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Overview

e Review of Seq2Seq models
e Attention



Sequence to sequence models



Neural Machine Translation

> A single neural network is used to translate from source
to target

» Architecture: Encoder-Decoder
> Two main components:

» Encoder: Convert source sentence (input) into a vector/
matrix

» Decoder: Convert encoding into a sentence in target
language (output)



Sequence to Sequence learning
(Seg2seq)
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decoder

» Encode entire input sequence into a single vector (using an RNN)
- Decode one word at a time (again, using an RNN!)
- Beam search for better inference

« Learning is not trivial! (vanishing/exploding gradients)

- (Sutskever et al., 2014)
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Seg2seq training

Similar to training a language model!

Minimize cross-entropy loss:

I

2 — 10 P(y, | Yisevvs Vi 15 X5 e nns X))

=1

Back-propagate gradients through both decoder and encoder

Need a really big corpus

36M sentence pairs

. B

Russian: MalwuHHbIM nepeBoA - 3TO KpyTo!

\& English: Machine translation is cool! J




Decoding strategies and evaluation



Decoding Strategies

> Sampling
> Sample for diverse generation
> Can sample from top-10 choices or top-50%
> (Greedy decoding - Efficient and fast, good starting point

> Beam search - Practical middle ground



Beam decoding

> Different hypotheses may produce {eos) (end) token at different time steps

> When a hypothesis produces (eos), stop expanding it and place it aside

» Continue beam search until:

> All kK hypotheses produce {eos) OR
> Hit max decoding limit T
» Select top hypotheses using the normalized likelihood score
1 L
= Y108 PO yie- N3
t=1

> Otherwise shorter hypotheses have higher scores



Evaluating translation quality

e [wO main criteria:

e Adequacy: Translation w should adequately reflect the linguistic

content of w®

e Fluency: Translation w should be fluent text in the target language

Adequate? Fluent?

To Vinay it like Python yes no
Vinay debugs memory leaks no yes
Vinay likes Python yes yes

Different translations of A Vinay le gusta Python
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BLEU: modified n-gram precision

Nn-gram precision

BLEU-N = exp — lo
P N § 108 P

n=1

T dificat _ ™~ geometric mean over several values of n
WO moadairications. (up to N=4)

e To avoid log 0, all precisions are smoothed Various smoothing techniques
add 1 to numerator/denominator

e Each n-gram in reference can be used at most once

e EX. Hypothesis: to to to to to vs Reference: to be or not to be

1.2

should not get a unigram precision of 1 (p, = 2/5) 1

. T £ 08

Co _ _ clipped count g 0.6
Precision-based metrics favor short translations g o
0

0.2 0.4 0.6 0.8 1 1.2

e Solution: Multiply score with a brevity penalty for translations s won

1—r/h

shorter than reference, BP = e r = reference length, h = hypothesis length
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Issues with vanilla seq2seq

encoder hallc reht din <[s>
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hello how are you <s> hallo wie geht es dir

decoder

> A single encoding vector, 1", needs to capture all the
iInformation about source sentence

> Longer sequences can lead to vanishing gradients

> Qverfitting
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Issues with vanilla seq2seq

encoder hallc vie geht X di </s>
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hello how are you <s> hallo wie geht es dir

decoder

» A single encoding vector, 1", needs to capture all the
iInformation about source sentence

> Longer sequences can lead to vanishing gradients

> Overfitting
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Exposure bias

<END>
e Discrepancy in model input between
training and generation time

¢ During training, model inputs are gold
context tokens

T
Lyvre =—) log P(y {yZ,})
t=1

\<END>

e At generation time, inputs are previously- ] Fa =
decoded tokens -~ Text Gbnération Model
= : A S Ve sl S we
Laee =~ log P(51 {71 })

t=1

|
s

Y2 Y Yo Y1 Y2 Yr-4 Yr-3 Yr-2 Yr-1
<START>' / ! $ s $ s

Student forcing: use predicted tokens during training
Scheduled sampling: use decoded token with some probability p, increase p over time
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0.9 " ]Exponenﬁaldecayl i
08 |- Inverse sigmoid gecay i S I °
' iInear aeca
— Scheduled Sampling
0.6 |
0.5 + -
0.4 -
0.3 o
0.2 N
0.1 | |
0 200 400 600 800 1000
. Loss Loss
Possible decay schedules 4 Softmax over /
(probability using true y decays over time) y(t-1) y(t)

X J
A
sampled y(t-2) true y(t-2) true y(t-1)

(figure credit: Bengio et al, 2015)



Regularization

e Weight Decay
e Dropout

e Ensembling
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Regularization: Dropout

> Form of regularization for RNNs (and any NN in general)
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stochastically

A
)
\\‘ \)
! A/
9
(U

~
\o
v
\y

7 X \w>
4\‘)

AKX/
\/

"/
v
K7
V"
A
\X
2

3
Y
8
>
©
R
l[’
///

> set each hidden unit in a layer to O with probability p

during training (p = 0.5 usually works well)

> scale outputs by 1/(1 — p)

> hidden units forced to learn more general patterns

> Test time: Use all activations (no need to rescale)
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Dropout and attention improves translation

System Ppl BLEU
Winning WMT’ 14 system — phrase-based + large LM (Buck et al., 2014) 20.7
Existing NMT systems
RNNsearch (Jean et al., 2015) 16.5
RNNsearch + unk replace (Jean et al., 2015) 19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015) 21.6
Our NMT systems
Base 10.6 11.3
Base + reverse 9.9 1 12.6 (+1.3
Base + reverse + dropout I

‘Base + reverse + dropout + global attention (location) 7.3 | 16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input 6.4 | 18.1 (+1.3)

" Base + reverse + dropout + local-p attention (general) + feed input 18 '5_9' 19.0 (+0.9) |
Base + reverse + dropout + local-p attention (general) + feed input + unk replace 1 20.9 (+1.9)

' Ensemble 8 models + unk replace I [230(+2])

WMT’14 English to German Results
(Luong et al, 2015)
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Sequence to sequence models with
attention

20



Issues with vanilla seq2seq

encoder hallo wie geht X dir </s>

I I I I I I
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hello how are you <s> hallo wie geht es dir

decoder

» A single encoding vector, 1", needs to capture all the
iInformation about source sentence

> Longer sequences can lead to vanishing gradients

> Qverfitting
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Attention

> The neural MT equivalent of alignment models

> Key idea: At each time step during decoding, focus on a
particular part of source sentence

» This depends on the decoder’s current hidden state (i.e.
notion of what you are trying to decode)

» Usually implemented as a probabillity distribution over the
hidden states of the encoder ( 4, )
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Attention

Encoder

Scores

j

RNN

Seq2seq with attention

dot product
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Source sentence (input)
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(slide credit: Abigail See)



Attention

Attention

Encoder

distribution

SCores

RNN

Seg2seq with attention

On this decoder timestep, we're

mostly focusing on the first
encoder hidden state (“he”)

A 7y vy vy
Take softmax to turn the scores
Into a probability distribution

3
o| /o Jo| .[¢ 3 &
O o
O o o O ’l o - @
@) 0] 0] O @) -
A ) A ) A il

>
il a m’  entarté <START>
1\ )

Y

Source sentence (input)

o4 (slide credit: Abigail See)



Attention

Attention

Encoder

distribution

SCOEES

RNN

A

Seg2seq with attention

< Attenti

: SO Use the attention distribution to take a

o) output weighted sum of the encoder hidden
. states.
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The attention output mostly contains

A Y Y - information from the hidden states that

received high attention.
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o5 (slide credit: Abigail See)



Attention

Attention

Encoder

distribution

Scores

RNN

Seg2seq with attention
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Concatenate attention output

<START>
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with decoder hidden state, then
use to compute Yy, as before

Y
NNY J9po2ag

Can also use Y, as input
for next time step

(slide credit: Abigail See)



Seg2seq with attention

Decoder RNN
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Computing attention

. > Encoder hidden states: /1;", ..., 1"
Attention

‘@
-

output
® P
2.

» Decoder hidden state at time #: 17

{ > First, get attention scores for this time step (we will see what g is soon!):
A 7 A A ol — [g(hlenc, htdeC), L g(h’snc, hta’eC)]

Attention
distribution

Obtain the attention distribution using softmax:
a' = softmax (¢') € R"

Attention
scores
\ —
’_b
%..
o
\ 4

O o) o) o) o) O
s Z < i —lei—lelle > o > Compute weighted sum of encoder hidden states:
STl e (o (o | o L
R EP R
i=1
hlenc il a m’ entarté <START>
\ v / > Finally, concatenate with decoder state and pass on to output layer:

Source sentence (input) [a : hdec] = th
'
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Types of attention

>~ Assume encoder hidden states /1, h,, . . ., h, and decoder hidden state
1. Dot-product attention: Simplest (no extra parameters)
gh,2)=z7"h; e R requires Z and h. to be same size

more efficient
(Mmatrix 2. Bilinear / multiplicative attention: More flexible

multiplication) g(h;,z) = zTWhi e R, where Wis a weight matrix ~ than dot-product
(W is trainable)

3. Additive attention (essentially MLP):

h.7) = vitanh (W, h. + W,72) € R
g, 2) (Wil + Wa2) Perform better for
where W}, W, are weight matrices and v is a weight vector  |3rger dimensions
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Attention can be applied to other
modalities

30



Attention on other modalities

e Images

feature

CNN
I map
10

2048

e Agent experience

RNN

a;

E

10

: j—

Object
Grid based proposals

Image Credit: Peter Anderson



Image captioning example

14x14 Feature Map LA |

‘Bll‘a \

flying
over

d
body
of
water
L. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation
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Different types of attention
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Soft vs Hard Attention

» Soft: Each attention candidate is weighted by «;

25 Kk
V= 1= 1alvl

* Easy to train (smooth and differentiable)
» But can be expensive over large input

| f

* Hard: Use a; as a sample probability to pick one
attentlon candidate as input to subsequent layers

» Trainable with REINFORCE approaches (Xu et al. ICML
2015), or Gumbel-Softmax (Jang et al. ICLR 2017)

34
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Global vs Local Attention

» Global: attention over the entire input
» Local: attention over a window (or subset) ot the input

Context vector suis Context vector suis

?

""""
Yo

[

am a student _ Je a student _

|

Global: all source states. Local: subset of source states.

Luong et al, 2015
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Self-Attention

e Attention (correlation) with ditferent parts of itself

The The The The
animal animal animal animal
didn’t didn’t didn’t didn’t
Cross Cross Cross Cross
the the the the
street street street street
because because because because
it it it it

was was was was
too too too too
tired tired wide wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

* Transtormers: modules with scaled dot-product self-attention
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Nx

Positional
Encoding

Transformers: self-attention

Output
Probabilities

| Linear |

Add & Norm

Feed
Forward

.

Add & Norm

Multi-Head

Attention

1

f
Add & Norm <=~

Feed
Forward

=

Input
Embeddlng

lnputs

Output
Embedding

Outputs
(shifted right)

t y
| Add &INorm J
Multi-Head
Attention
N x
_J
| Add & Norm h
Masked
Multi-Head
Attention
k _J
Positional
Encoding

e More recent models (e.g. Transformer,
Vaswani et al., 2017) have replaced
RNNSs entirely with attention
mechanisms

e Theoretically limiting (since recurrence
can help handle arbitrarily long
sequences)

e Huge gains in practical performance
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