Bo0ejvxy69XvenR2VbtSzzKaZmB0JQTpQaBX+ihIVIzysHW41JBQeg5GcPAQUEyUEMz/0+LnztmhNNcuk9oPGdvOgzJlJpmiVPOllSrvRn5v96g1Gk0NEwUpQZBq0FpybHO8Sw0PGISqOZTBwiVzO2K6YRIQrWLth6PIHXxz9cxCS/BGjlOrHFBtKKw297zmweR73dbDnRCPwwCu+wpSlnwf672vn/QDfcWOToQddpRu+tcAj7RPMuIGJn4gnA7CIbGxDcnNwJrV4QfS5DTJeliYCV2VwxWb3YbHO83g06z9dad8xWqah09QztoFwUoRD30Bh2hPqLoJ/qFfqM/HvM+e9+875XUq117nqKl8n78Be2v64c=</latexit>

↵ = softmax(e) 2 Rn

<latexit sha1_base64="xk5EOBLh6U6xZzBEvn4PEu3hTR0=">AAADinicbVLdbtMwGPUafkYZbINLbqxVoCGqyknaJhFCqoALLrgYiG6TmlI5jtNZzd8cZ6iy/BY8CU/DLuFJcNKWrt0sRTo+3zn+fvIFecwKgdD1TsO4d//Bw91Hzcd7T57uHxw+Oy2ykhM6JFmc8fMAFzRmKR0KJmJ6nnOKkyCmZ8HsQxU/u6K8YFn6TcxzOk7wNGURI1hoanLwmU4YfAenx/6MzqWfYHERRHKmJky1oX9ZUr5mL5V6rcnljSros3R5DeRX9V0/10IdVB94G5hL0Boc+W9+Xg/mJ5PDxis/zEiZ0FSQGBfFyES5GEvMBSMxVU2/LGiOyQxP6UjDFCe0GMu6bQVfaiaEUcb1lwpYszcdEidFMU8CrayKLLZjFXlXbFSKyB1LlualoClZJIrKGIoMVjOEIeOUiHiuASac6VohucAcE6En3fRDGum/UZcjg7ikSvJpoKQeRNd1vF4bdWwXIa+rQd9BjmmqTU9e8jxeu3oWsj2nvZqjBm6/5/a8LRen4X9Lv2tZtllbLMepLMi0XMvasmQcp9N1Is9DXVQl6iFk2l7lsm2NtCulP0iWJDgNpX+FYzUyx1L6N1tsmUptCevt2ZCuOrtDrNdvQ7qqbSHVm2Vu79FtcGp1zH6n+0Wv2HuwOLvgBTgCx8AEDhiAT+AEDAEBv8Bv8Af8NfYMy/CMtwtpY2fpeQ42jvHxH7zuIBU=</latexit>

ei = g(ki,q), e 2 Rn

<latexit sha1_base64="HkF1JstH6QPyOuA+hRqJI03y+JE=">AAAC/nicbVHLbhMxFHWGVwmPpmXJxiJCYlGicZvnAqmCTZcFNW2lTBh5PJ7Eqscz2J5UkWWJb2DBmhUbhBA7hPgEfoAdW/gKPJMWmpQrWTo69xzd63uinDOlff9Hzbty9dr1G2s367du37m73tjYPFRZIQkdkoxn8jjCinIm6FAzzelxLilOI06PopNnZf9oRqVimTjQ85yOUzwRLGEEa0eFjYNgirUJUqynUWKItfAJDFSRhoY9RvalERWBeT7FIYPBDPO/4pkNmYUBE3DBROaFM8Sh4xtNv+VXBS8DdAaau3vvPnz7/P3tfrhRexPEGSlSKjThWKkR8nM9NlhqRji19aBQNMfkBE/oyEGBU6rGpvq+hQ8dE8Mkk+4JDSv2osPgVKl5Gjlluaha7ZXk/3qjQif9sWEiLzQVZDEoKTjUGSxvCWMmKdF87gAmkrldIZliiYl2F68HMU1cKtU6JuIFtUZOImvcIdr93qCz5bd2+r4/aDvQ7fk9hOyyJy9kzv+5Otv+zqC3dX5HB/rdTr8zcC5BT0mWpljEpozIjtDYmODi5CaydkX4qqByviQ9H7gQuxTRamaXweF2C3Vb7ecuzqdgUWvgPngAHgEEemAX7IF9MAQEfAU/wS/w23vtvfc+ep8WUq925rkHlsr78gfRKfaz</latexit>

ĉ =
nX

i�1

= ↵ivi 2 Rdv

Query-Value-Key view of attention

10

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒌𝑖 𝒒
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒗𝑖

 𝒒 = 𝑊𝑄 𝒛
𝒌𝑖 = 𝑊𝐾 𝒄𝑖
𝒗𝑖 = 𝑊𝑉 𝒄𝑖

Projected query,key,value
 𝒒 = 𝑊𝑄 𝒛

𝐾 = 𝑊𝐾 𝐶𝑇

𝑉 = 𝑊𝑉 𝐶𝑇

Matrix form

General form of attention: key-value-query

‣ Attention is a way to compute a weighted sum of the values dependent on
the query and the corresponding keys.

‣ All of these (key value query) are represented using vectors

‣ The query and key are used for addressing (contains partial information).
While the values provide more complete information

• The weighted sum is a selective summary of the information found in
the values.

• It is a way to obtain a fixed-sized representation of an arbitrary set of
representations (values) based on some other representation (the query)

11

Transformers

12

13

Transformers are everywhere!
• Vision

• Reinforcement Learning

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, Dosovitskiy et al, ICLR 2021

Trajectory Transformer [Janner et al, 2021] Decision Transformer [Chen et al, 2021]

Transformers for Language Modeling

<latexit sha1_base64="nVLTfTeRZqZQDE/Bjafx+3dZXyk=">AAACHXicbZDLSgMxFIYzXmu9jbp0EyyCRS0zoujCRdGNywr2Am0ZMmlqg5lMSM5Yy9gnceGzuHCjIrgS38b0Inj7IfDxn3M4OX+oBDfgeR/OxOTU9MxsZi47v7C4tOyurFZMnGjKyjQWsa6FxDDBJSsDB8FqSjMShYJVw6vTQb16zbThsbyAnmLNiFxK3uaUgLUC96C01Q0A3+JukB5DP48bRCkd3+Avv6E63GIKu3Lb38Gw6/fz+cDNeQVvKPwX/DHk0FilwH1rtGKaREwCFcSYuu8paKZEA6eC9bONxDBF6BW5ZHWLkkTMNNPheX28aZ0WbsfaPgl46H6fSElkTC8KbWdEoGN+1wbmf7V6Au2jZsqlSoBJOlrUTgSGGA+ywi2uGQXRs0Co5vavmHaIJhRsojYD//fFf6GyV/APCt75fq54Mk4jg9bRBtpCPjpERXSGSqiMKLpDD+gJPTv3zqPz4ryOWiec8cwa+iHn/ROp5J/4</latexit>

P (wt|w<t) ⇡ P (wt|�(wt�n+1,t�1))
Notes
• Transformers can’t actually handle arbitrary length
• But they are built up with modules that share weights
• They have self-attention that allow them to have better representations of context
• They can be parallelized and trained on large amounts of data

Transformer

SOS the students opened

Self-attention neural module that transforms
token representation via many layers

Transformers

• NIPS’17: Attention is All You Need
• Originally proposed for NMT (encoder-

decoder framework)
• Used in most LLMs!
• Key idea: Multi-head self-attention
• No recurrence structure any more so it

trains much faster

Encoder Decoder

15

Understanding transformers

• From attention to self-attention
• From self-attention t0 multi-headed

self-attention
• Transformer encoder
• Transformer decoder
• Putting the pieces together

Encoder Decoder

16

Multi-head self-attention

17

• Each Transformer block has two-sublayers
• Multi-Head self-attention
• 2 layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and a
layer normalization
• LayerNorm(x+SubLayer(x))

• Input layer has a positional encoding

Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads

18

Self Attention
(also referred to as Intra-Attention)

• Self-attention: let’s use each word as query and compute the attention
with all the other words (other words are the keys and values)

= the word vectors themselves select each other

19

How to get key-value-query for each word?

‣ For each word, we have vectors for the key-value-query

‣ These vectors are created by multiplying the word embedding by
trained weight matrices

20

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

Stack into matrices and
compute all at once!

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

• Can be any kind of attention
function

• For transformers, this is the
scaled dot-product attention

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

• query, key, and value vectors
created by multiplying learned
weight matrices with embedding

21

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Scaled dot-product attention

‣ Assume keys and query

1. Dot-product attention (assumes equal dimensions for and): 

2. Scaled dot-product attention:  

k1, k2, . . . , kn q

ki q
g(ki, q) = qTki ∈ ℝ

g(ki, q) =
qTki

d
∈ ℝ

Scaled dot product will perform well

for larger dimensions

Scaling factor: d = dimension of hidden state

Scale of dot product increases

(proportional to)

as dimension gets larger

Perform poorly for large d

Softmax has small gradient

d

22

• Can be any kind of attention
function

• For transformers, this is the
scaled dot-product attention

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

• is the final vector of attended
values for “Thinking” as the query
z1

23

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Self-attention in equations

• A self-attention layer maps a sequence of input vectors to a
sequence of n vectors:

• Note: this is similar as an RNN layer and can be used to replace an RNN layer

x1, …, xn ∈ ℝd1

y1, …, yn ∈ ℝd2

24

qi = WQxi, WQ ∈ ℝdq×d1

ki = WKxi, WK ∈ ℝdk×d1

vi = WVxi, WV ∈ ℝdv×d1

• First, construct a set of queries, keys, and values:

• Second, for each , compute attentions scores and
attention distribution

qi

Scaled dot-product

so dk = dq

αi,j = softmax (
qi ⋅ kj

dk)
• Finally, compute the weighted sum:

yi =
n

∑
j=1

αi,jvj ∈ ℝdv dv = d2

Self-attention: matrix notation

25

Note: the notation on this slide are following the original paper

(= the transpose of the matrices in the previous slide)Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv

X ∈ ℝn×d1

Attention(Q, K, V) = softmax (QKT

dk) V

n × dq dk × n

n × dv

Be careful to make sure

the softmax is over the correct dimension

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

Each row corresponds a token

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads

26

Multi-head self-attention
One head is not expressive enough. Let’s have multiple heads!

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i)

In practice, , h = 8
d = dout /h, WO ∈ ℝdout×dout

https://github.com/jessevig/bertviz
27

https://github.com/jessevig/bertviz

Why different heads?
• Different heads learn to attend to different things

28
Emergent linguistic structure in artificial neural networks trained by self-supervision, Manning et al, PNAS 2019

Multiple heads

• Multiple (different) representations
for each query, key, and values

• Different weight matrices —>
different vectors

• Different ways for the words to
interact with each other

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)29

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Multi-head attention

• In practice, we use a reduced dimension for each head.

• The total computational cost is similar to that of single-
head attention with full dimensionality

30

WQ
i ∈ ℝd1×dq, WK

i ∈ ℝd1×dk, WV
i ∈ ℝd1×dv

dq = dk = dv = d/h

WO ∈ ℝd×d2

 = hidden size, = # of headsd h

If we stack multiple layers, usually d1 = d2 = d

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i)

Transformer Encoder

• Each Transformer block has two sub-layers
• Multi-head attention

31

Without FFNN: No non-linearity!

• 2-layer feedforward NN (with ReLU)

Adding nonlinearities

32

Transformer Encoder

• Each Transformer block has two sub-layers
• Multi-head attention
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and
a layer normalization

 LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

residual connection

33
(He et al, 2016): Residual connections

Residual Connections
Add input of a layer to output of that layer

•

• Local gradient is 1 for the identity function

• Easier to learn the difference from the identity function than to learn the
function from scratch.

zℓ+1 = f(zℓ) + zℓ

He+ 2015 https://arxiv.org/abs/1512.03385

https://arxiv.org/pdf/1712.09913.pdf

Residual connections and Layer Normalization

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

LayerNorm
• changes input features to have mean 0 and

variance 1 per layer.
• Adds two more parameters

(Ba et al, 2016): Layer Normalization35

• For more stable and efficient training

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Add & Norm
Residual Connections and Layer Norm

• Combine residual connection and layer norm into a single "Add & Norm"
component

• Two choices:

• Pre-norm (input):

• Pre-norm (output):

• Post-norm:

• Pre-norm leads to faster training.

zℓ+1 = f(LN(zℓ)) + zℓ

zℓ+1 = LN(f(zℓ)) + zℓ

zℓ+1 = LN(f(zℓ) + zℓ)

https://arxiv.org/abs/2002.04745

https://arxiv.org/abs/2111.09883

https://arxiv.org/abs/1706.03762

Transformer Encoder

• Each Transformer block has two sub-layers
• Multi-head attention
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and
a layer normalization

 LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

37
(He et al, 2016): Residual connections

Necessary for the model to

know the position of the token

Positional encoding

t = position
d = embedding dimension
i = embedding index (0 to d-1) Sine Cosine

38

Positional encoding

t = position
d = embedding dimension
i = embedding index (0 to d-1)

Embedding index i

Po
si

tio
n

t

-1

+1

39

Positional encoding

• Fixed absolute encoding
• Words that are closer to each other

have higher dot product (relative
attention is high)

• Can scale to long sequences

40

<latexit sha1_base64="PfrLurCUXx4t2B9BPej/0ngwWzk=">AAADSnicbVJNb9NAEN26Bdrw0RTECQ4rokocqmA7TmwfkCq4cCwSaSvFabVej1Mr9traXbeKVnvkwK/hCv+BP8Df4Ia4sPlAxUlHWulp5r3Z2bcTV3kmpG3/3LK2d+7df7C713r46PGT/fbB01NR1pzCkJZ5yc9jIiDPGAxlJnM4rziQIs7hLJ6+n9fProGLrGSf5KyCcUEmLEszSqRJXbY7UVnAhFyqqcZvcZRyQpWjlWObuFDu9E2itWHZXXsReBM4K9A5Dj+3L14+3zu5PLD2o6SkdQFM0pwIMXLsSo4V4TKjOehWVAuoCJ2SCYwMZKQAMVaL12h8aDIJTktuDpN4kf1foUghxKyIDbMg8kqs1+bJO2sgroFKjfEh4by8wSXDsqyaw8g0GKuMVbUERpezpHVueHjuHk4yblrkMwMI5Zl5DqZXxJgmjcetKIHU/MNiYhXnNWjFJ7FWxisv8MP+kd3tBbYdegYMfNt3HN3UTDgAuxUF3qAXzrme73quAa7XdzdEVc2r/Paqvmv3Qv/o3/8YEAz6QT80KgY3tCwKwhIVVXrkjJWKmj06jtZrRNEgria8gyehaPZcGrBkmhVy1hdmE5y6XWfQ9T6aXXqHlrGLXqBX6DVykI+O0Qd0goaIoi/oK/qGvls/rF/Wb+vPkmptrTTPUCO2d/4CnQMKpw==</latexit>

ωk =
1

100002k/d

<latexit sha1_base64="XyrlCZf8FqFp9o2HuF0af1IAa8Y=">AAADyHiclVLNbtNAELYToCX8tIUjl1WjolQNke06cYJUKYIL4lQk0lbKhmi9Hqer2Ltmd90QWb7wDLwAj9W3YfODSppeGGmlb2e+b3Z2ZsIsYUo7zq1dqT56/GRn92nt2fMXL/f2D15dKJFLCgMqEiGvQqIgYRwGmukErjIJJA0TuAynHxfxyxuQign+Vc8zGKVkwlnMKNHGNd7/nY31t6LBjkt0huKGPl5f3p8hHMKE8YKa7KqsYcV4A4sUJmQ8RZhGQiN93EQIvUVYww9dsLhE+HtOIsRMLm+KcQ1Tof5PhE6QuxACj9Yvj/frTstZGtoG7hrU+4f45Ndtf34+Pqjs4UjQPAWuaUKUGrpOpkcFkZrRBMxXcgUZoVMygaGBnKSgRsWylyU6Mp4IxUKawzVaev9VFCRVap6GhpkSfa3uxxbOB2OgboDqEqEjIqWYIcGRFtlmMTrujgrGs1wDp6ta4jwxPLSYHYqYNCmSuQGESma+g+g1kYRqM+EajiA2W7CsuAiTHMpCTsKyML3yu0Gv3XRap13H6fkGdAIncN1yUzORAPxO1PU7p70F1w883zPA89velijLZZbcPdX2nNNe0Pw7HwO6nXa33TMqDjMq0pSYyeKsHLqjosCbOepuWd4jqg3iusIHeBrSzZyrBqyYZoXc+wuzDS68lttp+V/MLn2wVrZrvbEOrYblWoHVtz5Z59bAovaO/c7u2EH1czWrzqrzFbVirzWvrQ2r/vwDmeYxgQ==</latexit>

p(i)t = f(t)(i) :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1

Dot product of positions

Transformer encoder

• Each Transformer block has two sub-layers
• Multi-head attention
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and
a layer normalization

 LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

• BERT_base: 12 layers, 12 heads, hidden size = 768, 110M parameters

• BERT_large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

• Input embedding is byte pair encoding (BPE)

original

41

Transformer
Non-recurrent,

deep model with

attention

(He et al, 2016): Residual connections

Transformer decoder

• Encoder-Decoder Attention, where queries
come from previous decoder layer and keys
and values come from output of encoder

• also 6 layers (in original paper)

• Masked decoder self-attention on previously
generated outputs

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-gpt2/)

42

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/

Do we need all these heads?

• Can we prune away some
of the heads of a trained
model during test time?

Are Sixteen Heads Really Better than One?
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec
6 layers, 16 heads each layer for each type

43

Do we need all these heads?

• Can we train a good MT
model with less heads?

Are Sixteen Heads Really Better than One?
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec
6 layers, 16 heads each layer for each type

44

RNNs vs Transformers

the movie was terribly exciting !

Transformer layer 3

Transformer layer 2

Transformer layer 1

RNN Transformer
45

Useful Resources

nn.Transformer:

nn.TransformerEncoder:

The Annotated Transformer:
http://nlp.seas.harvard.edu/2018/04/03/attention.html

A Jupyter notebook which explains how Transformer works line by line in PyTorch!

46

Other details

• Learning rate with

warmup and decay

• Label smoothing

Pytorch (https://pytorch.org/docs/stable/nn.html#transformer-layers)

https://github.com/
huggingface/transformers

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://pytorch.org/docs/stable/nn.html#transformer-layers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

Perfomance on machine translation

47

Attention is all you need
Vaswani et al, NeurIPS 2017

Transformer Pros and Cons

• Pros
• Easier to capture dependencies: we draw attention between every pair of words
• Easier to parallelize (matrix operations)

• Cons
• Quadratic computation in self-attention

• Can become very slow when the sequence length is large

• Are these positional representations enough to capture positional information?

48

Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv

Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

49

• Language models
• Can’t condition on future

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer,

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaDered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objecOves and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt

50

