

Adapted from slides from Dangi Chen and Karthik Narasimhan (with some content from slides from Abigail See, Graham Neubig)

CMPT 413/713: Natural Language Processing

- Attention for Seq2Seq models (Attention)
 - Spring 2024 2024-02-07

- Review of Seq2Seq models
- Attention

Overview

Sequence to sequence models

Neural Machine Translation

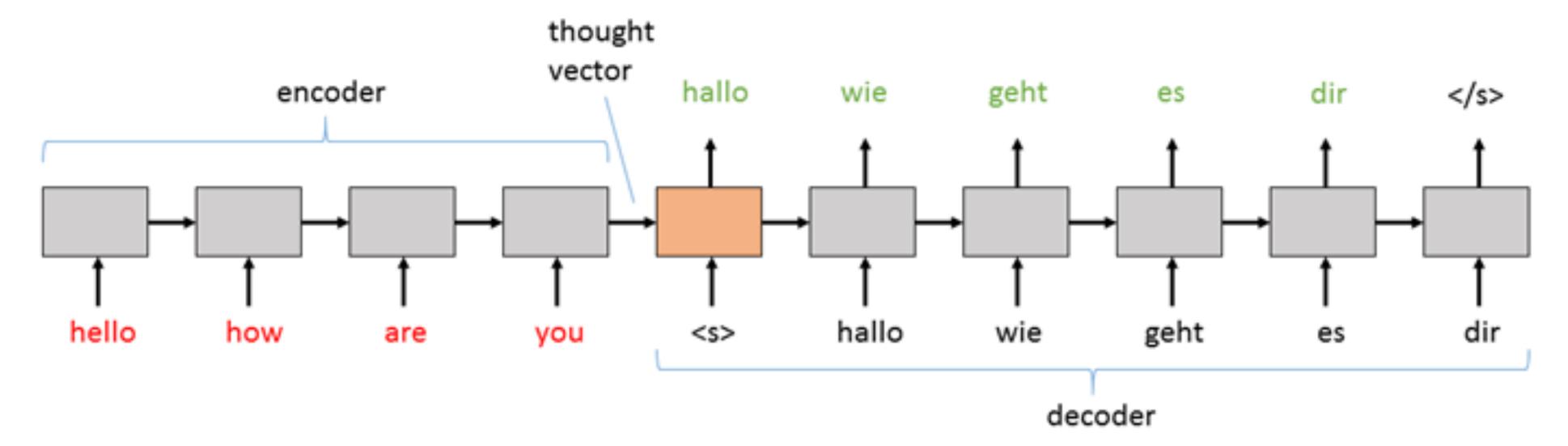
- to target
- Architecture: Encoder-Decoder
 - Two main components:
 - matrix
 - language (output)

A single neural network is used to translate from source

Encoder: Convert source sentence (input) into a vector/

Decoder: Convert encoding into a sentence in target

Sequence to Sequence learning (Seq2seq)

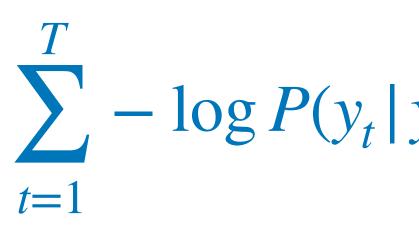


- Encode entire input sequence into a single vector (using an RNN)
- Decode one word at a time (again, using an RNN!)
- Beam search for better inference
- Learning is not trivial! (vanishing/exploding gradients)

(Sutskever et al., 2014)

Seq2seq training

- Similar to training a language model!
- Minimize cross-entropy loss:



- Need a really big corpus

$\sum_{t=1}^{n} -\log P(y_t | y_1, \dots, y_{t-1}, x_1, \dots, x_n)$

Russian: Машинный перевод - это круто!

English: Machine translation is cool!

Decoding strategies and evaluation

Decoding Strategies

Sampling

- Sample for diverse generation
- Can sample from top-10 choices or top-50%
- Greedy decoding Efficient and fast, good starting point
- Beam search Practical middle ground

- - When a hypothesis produces $\langle eos \rangle$, stop expanding it and place it aside
- Continue beam search until:
 - All k hypotheses produce $\langle eos \rangle$ OR
 - Hit max decoding limit T
- Select top hypotheses using the normalized likelihood score

$$\frac{1}{T} \sum_{t=1}^{T} \log P(y_t)$$

Otherwise shorter hypotheses have higher scores

Beam decoding

• Different hypotheses may produce $\langle eos \rangle$ (end) token at different time steps

 $y_t | y_1, \dots, y_{t-1}, x_1, \dots, x_n)$

Evaluating translation quality

- Two main criteria:
 - content of $w^{(s)}$

To Vinay it like Py Vinay debugs mem Vinay likes Python

Different translations of A Vinay le gusta Python

• Adequacy: Translation $w^{(t)}$ should adequately reflect the linguistic

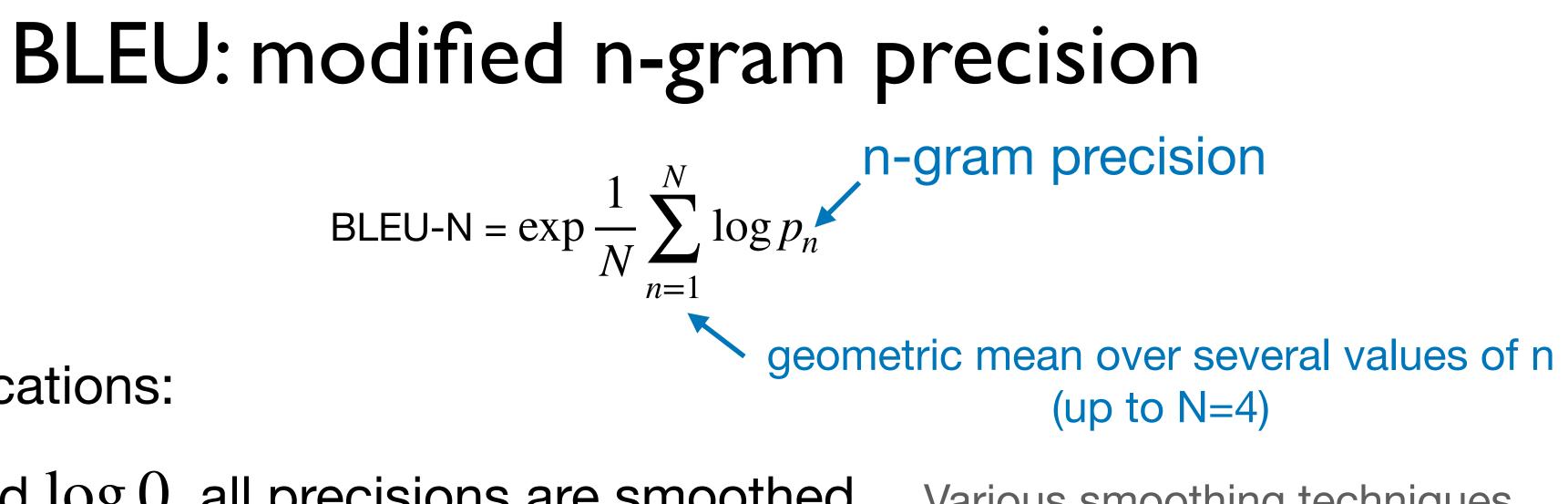
• Fluency: Translation $w^{(t)}$ should be fluent text in the target language

	Adequate?	Fluent?
thon	yes	no
nory leaks	no	yes
n	yes	yes

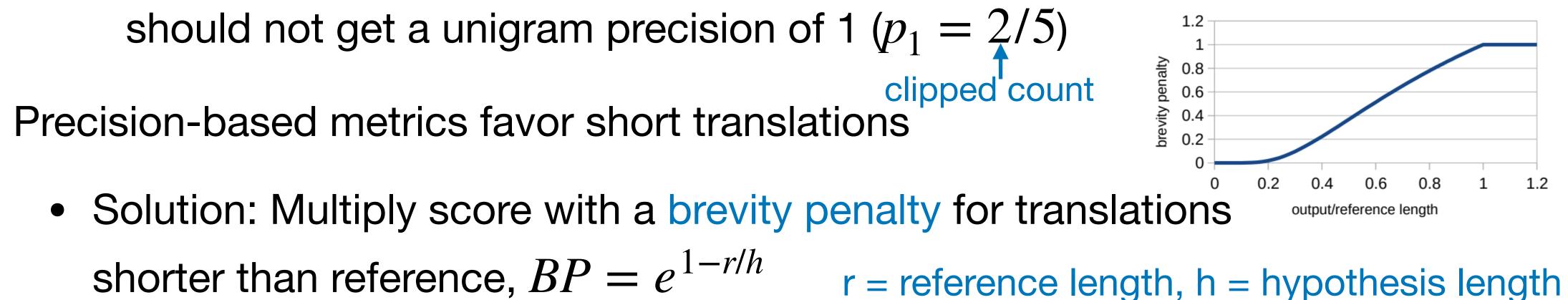
Two modifications:

- To avoid log 0, all precisions are smoothed Various smoothing techniques add 1 to numerator/denominator
- Each n-gram in reference can be used at most once

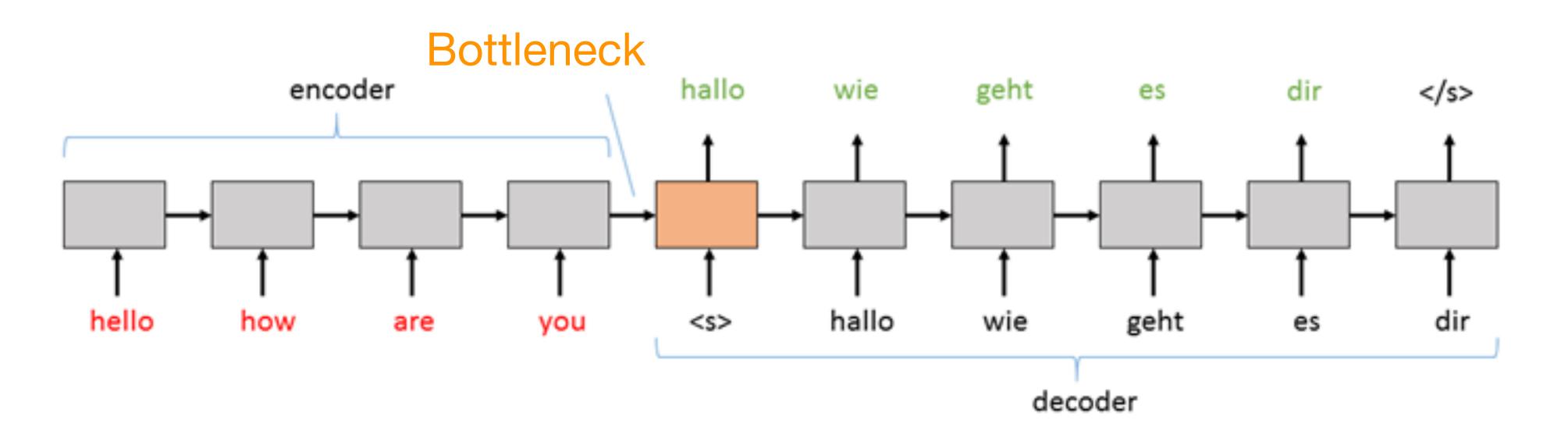
 Solution: Multiply score with a brevity penalty for translations shorter than reference, $BP = e^{1-r/h}$



• Ex. Hypothesis: to to to to to vs Reference: to be or not to be

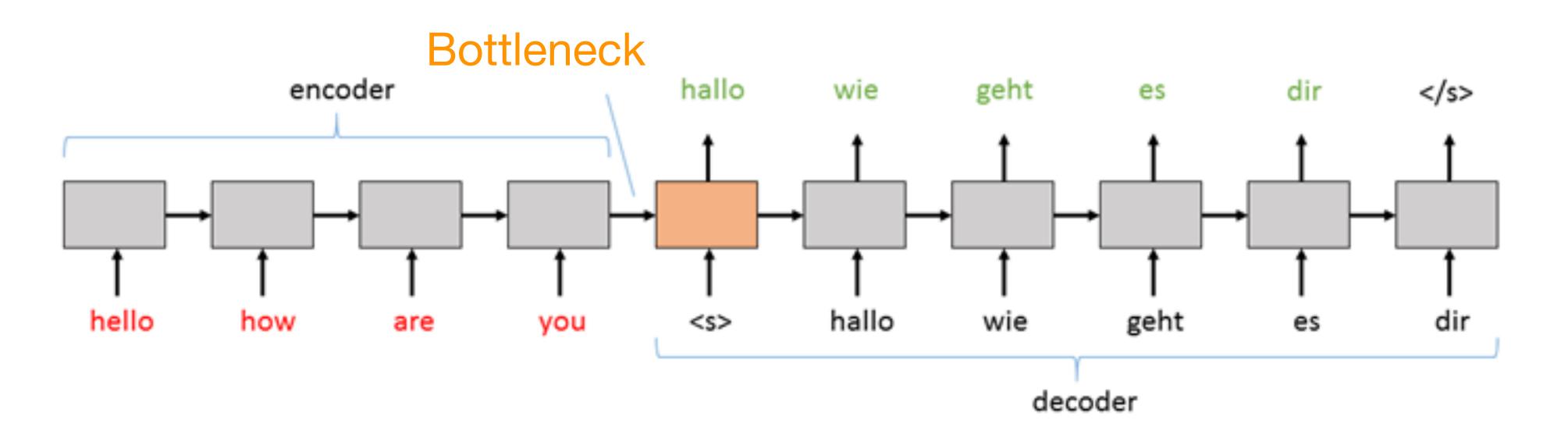


Issues with vanilla seq2seq



- A single encoding vector, h^{enc}, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

Issues with vanilla seq2seq



- A single encoding vector, h^{enc}, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

Exposure bias

- Discrepancy in model input between training and generation time
- During training, model inputs are gold context tokens

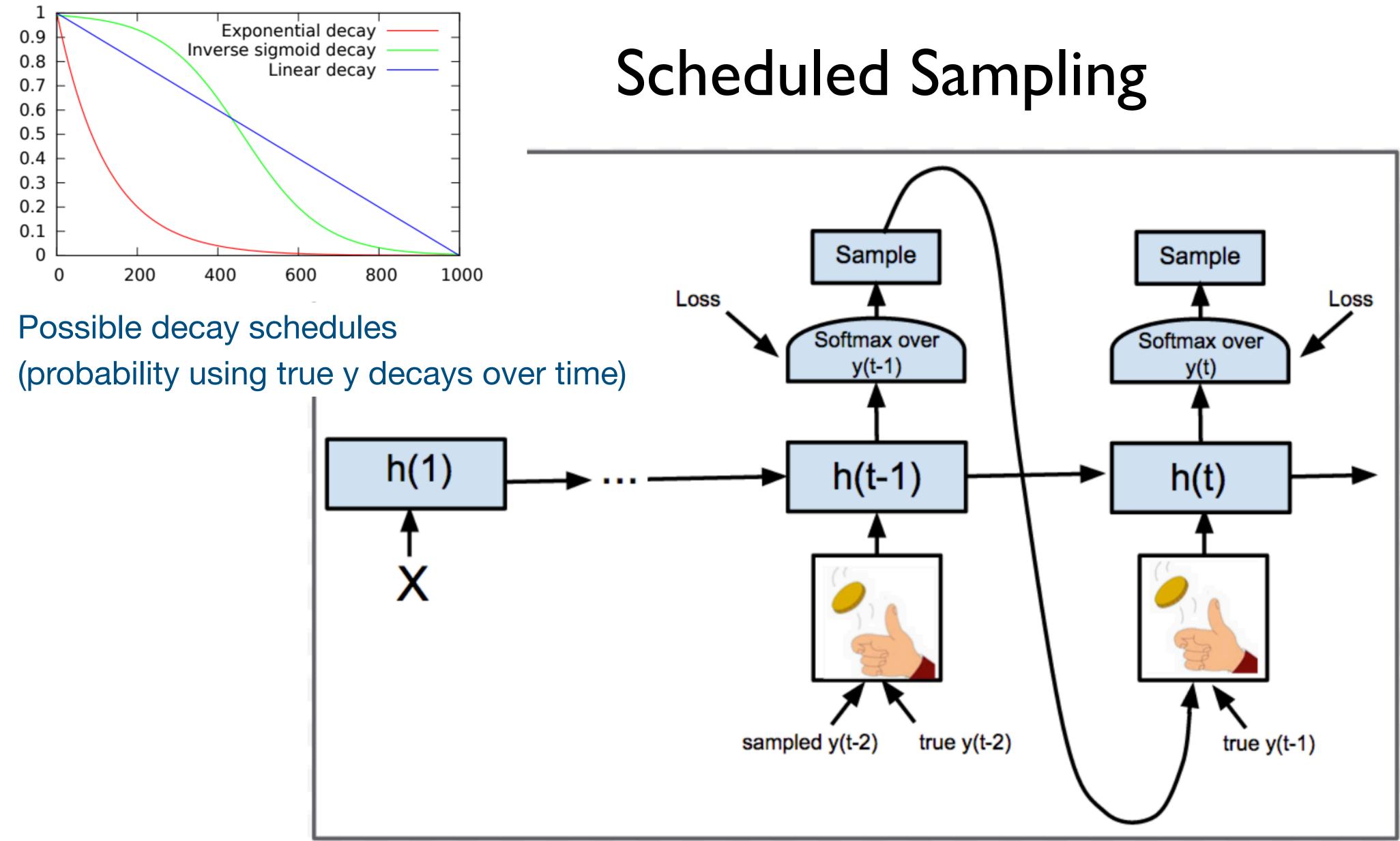
$$\mathcal{L}_{MLE} = -\sum_{t=1}^{T} \log P(y_t^* | \{y_{< t}^*\})$$

• At generation time, inputs are previouslydecoded tokens

$$\mathcal{L}_{dec} = -\sum_{t=1}^{I} \log P(\hat{y}_t | \{ \hat{y}_{< t} \})$$

Student forcing: use predicted tokens during training Scheduled sampling: use decoded token with some probability p, increase p over time





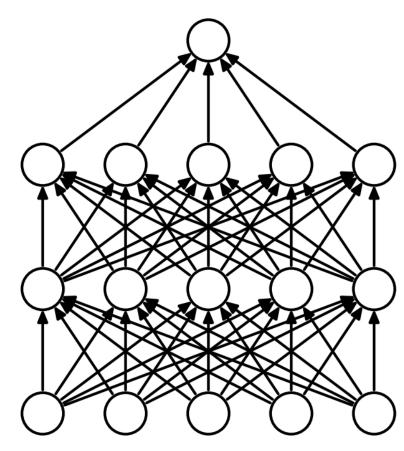
(figure credit: Bengio et al, 2015)

Regularization

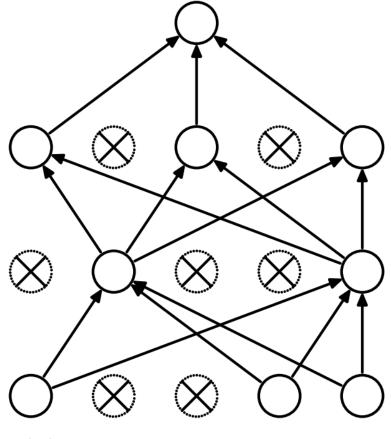
- Weight Decay
- Dropout
- Ensembling

Regularization: Dropout

- Form of regularization for RNNs (and any NN in general)
- Idea: "Handicap" NN by removing hidden units stochastically
 - set each hidden unit in a layer to 0 with probability p
 during training (p = 0.5 usually works well)
 - scale outputs by 1/(1-p)
 - hidden units forced to learn more general patterns
- Test time: Use all activations (no need to rescale)



(a) Standard Neural Net



(b) After applying dropout.

Dropout and attention improves translation

System

Winning WMT'14 system – phrase-based + larg

Existing NMT systems

RNNsearch (Jean et al., 2015)

RNNsearch + unk replace (Jean et al., 2015)

RNNsearch + unk replace + large vocab + ensen

Our NMT systems

Base

Base + reverse

Base + reverse + dropout

- Base + reverse + dropout + global attention (local
- Base + reverse + dropout + global attention (local
- Base + reverse + dropout + local-p attention (gen Base + reverse + dropout + local-p attention (gen

Ensemble 8 models + unk replace

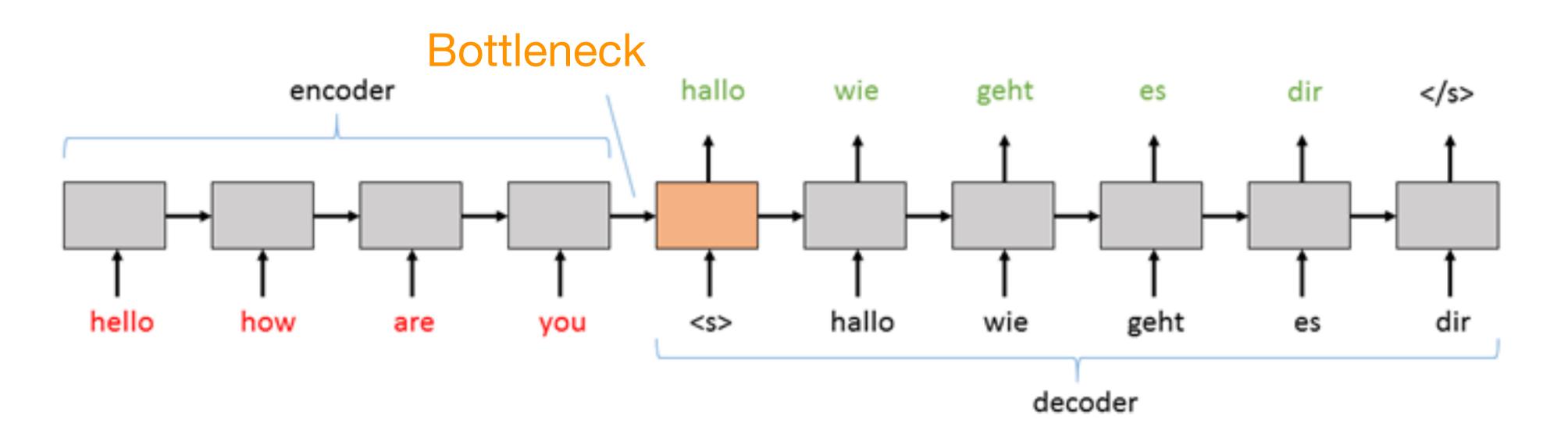
WMT'14 English to German Results

	Ppl	BLEU
rge LM (Buck et al., 2014)		20.7
		16.5
		19.0
mble 8 models (Jean et al., 2015)		21.6
	10.6	11.3
	9.9	12.6 (+1.3)
	8.1	12.6 (+1.3) 14.0 (+1.4)
cation)	7.3	16.8 (+2.8)
cation) + feed input	6.4	18.1 (+1.3)
eneral) + feed input	5.0	19.0 (+0.9)
eneral) + feed input + unk replace	5.9	20.9 (+1.9)
		23.0 (+2.1)

(Luong et al, 2015)

Sequence to sequence models with attention

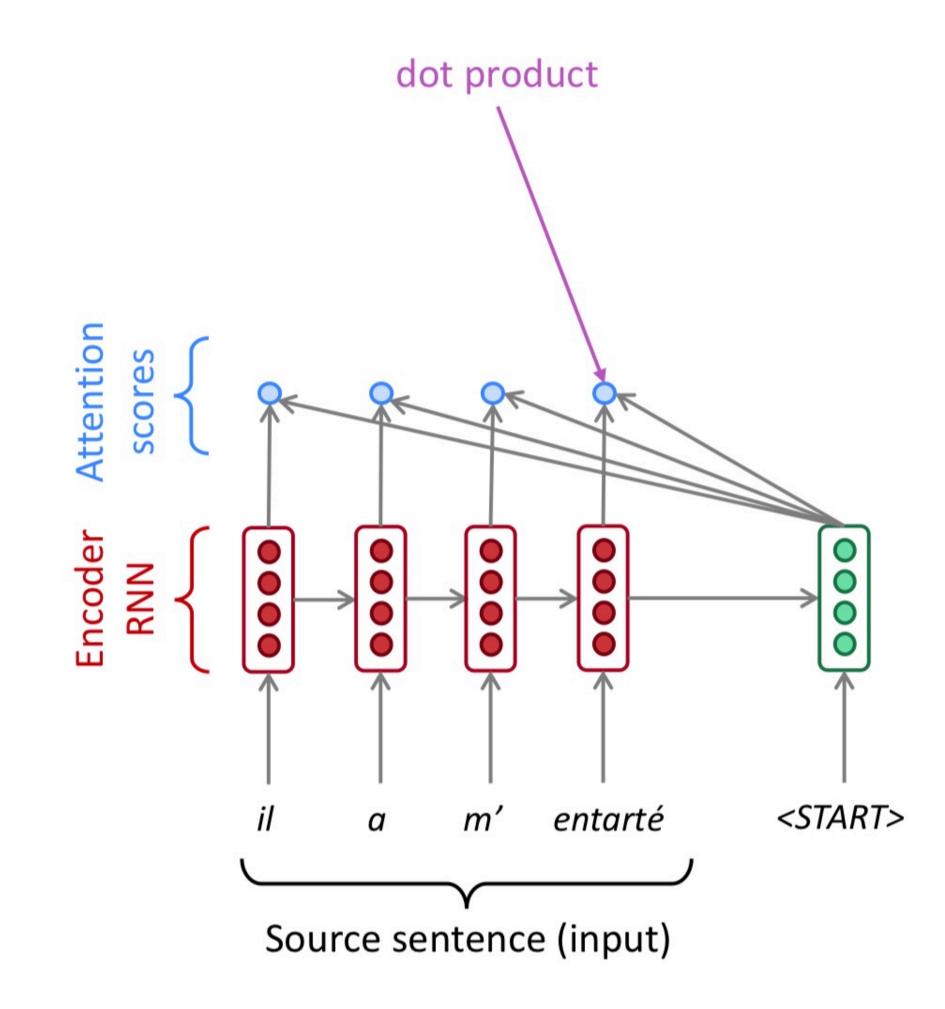
Issues with vanilla seq2seq

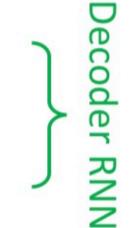


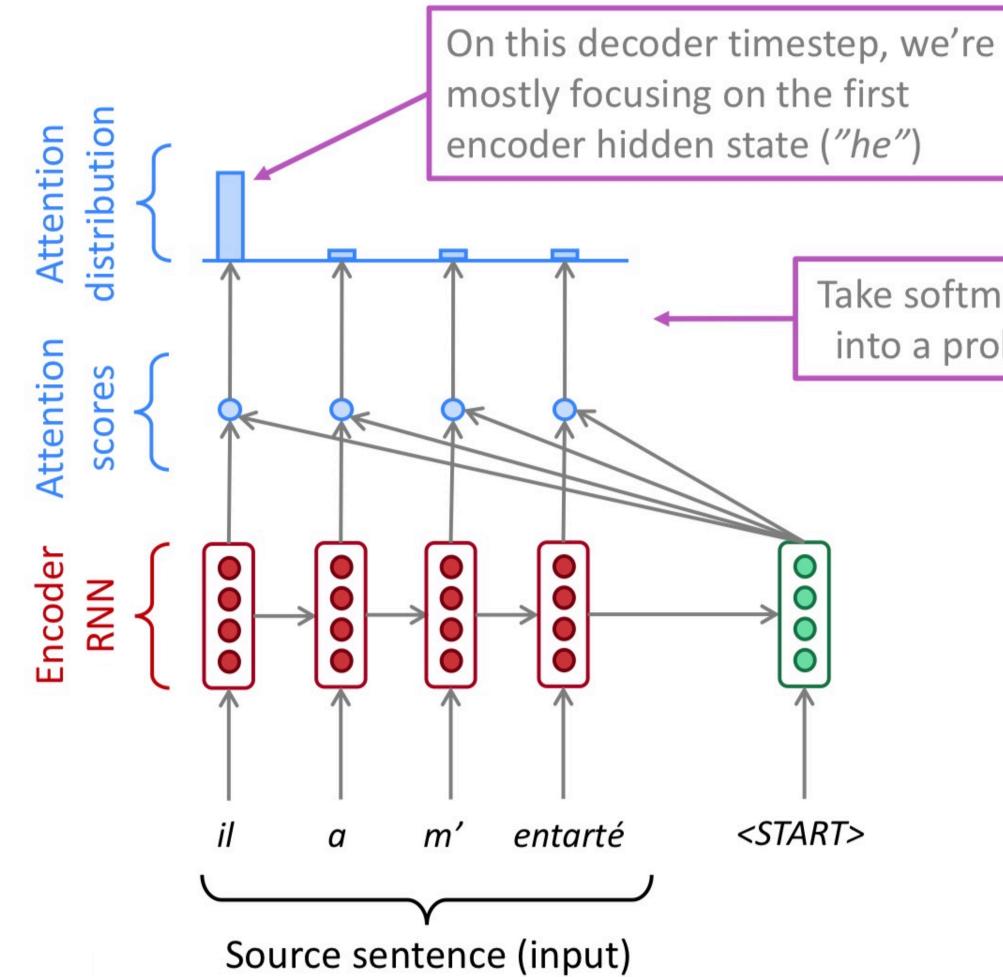
- A single encoding vector, h^{enc} , needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

Attention

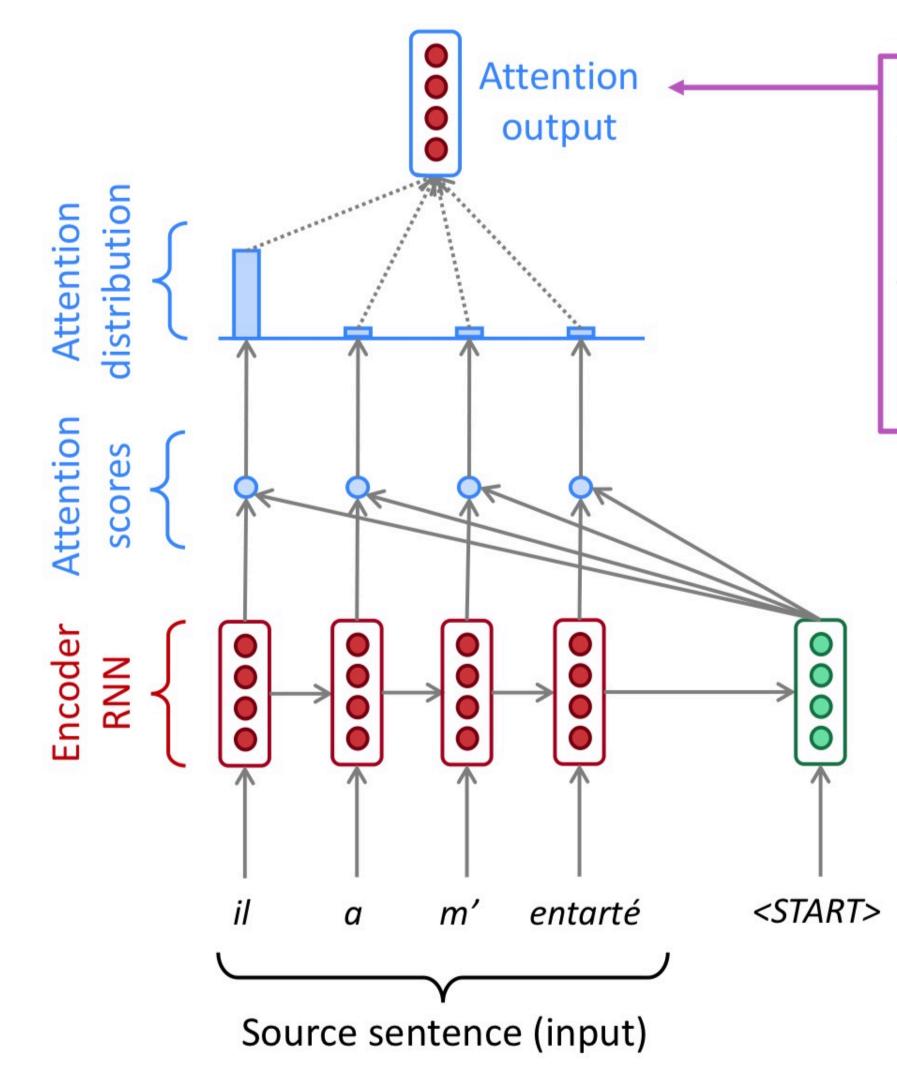
- The neural MT equivalent of alignment models
- Key idea: At each time step during decoding, focus on a particular part of source sentence
 - This depends on the decoder's current hidden state (i.e. notion of what you are trying to decode)
 - Usually implemented as a probability distribution over the hidden states of the encoder (h_i^{enc})







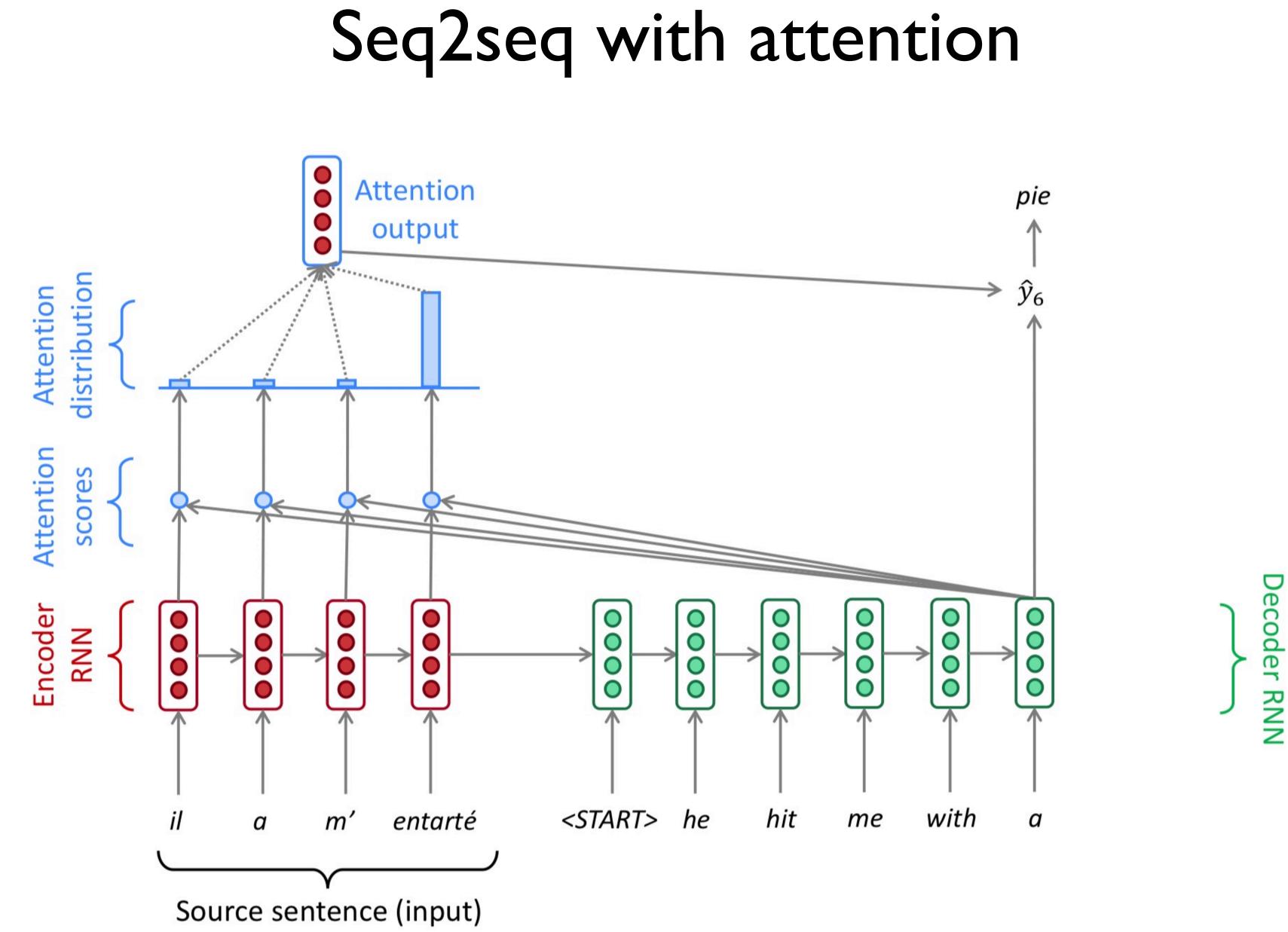
Take softmax to turn the scores into a probability distribution



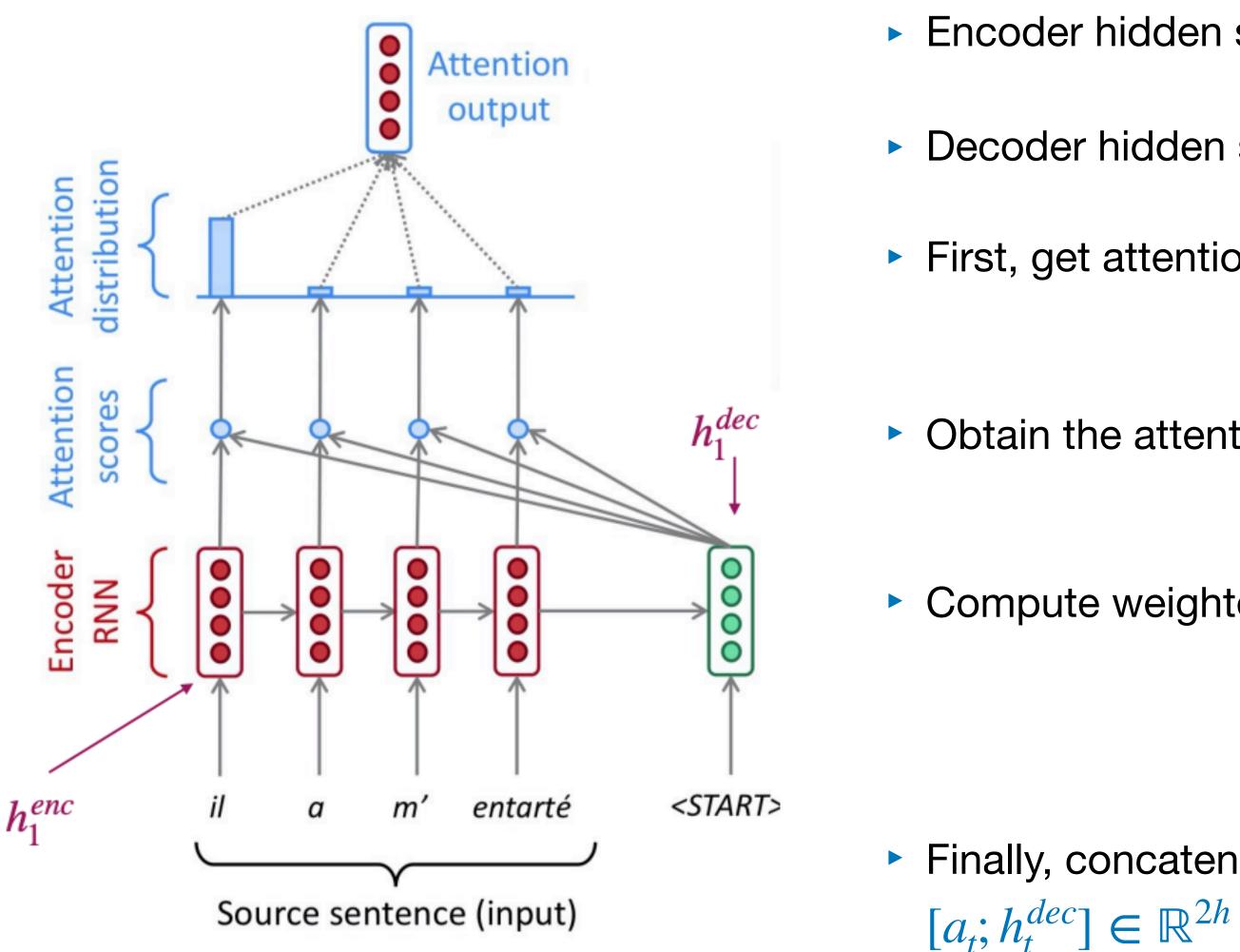
Use the attention distribution to take a **weighted sum** of the **encoder hidden** states.

The attention output mostly contains information from the hidden states that received high attention.





Computing attention



• Encoder hidden states: $h_1^{enc}, \ldots, h_n^{enc}$

• Decoder hidden state at time t: h_t^{dec}

First, get attention scores for this time step (we will see what g is soon!): $e^{t} = [g(h_1^{enc}, h_t^{dec}), \dots, g(h_n^{enc}, h_t^{dec})]$

Obtain the attention distribution using softmax:

 $\alpha^{t} = \operatorname{softmax} (e^{t}) \in \mathbb{R}^{n}$

Compute weighted sum of encoder hidden states:

$$a_t = \sum_{i=1}^n \alpha_i^t h_i^{enc} \in \mathbb{R}^h$$

Finally, concatenate with decoder state and pass on to output layer:

Types of attention

Dot-product attention: $g(h_i, z) = z^T h_i \in \mathbb{R}$ more efficient (matrix 2. Bilinear / multiplicative attention: multiplication)

Additive attention (essentially MLP): 3.

• Assume encoder hidden states h_1, h_2, \ldots, h_n and decoder hidden state z

Simplest (no extra parameters) requires z and h_i to be same size

 $g(h_i, z) = z^T W h_i \in \mathbb{R}$, where W is a weight matrix

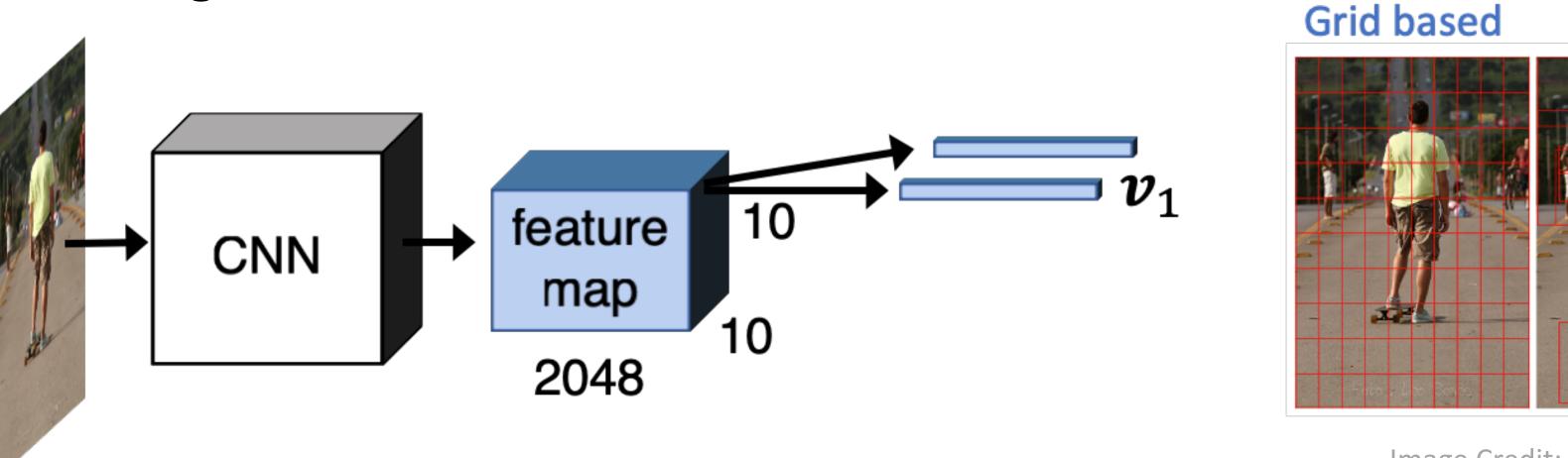
More flexible than dot-product (W is trainable)

 $g(h_i, z) = v^T \tanh(W_1h_i + W_2z) \in \mathbb{R}$

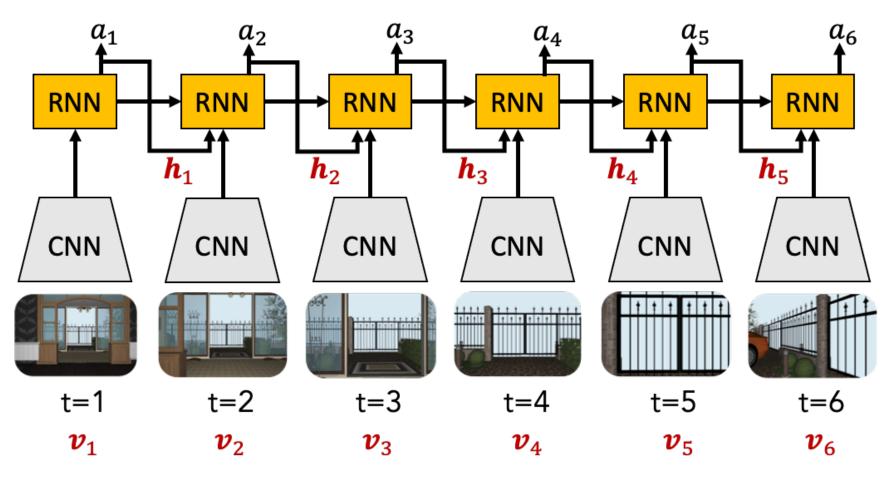
where W_1, W_2 are weight matrices and v is a weight vector

Perform better for larger dimensions

Attention can be applied to other modalities



• Agent experience



Attention on other modalities

proposals

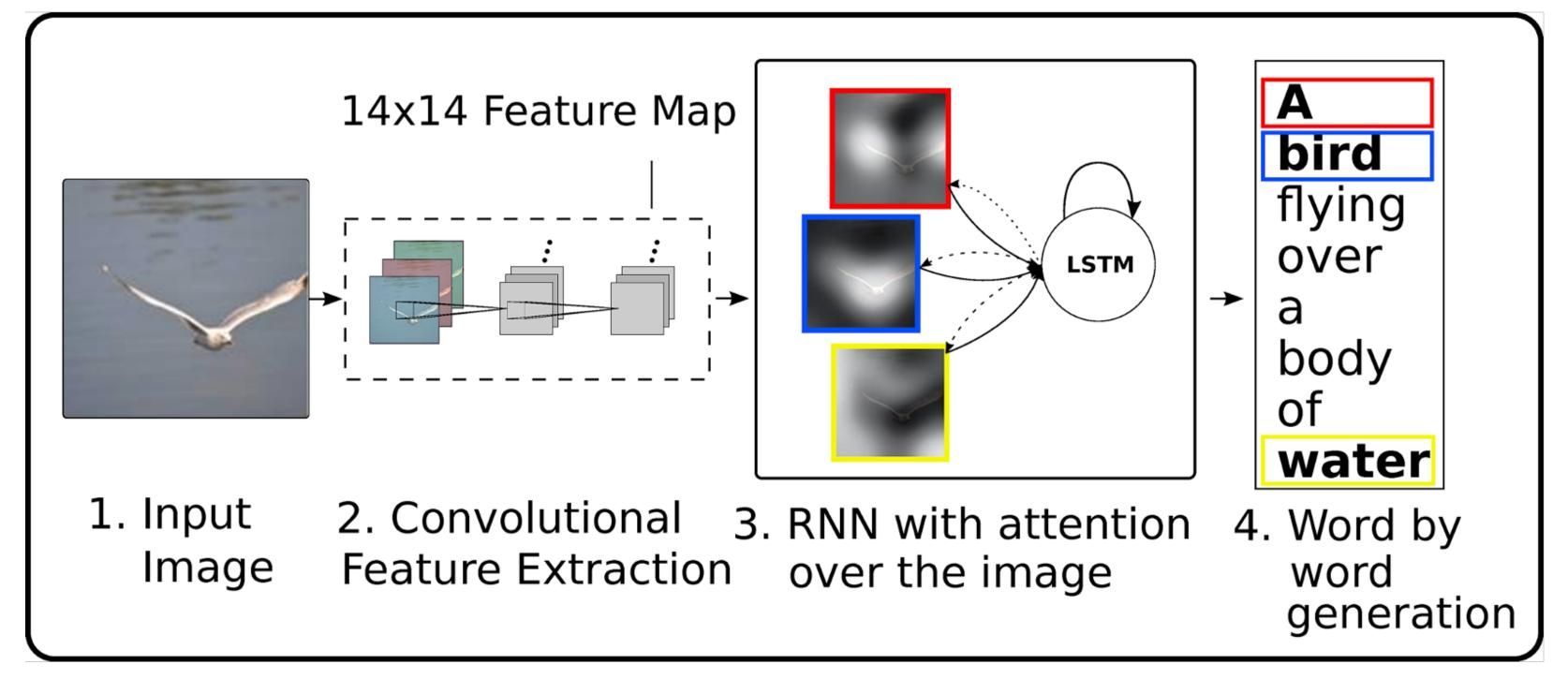
Object

Image Credit: Peter Anderson

$$C = \{\boldsymbol{h}_1, \dots, \boldsymbol{h}_5\}$$

or $C = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_6\}$

Image captioning example



Xu et al. ICML 2015

Different types of attention

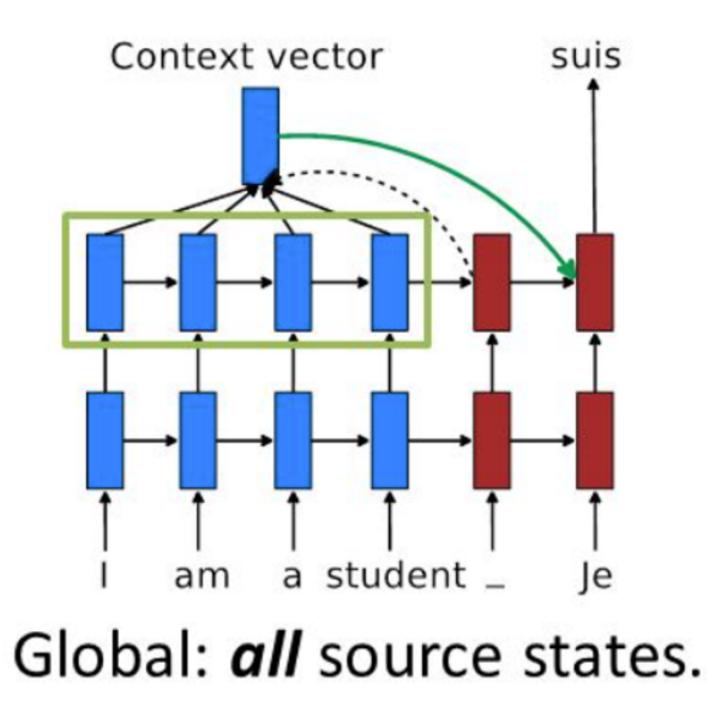
Soft vs Hard Attention

- Soft: Each attention candidate is weighted by α_i $\widehat{\boldsymbol{v}} = \sum_{i=1}^{k} \alpha_i \, \boldsymbol{v}_i$
 - Easy to train (smooth and differentiable) • But can be expensive over large input
- Hard: Use α_i as a sample probability to pick one attention candidate as input to subsequent layers Trainable with REINFORCE approaches (Xu et al. ICML) 2015), or Gumbel-Softmax (Jang et al. ICLR 2017)

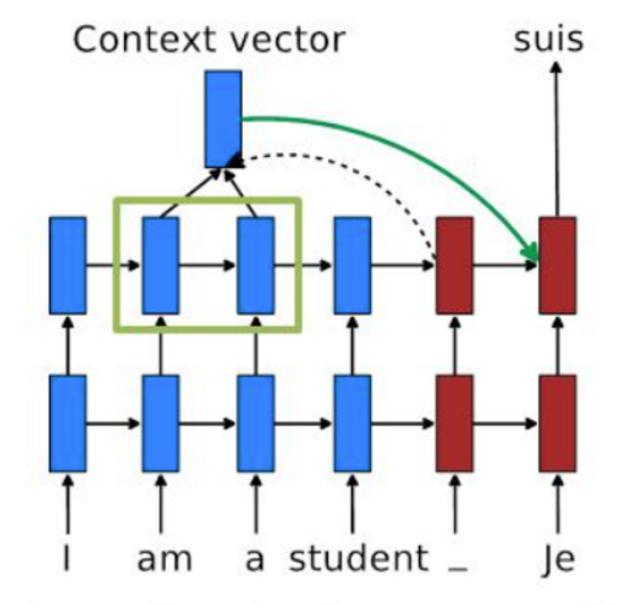
Xu et al. ICML 2015

Global vs Local Attention

- Global: attention over the entire input
- Local: attention over a window (or subset) of the input



e input (or subset) of the input

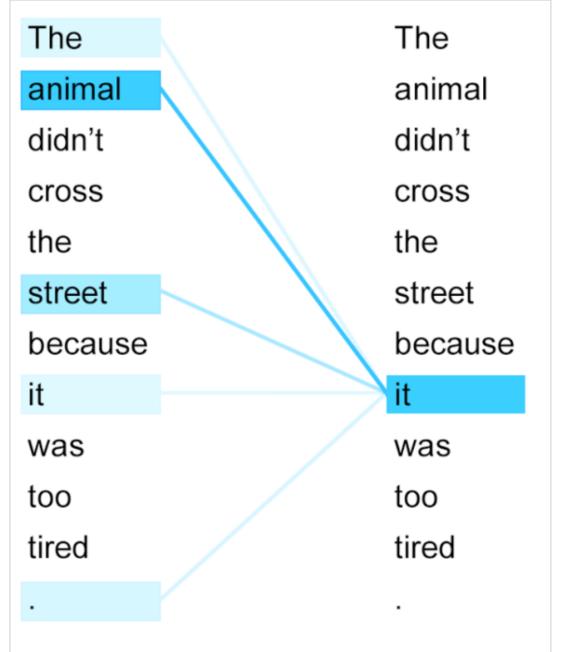


Local: subset of source states.

Luong et al, 2015

Self-Attention

• Attention (correlation) with different parts of itself

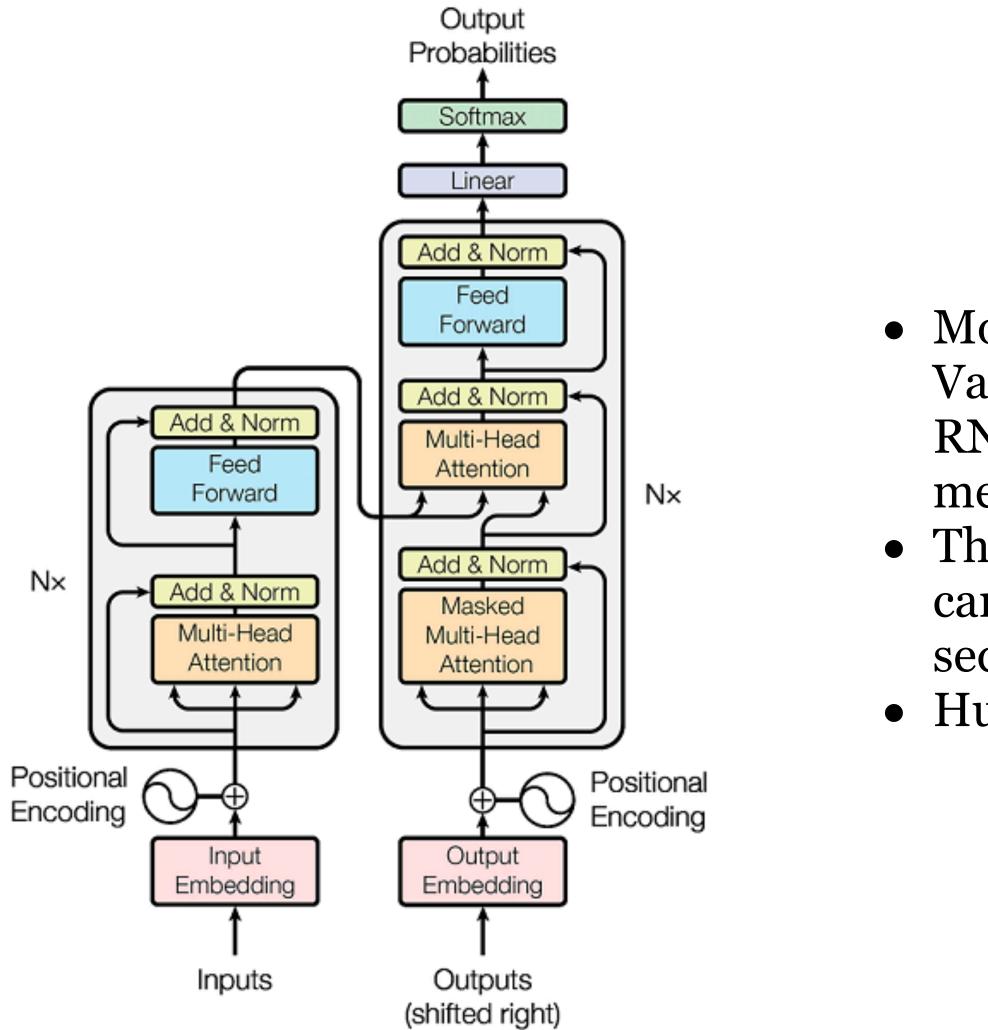


https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

• Transformers: modules with scaled dot-product self-attention

The	The
animal	animal
didn't	didn't
cross	cross
the	the
street	street
because	because
it	it
was	was
too	too
wide	wide

Transformers: self-attention



• More recent models (e.g. Transformer,

- Vaswani et al., 2017) have replaced
- RNNs entirely with attention
- mechanisms
- Theoretically limiting (since recurrence
 - can help handle arbitrarily long
 - sequences)
- Huge gains in practical performance