

CMPT 413/713: Natural Language Processing

Contextualized Word Embeddings

Spring 2025 2025-02-10

Adapted from slides from Danqi Chen and Karthik Narasimhan (with some content from slides from Chris Manning and Abigail See)

Overview

Contextualized Word Representations

• ELMo = Embeddings from Language **Mo**dels

Deep contextualized word representations

https://arxiv.org → cs ▼

by ME Peters - 2018 - Cited by 1683 - Related articles

Deep contextualized word representations. ... Our **word** vectors are learned functions of the internal states of a **deep** bidirectional language model (biLM), which is pre-trained on a large text corpus.

• BERT = Bidirectional Encoder Representations from Transformers

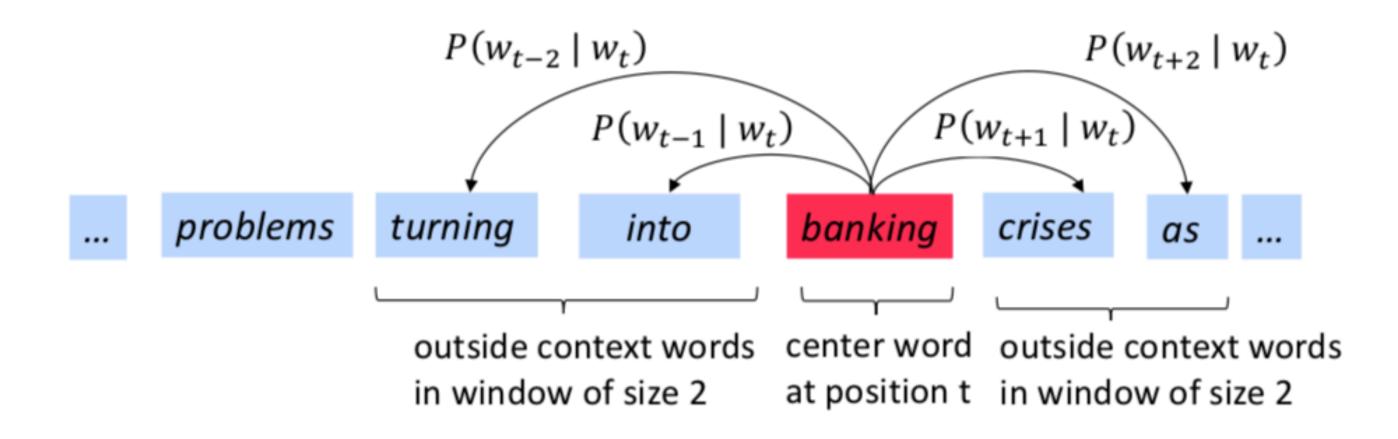
BERT: Pre-training of Deep Bidirectional Transformers for ...

https://arxiv.org → cs ▼

by J Devlin - 2018 - Cited by 2259 - Related articles

Oct 11, 2018 - Unlike recent language representation models, **BERT** is designed to pre-train deep ... As a result, the pre-trained **BERT** model can be fine-tuned with just one additional output ... Which authors of this **paper** are endorsers?

Recap: word2vec



	Word	Cosine	distance
	norway		0.760124
	denmark		0.715460
word = "sweden"	finland		0.620022
	switzerland		0.588132
	belgium		0.585835
	netherlands		0.574631
	iceland		0.562368
	estonia		0.547621
	slovenia		0.531408

What's wrong with word2vec?

• One vector for each word type

$$v(\text{bank}) = \begin{pmatrix} -0.224 \\ 0.130 \\ -0.290 \\ 0.276 \end{pmatrix}$$

- Complex characteristics of word use: semantics, syntactic behavior, and connotations
- Polysemous words, e.g., bank, mouse

mouse¹: a mouse controlling a computer system in 1968.

mouse²: a quiet animal like a mouse

bank¹: ...a bank can hold the investments in a custodial account ...

bank²: ...as agriculture burgeons on the east bank, the river ...

Sense embeddings

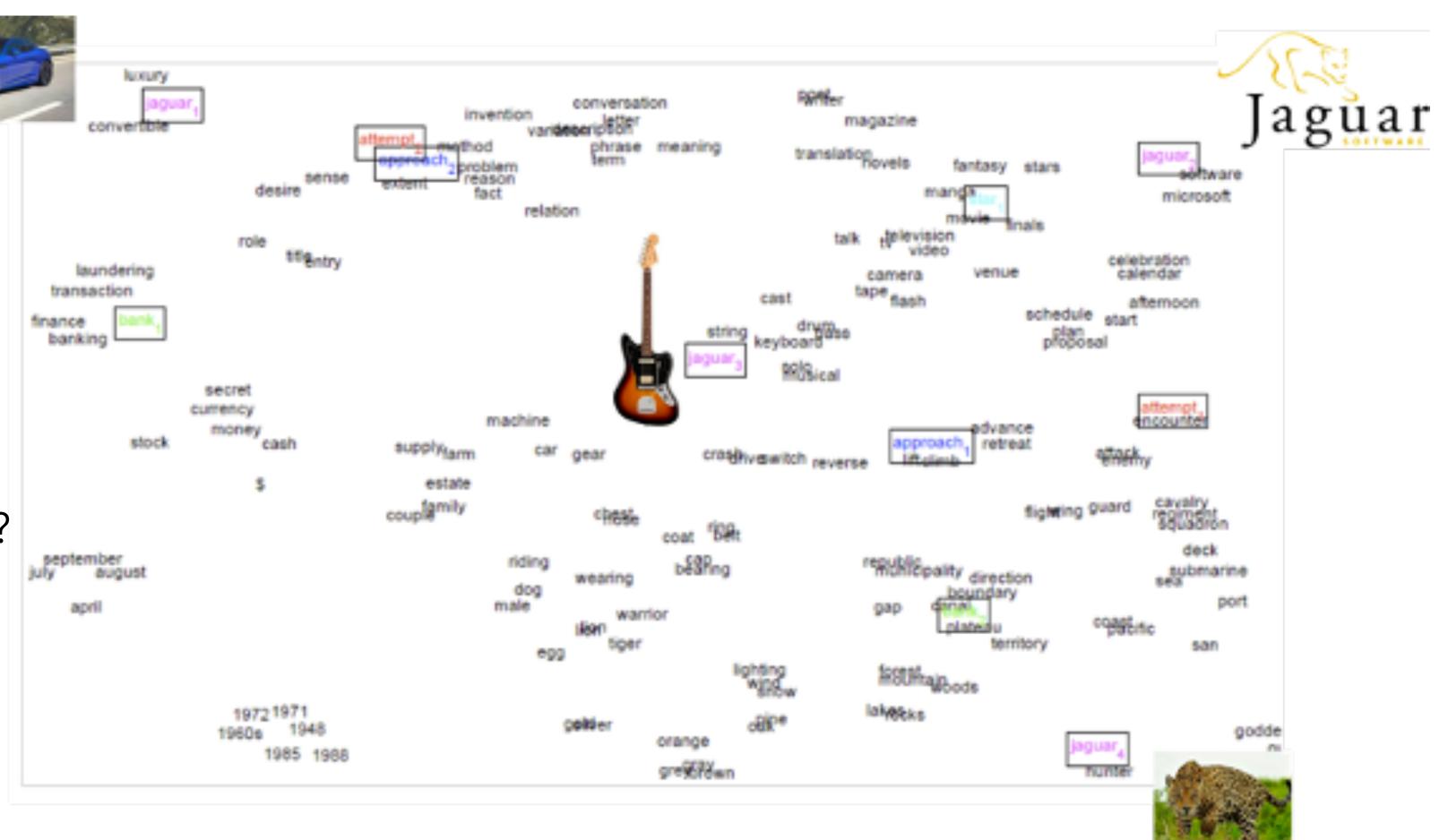
Multiple embeddings for each word

One embedding per sense

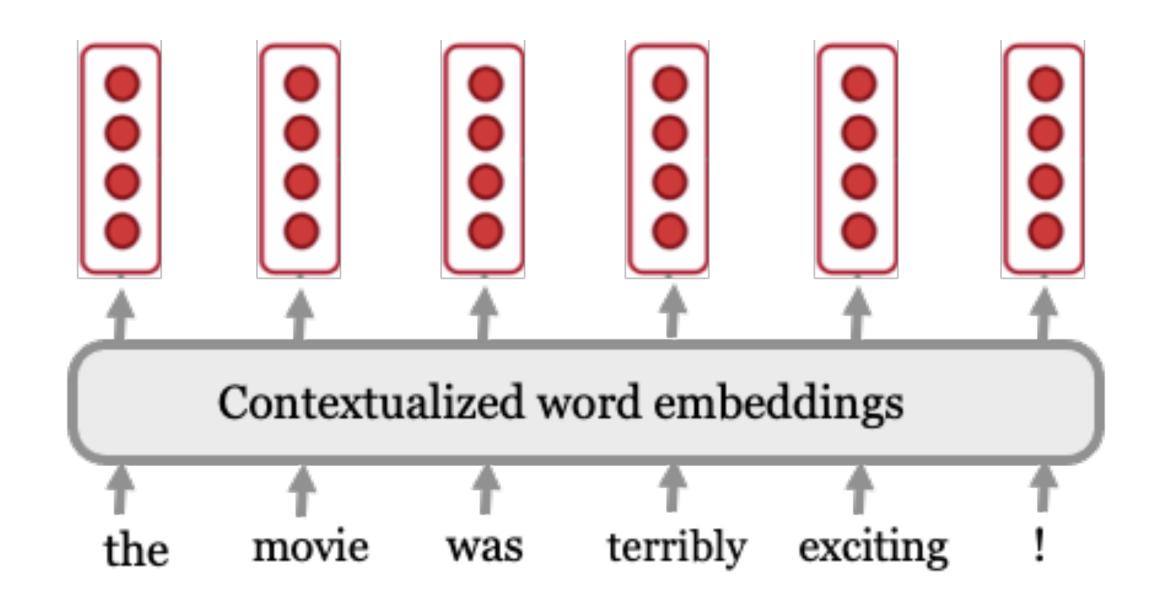
But

• How many senses should there be?

 Is there always a clear distinction between senses?



Let's build a vector for each word conditioned on its context!

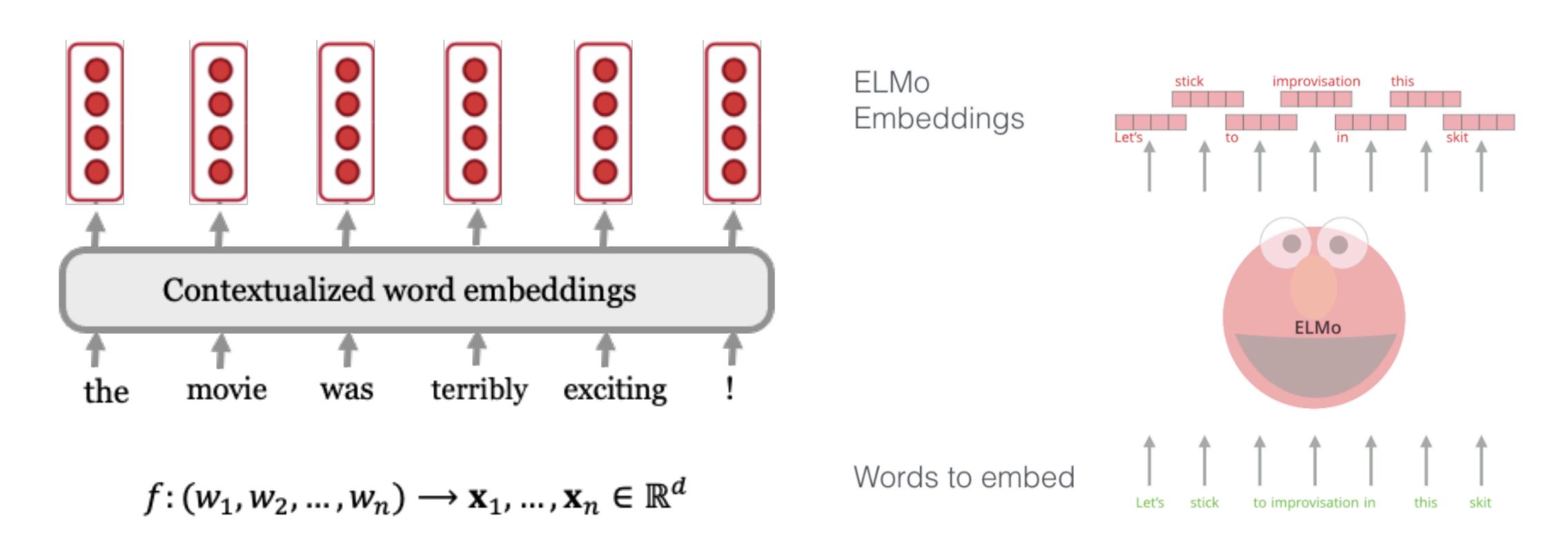


$$f:(w_1,w_2,\ldots,w_n)\to\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^d$$

Note: this is different from sentence embeddings where we get one embedding for the entire sentence.

$$g:(w_1,w_2,\ldots,w_n)\longrightarrow s\in\mathbb{R}^d$$

Let's build a vector for each word conditioned on its context!



Example sentences with the word play:

- 1. Chico Ruiz made a spectacular play on Alusik's grounder {...}
 - 2. Olivia De Havilland signed to do a Broadway play for Garson {...}
- 3. Kieffer was commended for his ability to hit in the clutch, as well as his all-round excellent play {...}
 - 4. {...} they were actors who had been handed fat roles in a successful play {...}
 - 5. Concepts play an important role in all aspects of cognition {...}

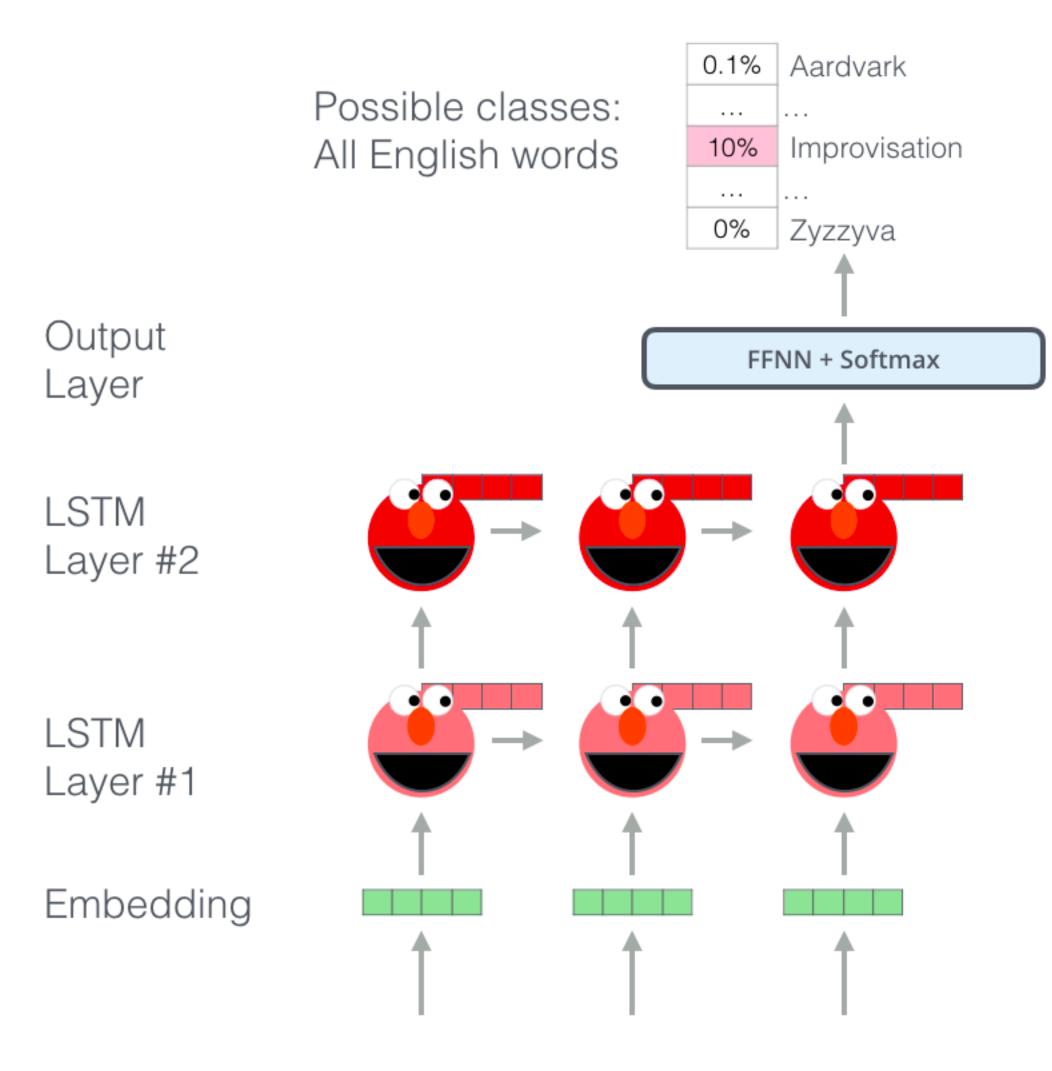
Want v(play), the vector corresponding to the word play to be different for each of the sentences, with similar senses having similar vectors.

Which of the sentences (2-5) would should have an embedding most similar to sentence 1?

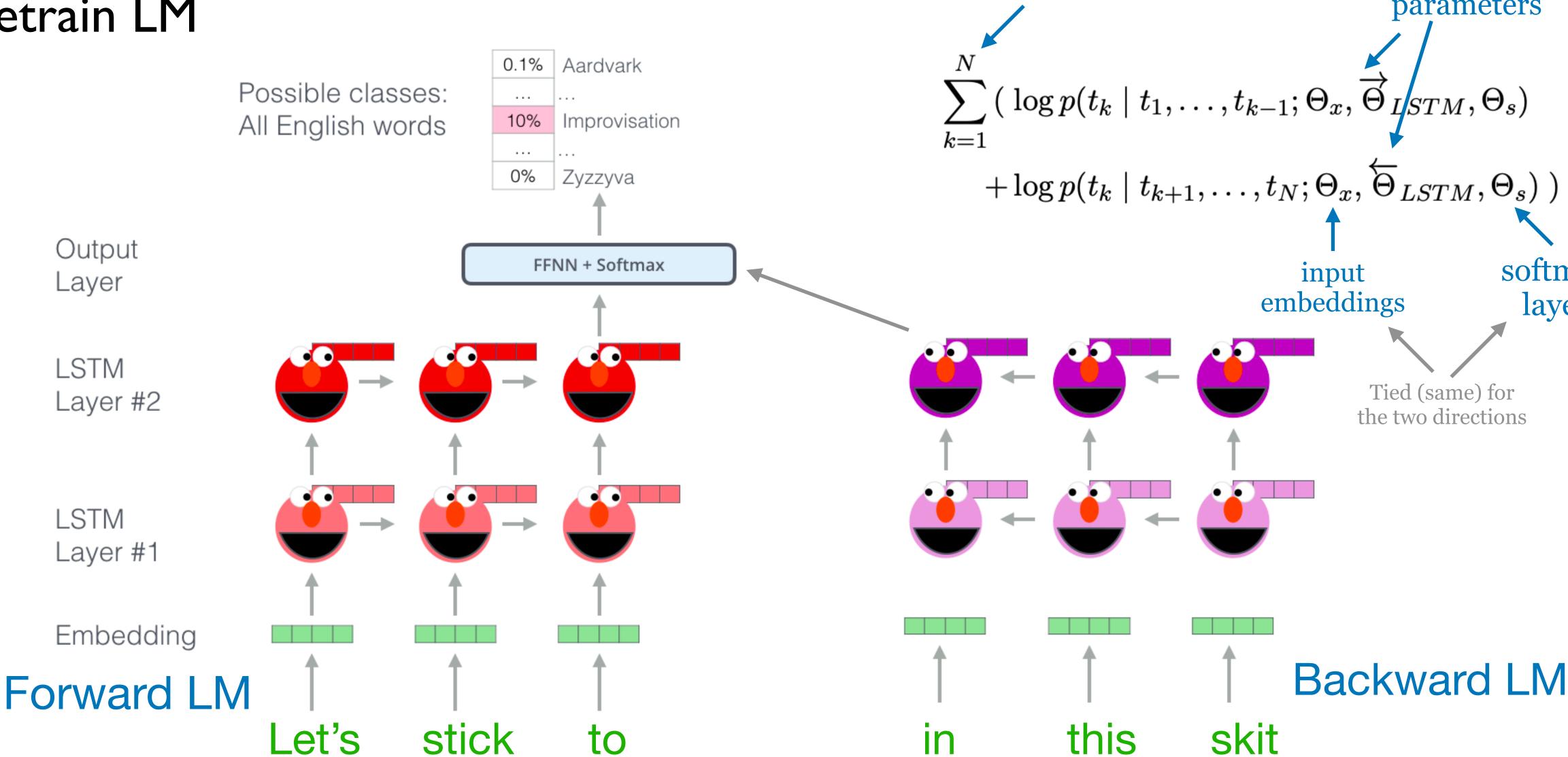
		Source	Nearest Neighbors	
	GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer	
		Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended	
		tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round	11.00
	LIT M	grounder {}	excellent play.	different
	biLM	Olivia De Havilland	{} they were actors who had been handed fat roles in	senses
(from	ELMo)	signed to do a Broadway	a successful play, and had talent enough to fill the roles	
		\underline{play} for Garson $\{\dots\}$	competently, with nice understatement.	

ELMo

- NAACL'18: Deep contextualized word representations
- Key idea:
 - Train two stacked LSTM-based language model on some large corpus
 - Use the hidden states of the LSTM for each token to compute a vector representation of each word



Pretrain LM



(figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/) ELMo

tokens in the

sentence

LSTM

Tied (same) for

the two directions

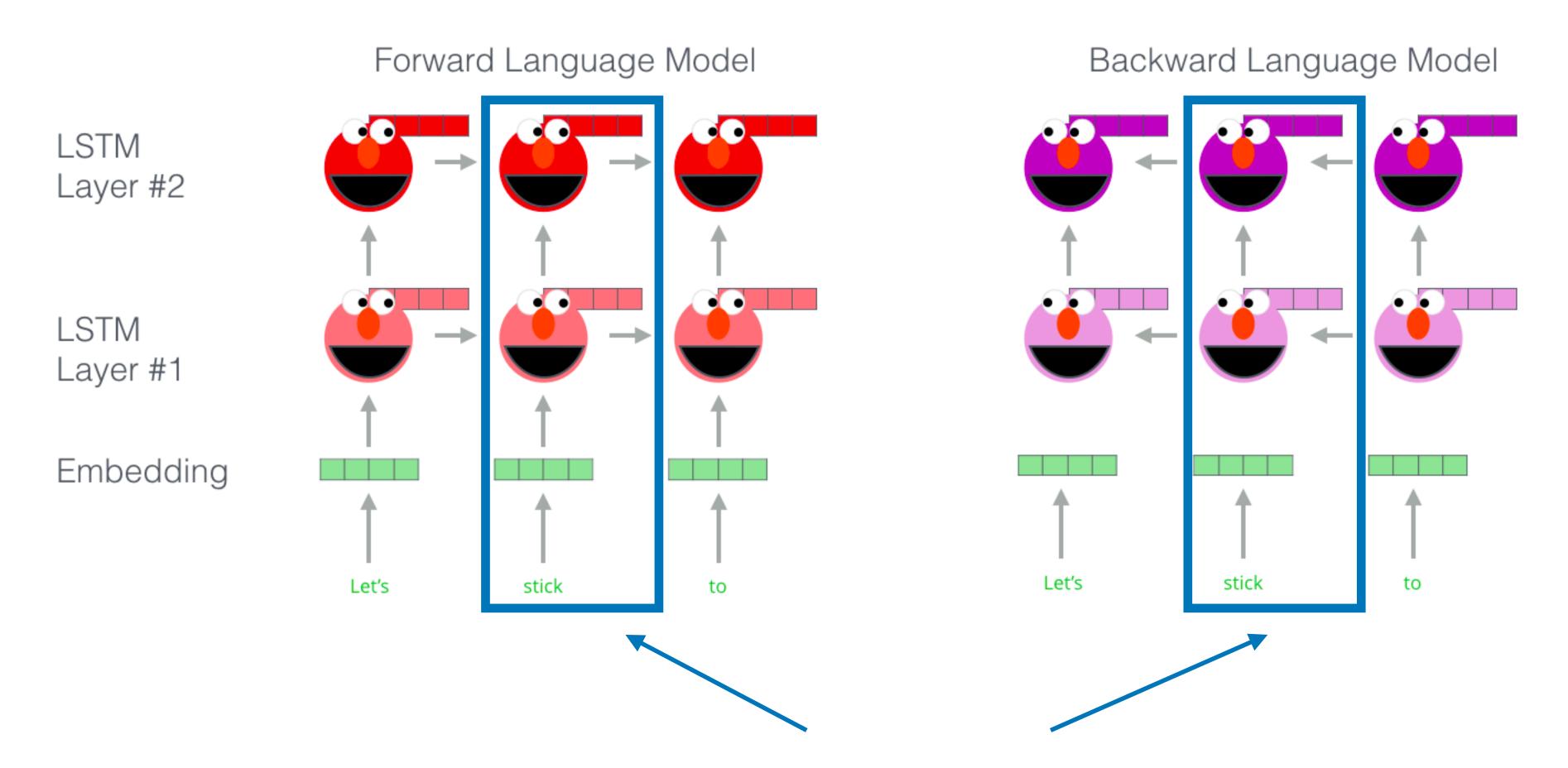
parameters

softmax

layer

ELMo

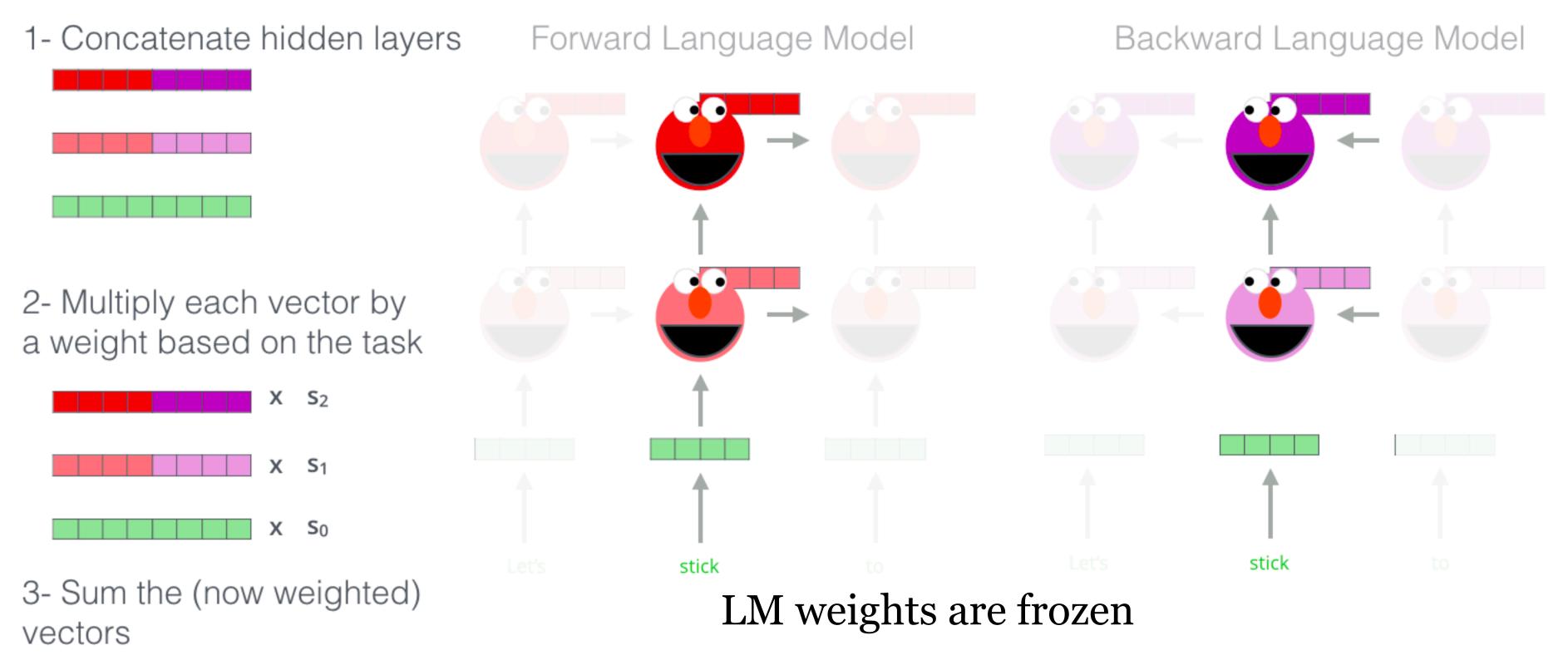
After training LM



To get the ELMO embedding of a word ("stick"):

Concatenate forward and backward embeddings and take weighted sum of layers

ELMo



(figure credit: <u>Jay Alammar</u> http://jalammar.github.io/illustrated-bert/)

ELMo embedding of "stick" for this task in this context

Weights s_i are trained on specific task.

To get the ELMO embedding of a word ("stick"):

Concatenate forward and backward embeddings and take weighted sum of layers

Summary: How to get ELMo embedding?

Input embeddings Hidden state
$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\} \longleftarrow \text{L is \# of layers}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

Token representation
$$\rightarrow \mathbf{h}_{k,0}^{LM} = \mathbf{x}_k^{LM}, \mathbf{h}_{k,j}^{LM} = [\overrightarrow{\mathbf{h}}_{k,j}^{LM}; \overleftarrow{\mathbf{h}}_{k,j}^{LM}] \leftarrow \text{hidden states}$$

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}$$

parameters

- Task specific learnable γ^{task} : allows the task model to scale the entire ELMo vector
 - s_i^{task} : softmax-normalized weights across layers
 - To use: plug ELMo into any (neural) NLP model: freeze all the LMs weights and change the input representation to:

$$[\mathbf{x}_k; \mathbf{ELMo}_k^{task}]$$

(could also insert into higher layers)

More details

- Forward and backward LMs: 2 layers each
- Use character CNN to build initial word representation
 - 2048 char n-gram filters and 2 highway layers, 512 dim projection
- User 4096 dim hidden/cell LSTM states with 512 dim projections to next input
- A residual connection from the first to second layer
- Trained 10 epochs on 1B Word Benchmark

ELMo: pre-training and use

Data: 10 epoches on 1B Word Benchmark (trained on single sentences)

Pre-training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs

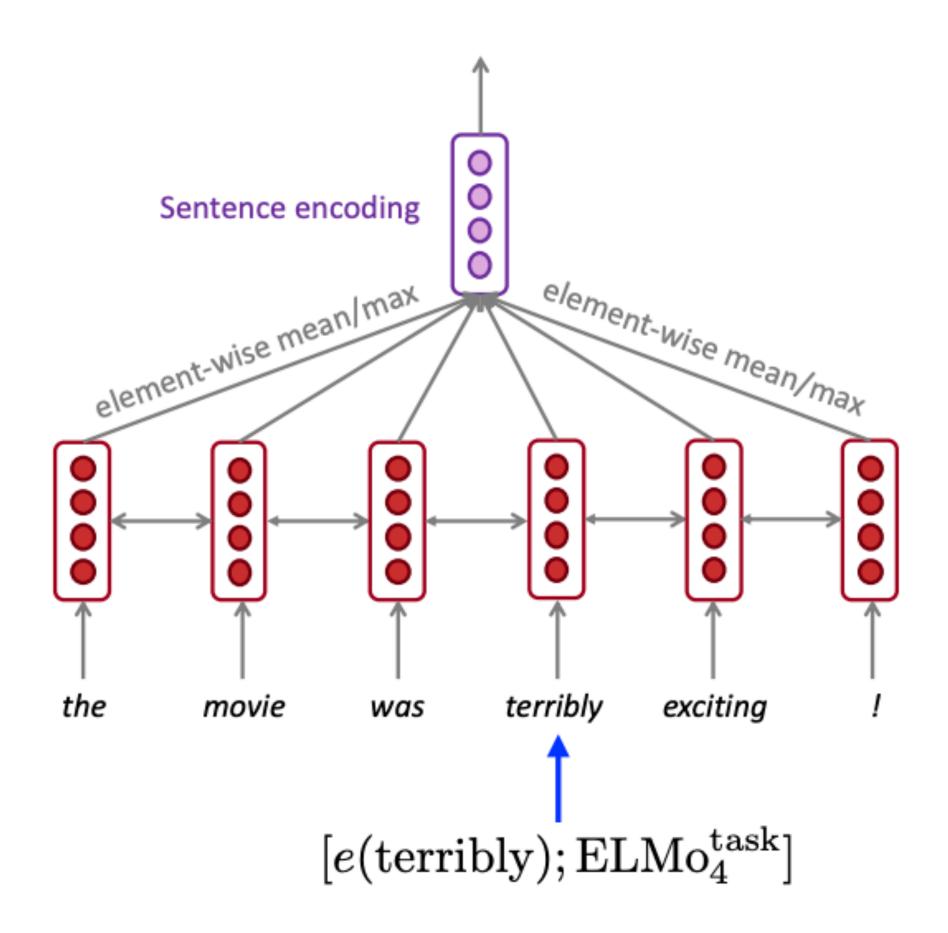
- Much lower time cost if we used V100s / Google's TPUs but still hundreds of dollars in compute cost to train once
- Larger BERT models trained on more data costs \$10k+

How to apply ELMo in practice?

- Take the embeddings and feed them into any neural models just like word2vec $f:(w_1,w_2,\ldots,w_n)\to \mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^d$
- The LM's hidden states are fixed and not updated during the downstream use (only the scaling and softmax weights are learned)
- Common practice: concatenate word2vec/GloVe with ELMo

ELMo: pre-training and use

Example: A BiLSTM model for sentiment classification



Experimental results

TASK	PREVIOUS SOTA		OUR BASELIN	ELMO + NE BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

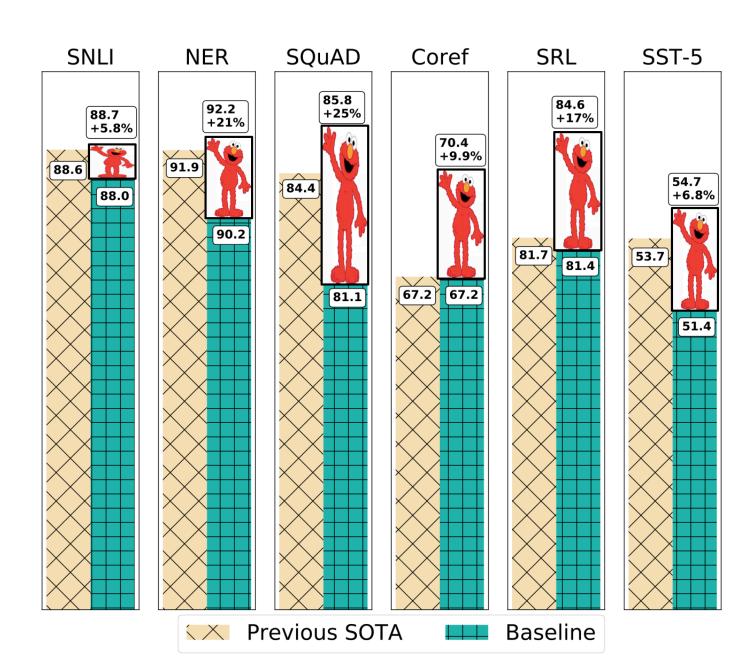
- SQuAD: question answering
- SNLI: natural language inference
- SRL: semantic role labeling
- Coref: coreference resolution
- NER: named entity recognition
- SST-5: sentiment analysis



Experimental results

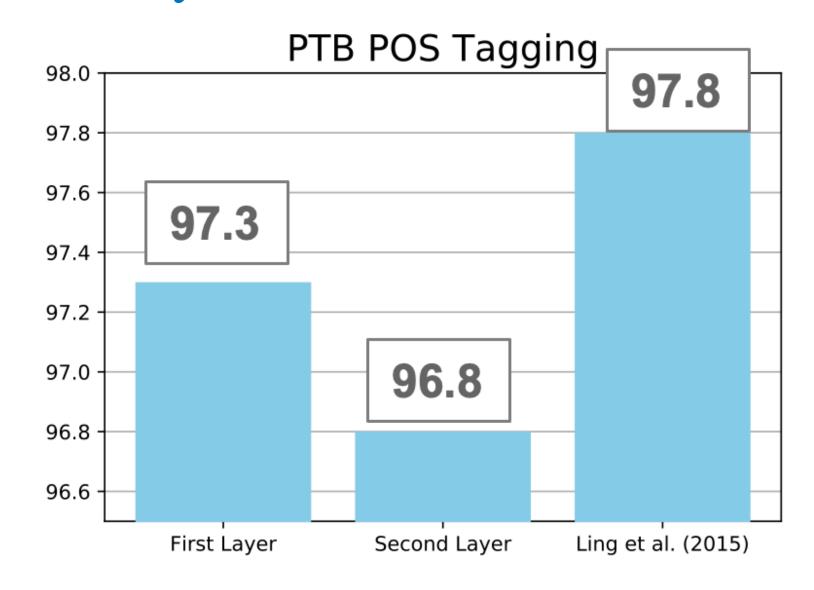
TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

- SQuAD: question answering
- SNLI: natural language inference
- SRL: semantic role labeling
- Coref: coreference resolution
- NER: named entity recognition
- SST-5: sentiment analysis



Intrinsic Evaluation

syntactic information



First Layer > Second Layer

semantic information



Second Layer > First Layer

syntactic information is better represented at lower layers while semantic information is captured at higher layers

Use ELMo in practice

https://allennlp.org/elmo

Pre-trained ELMo Models

Model	Link(Weights/Options File)		# Parameters (Millions)	LSTM Hidden Size/Output size	# Highway Layers>
Small	weights	options	13.6	1024/128	1
Medium	weights	options	28.0	2048/256	1
Original	weights	options	93.6	4096/512	2
Original (5.5B)	weights	options	93.6	4096/512	2

```
from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096]

# Compute two different representation for each token.
# Each representation is a linear weighted combination for the
# 3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

# use batch_to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'], ['Another', '.']]
character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)
```

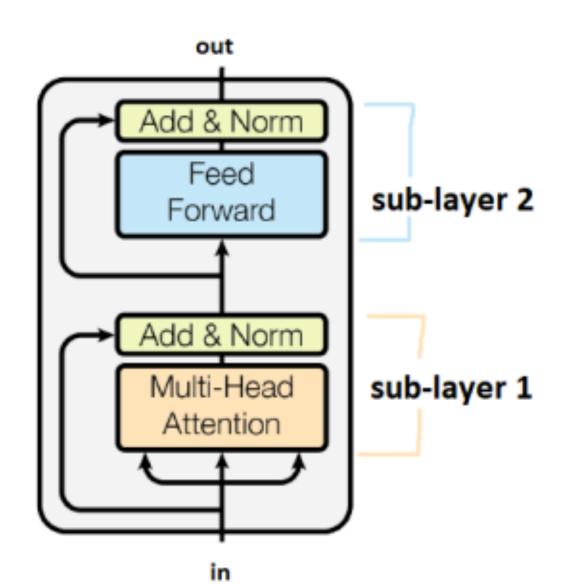
Also available in TensorFlow

BERT

- First released in Oct 2018.
- NAACL'19: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

How is BERT different from ELMo?

- Use Transformers instead of LSTMs
- Trained on segments of text (512 word-piece tokens)
- Use a bidirectional encoder instead of two independent LSTMs from both directions
- The weights are not frozen (use fine-tuning for downstream tasks)
- Two new pre-training objectives



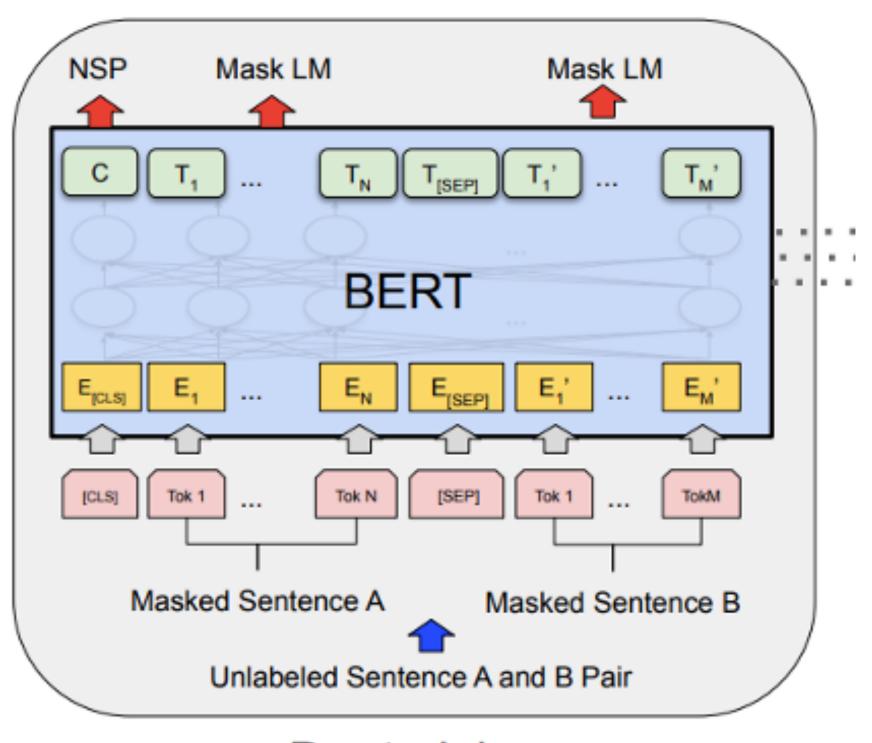
BERT

• Transformer Encoder

• Two training objectives

• Masked Language Modeling

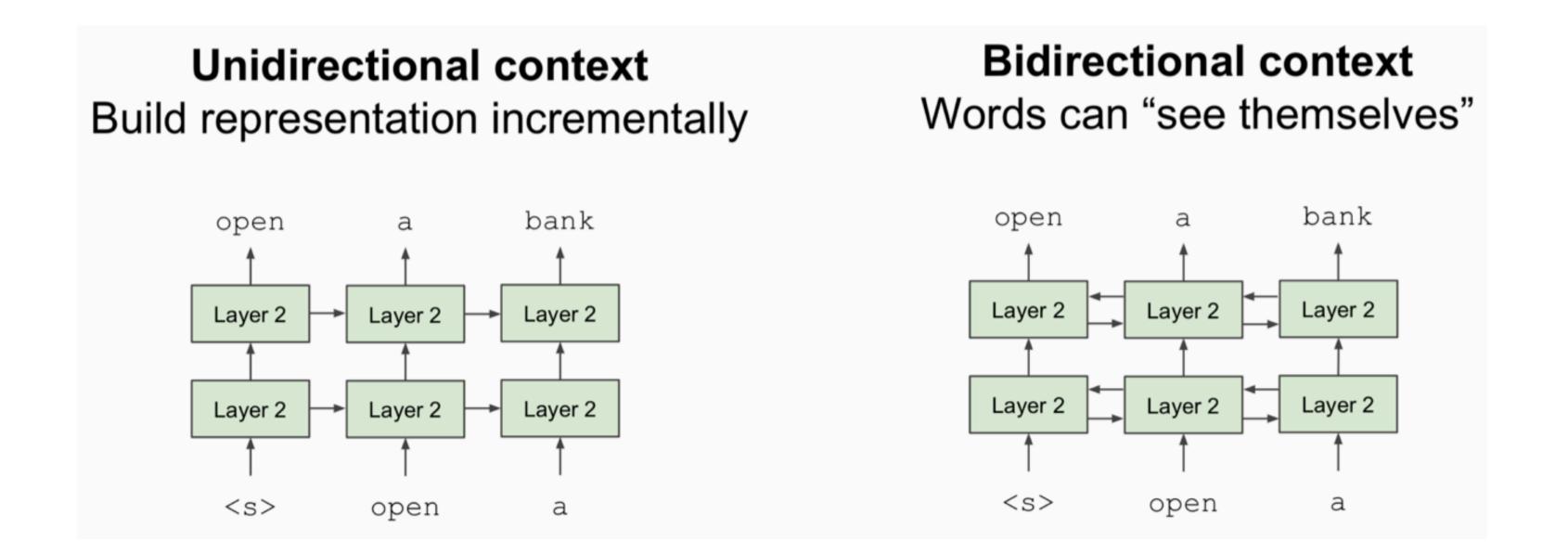
• Next Sentence Prediction



Pre-training

Bidirectional encoders

- Language models only use left context or right context (although ELMo used two independent LMs from each direction).
- Language understanding is bidirectional



Masked language models (MLMs)

• Solution: Mask out 15% of the input words, and then predict the masked words

- Too little masking: too expensive to train
- Too much masking: not enough context

Masked language models (MLMs)

A little more complex (don't always replace with [MASK]):

Example: my dog is hairy, we replace the word hairy

• 80% of time: replace word with [MASK] token

```
my dog is [MASK]
```

• 10% of time: replace word with random word

```
my dog is apple
```

• 10% of time: keep word unchanged to bias representation toward actual observed word

```
my dog is hairy
```

Because [MASK] is never seen when BERT is used...

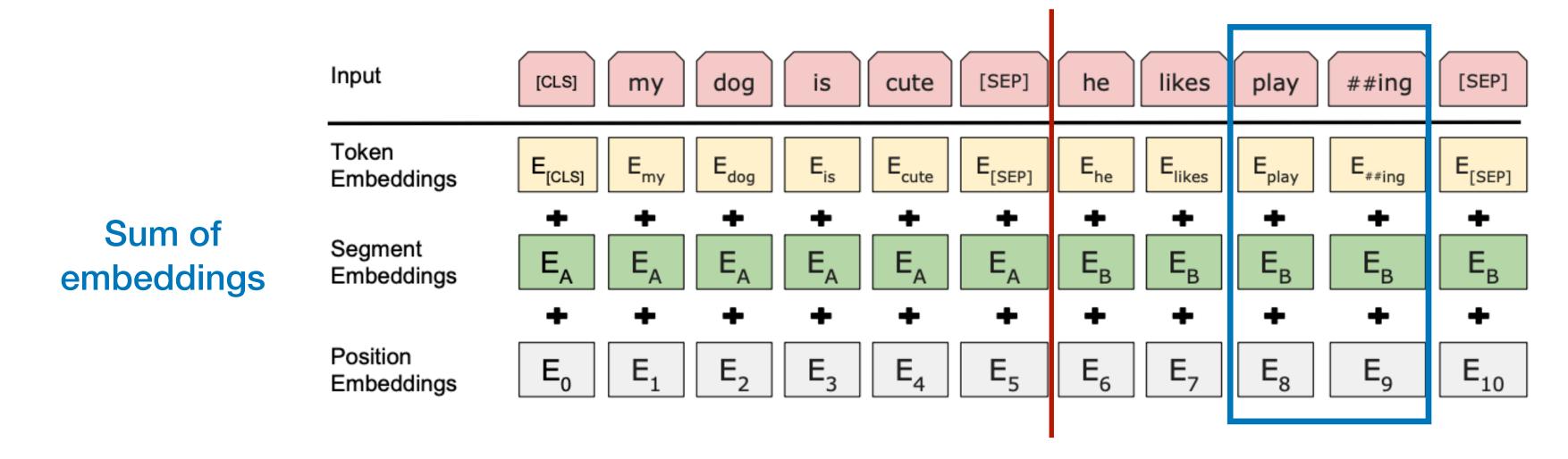
Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is followed after the first one.

Recent papers show that NSP is not necessary...

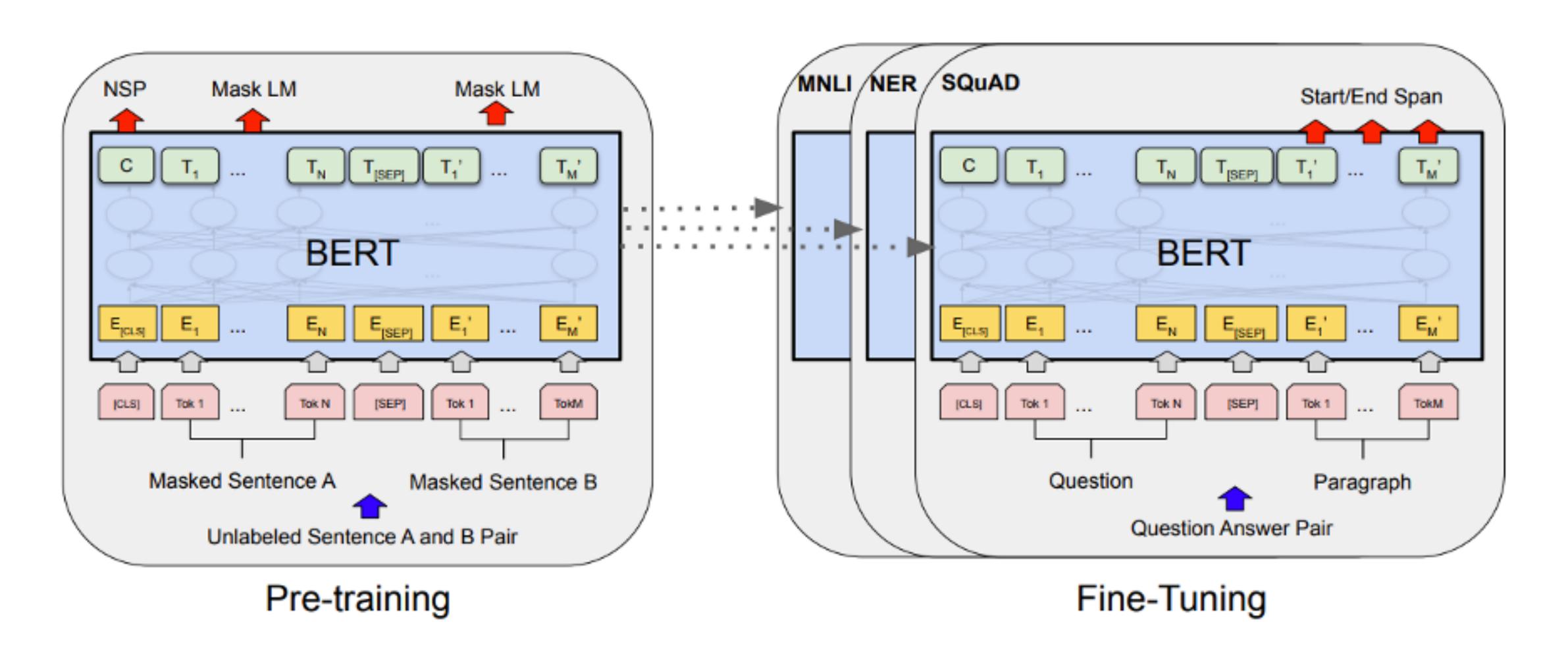
More details

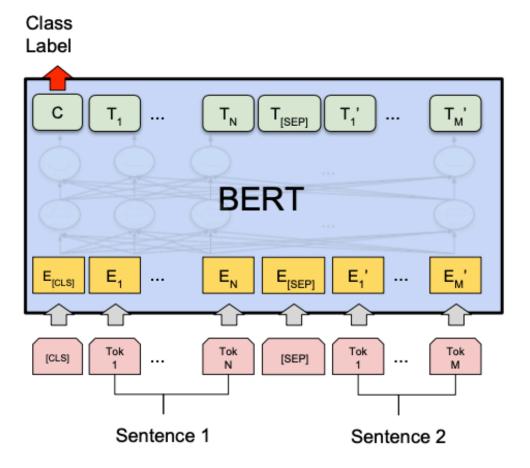
• Input representations



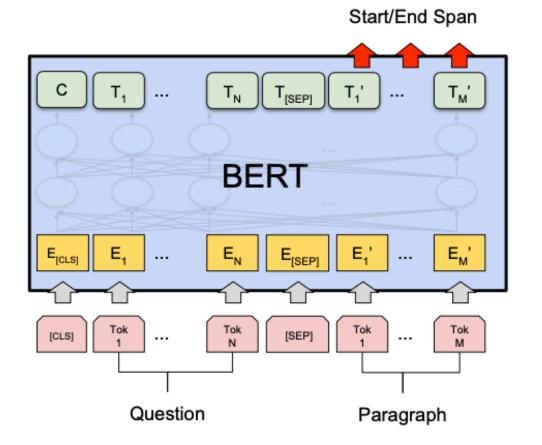
- Use word pieces instead of words: playing => play ##ing (30K token vocabulary)
- Segment length: 512 tokens
- Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)
- Released two model sizes: BERT_base, BERT_large

Pre-training and fine-tuning

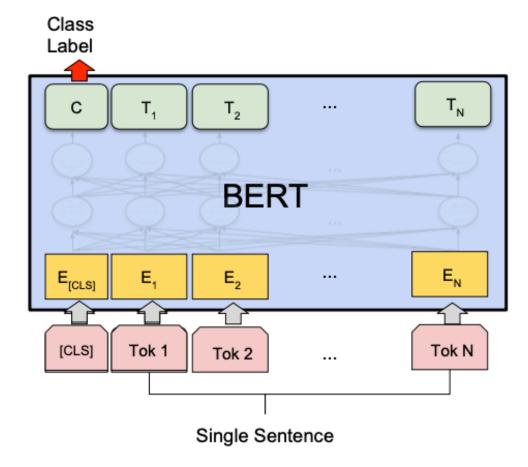




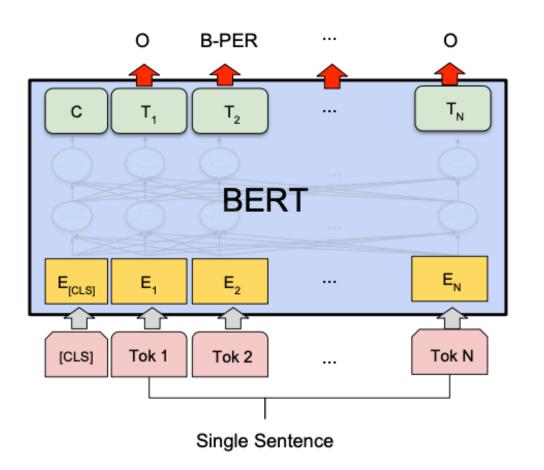
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



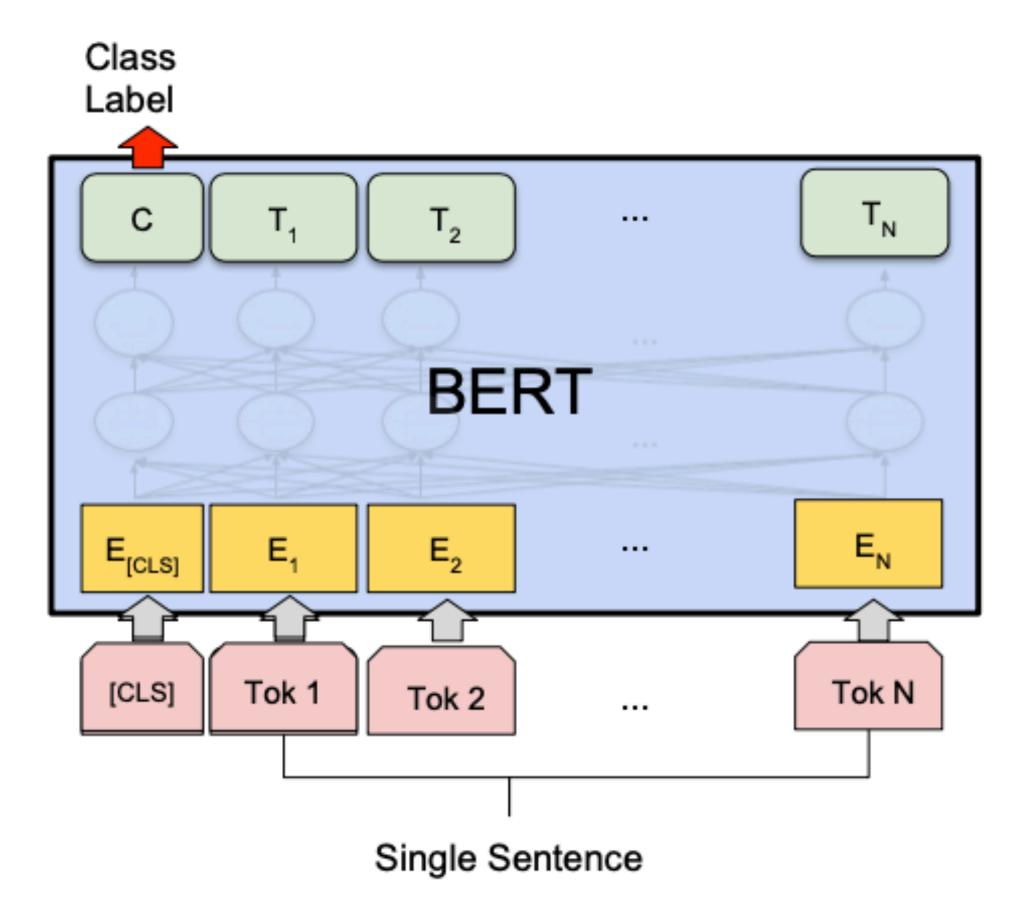
(c) Question Answering Tasks: SQuAD v1.1



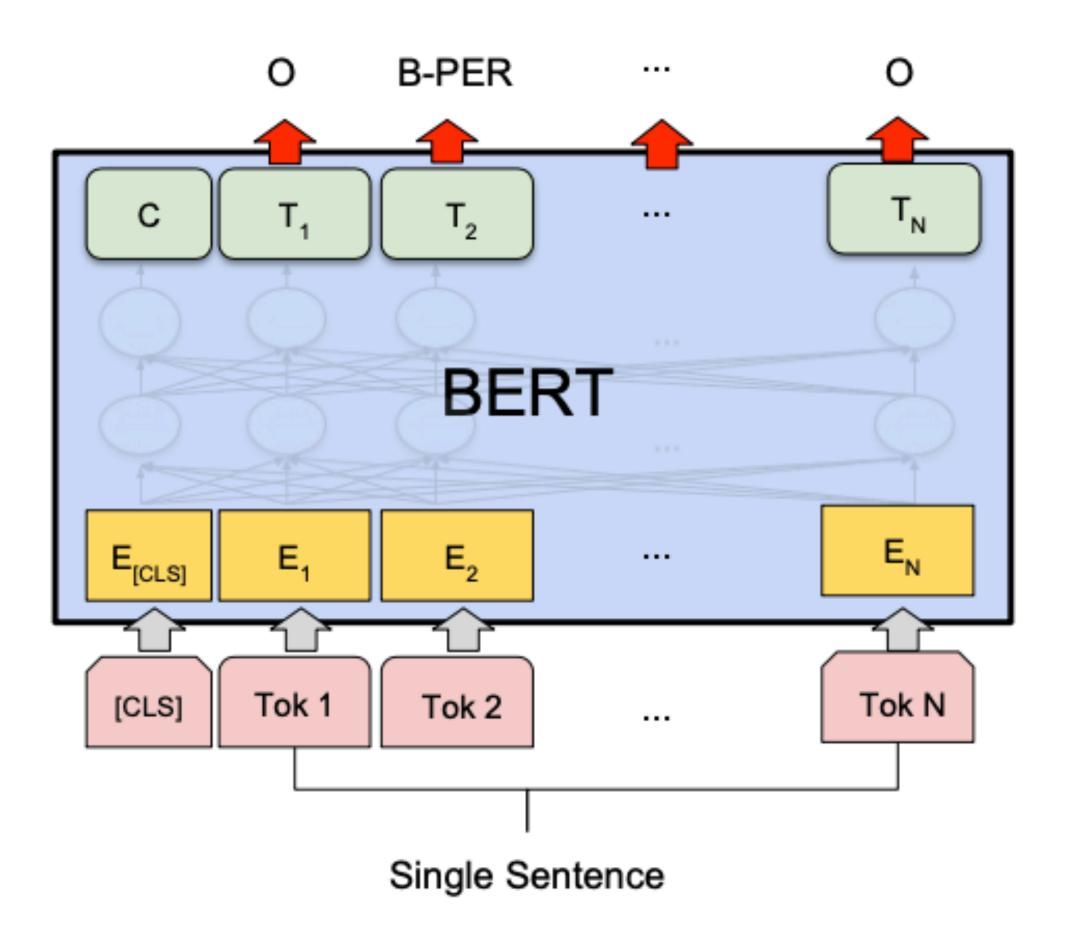
(b) Single Sentence Classification Tasks: SST-2, CoLA



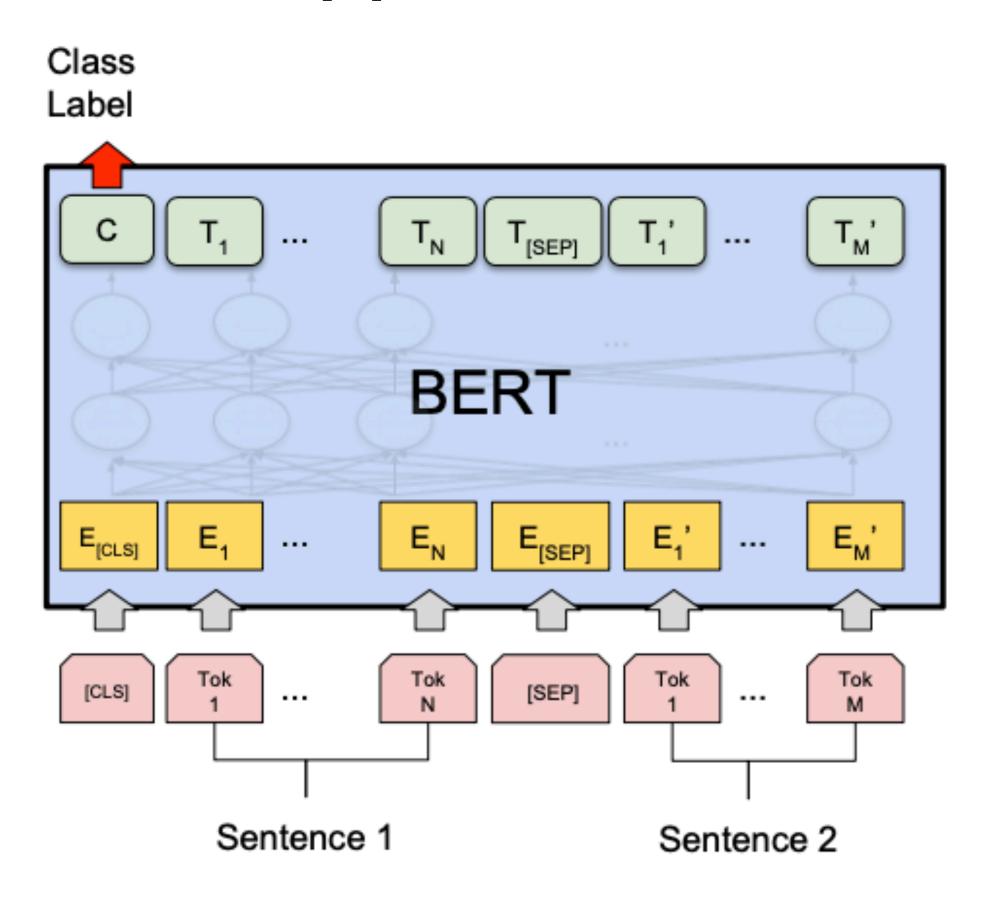
(d) Single Sentence Tagging Tasks: CoNLL-2003 NER



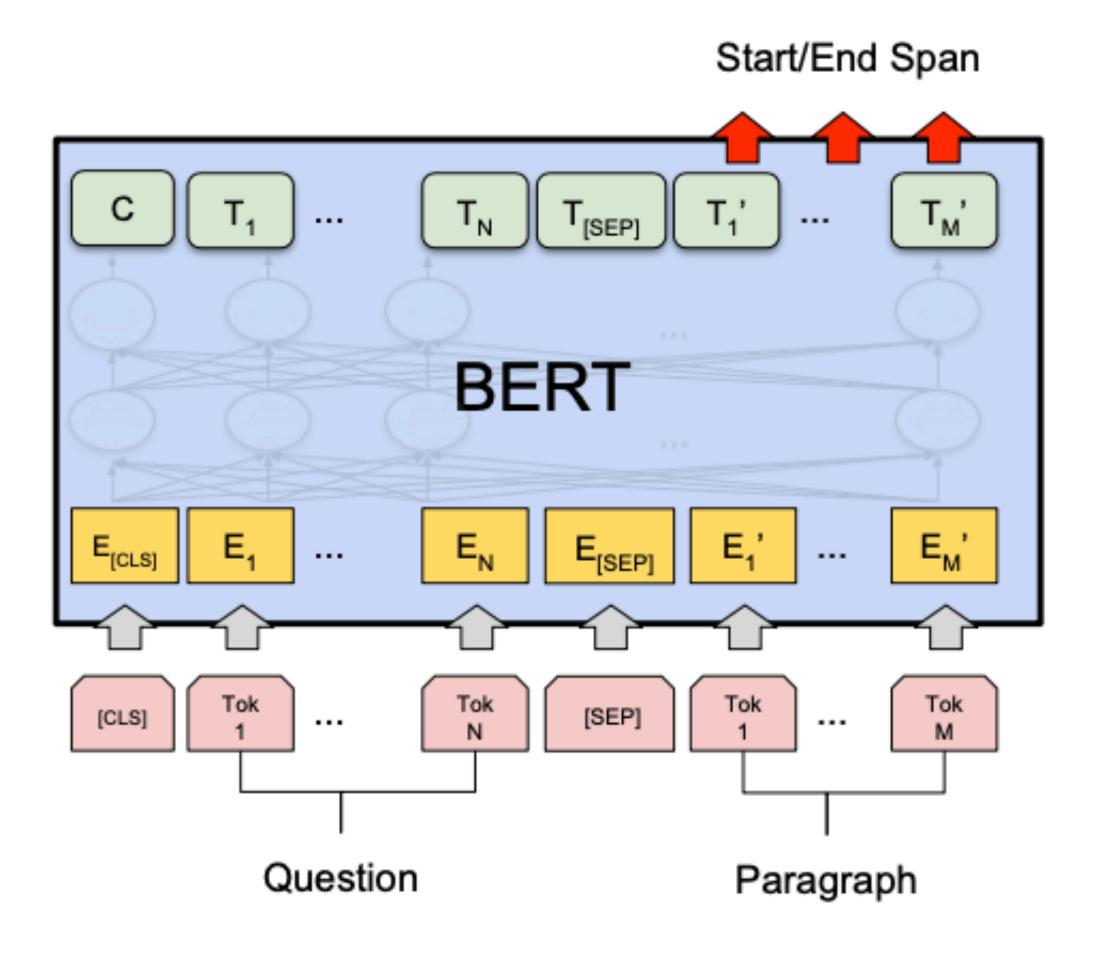
(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(c) Question Answering Tasks: SQuAD v1.1

BERT Details

Two models were released:

- BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
- BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

Trained on:

- BooksCorpus (800 million words)
- English Wikipedia (2,500 million words)

Pretraining is expensive and impractical on a single GPU.

- BERT was pretrained with 64 TPU chips for a total of 4 days.
- (TPUs are special tensor operation acceleration hardware)

Finetuning is practical and common on a single GPU

• "Pretrain once, finetune many times."

Experimental results

BiLSTM: 63.9

Entailment

• MNLI: multilingual NLI

• QNLI: NLI with SQuAD data

• RTE: Textual Entailment

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Similarity

• QQP: Quora Question Pairs

• STS-B: Semantic Textual Similarity

• MRPC: MS Research Paraphrase Corpus

Other

• SST-2: sentiment analysis

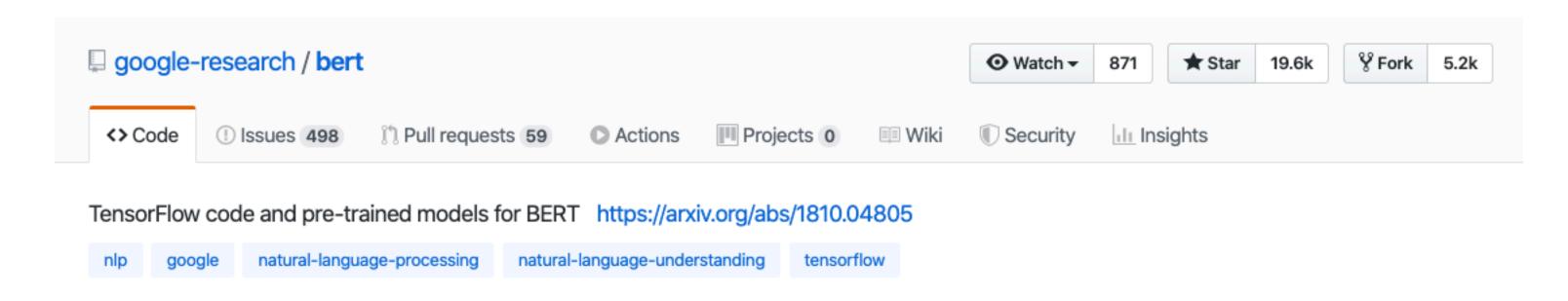
• CoLA: Linguistic acceptability

• SQuAD: question answering

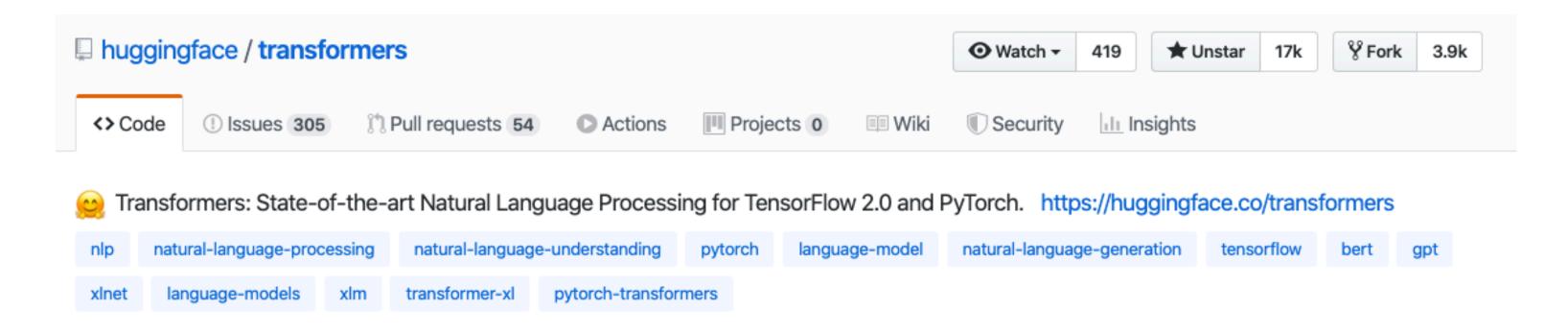
Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
$BERT_{LARGE}$						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
$XLNet_{LARGE}$						
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

Use BERT in practice

TensorFlow: https://github.com/google-research/bert



PyTorch: https://github.com/huggingface/transformers



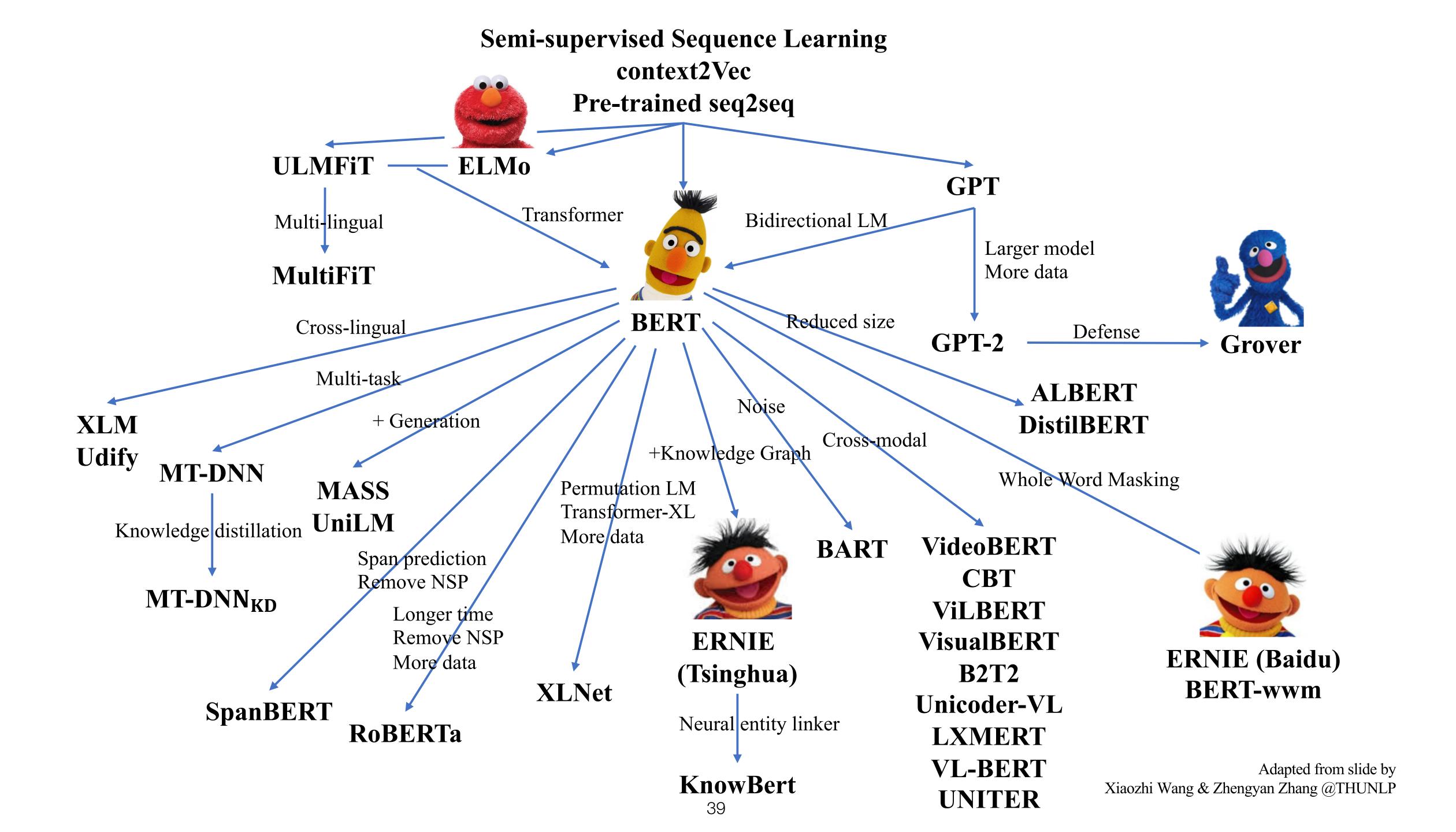
Contextualized word embeddings in context

- TagLM (Peters et, 2017)
- CoVe (McCann et al. 2017)
- ULMfit (Howard and Ruder, 2018)
- ELMo (Peters et al, 2018)
- OpenAI GPT (Radford et al, 2018)
- BERT (Devlin et al, 2018)
- OpenAI GPT-2 (Radford et al, 2019)
- XLNet (Yang et al, 2019)
- SpanBERT (Joshi et al, 2019)
- RoBERTa (Liu et al, 2019)
- ALBERT (Lan et al, 2019)
- DistilBERT (Sanh et al, 2019)
- ELECTRA (Clark et al, 2020)

• ...

https://github.com/ huggingface/transformers

See https://huggingface.co/transformers/
for more information and models



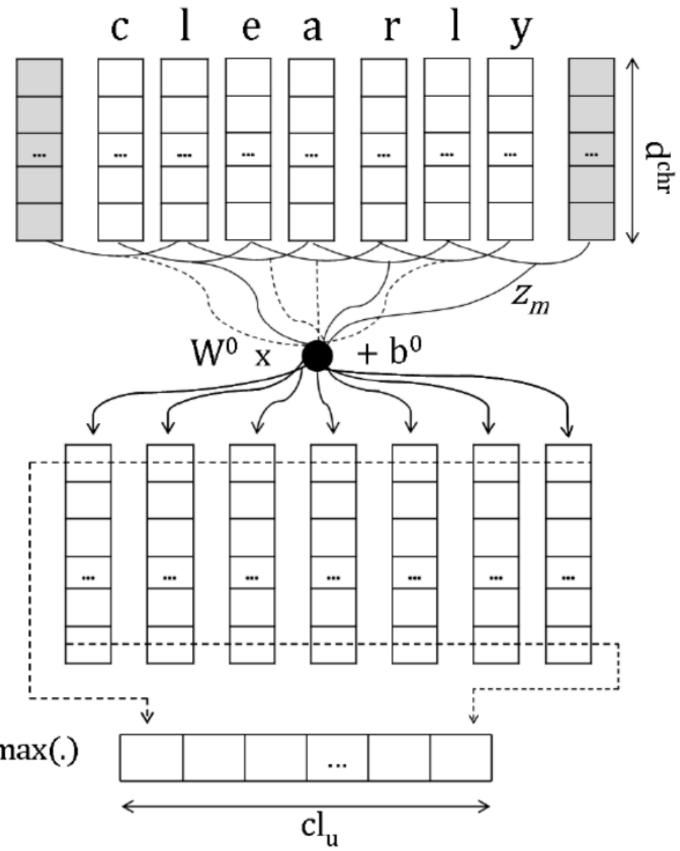
Subword modeling

Subword modeling

- Why subword modeling?
 - Captures morphology
 - Helps with OOV words
 - New words, spelling variants, misspellings, and noisy text
- Ways of incorporating subword modeling
 - Use subwords (word-pieces) as tokens
 - Hybrid architecture where part of the word embeddings come from subword modeling
- Used in most SOTA NLP methods
 - Character CNNs in ELMo
 - BPE (Byte Pair Encoding) in original Transformer paper
 - Wordpiece / sentence piece (in BERT)

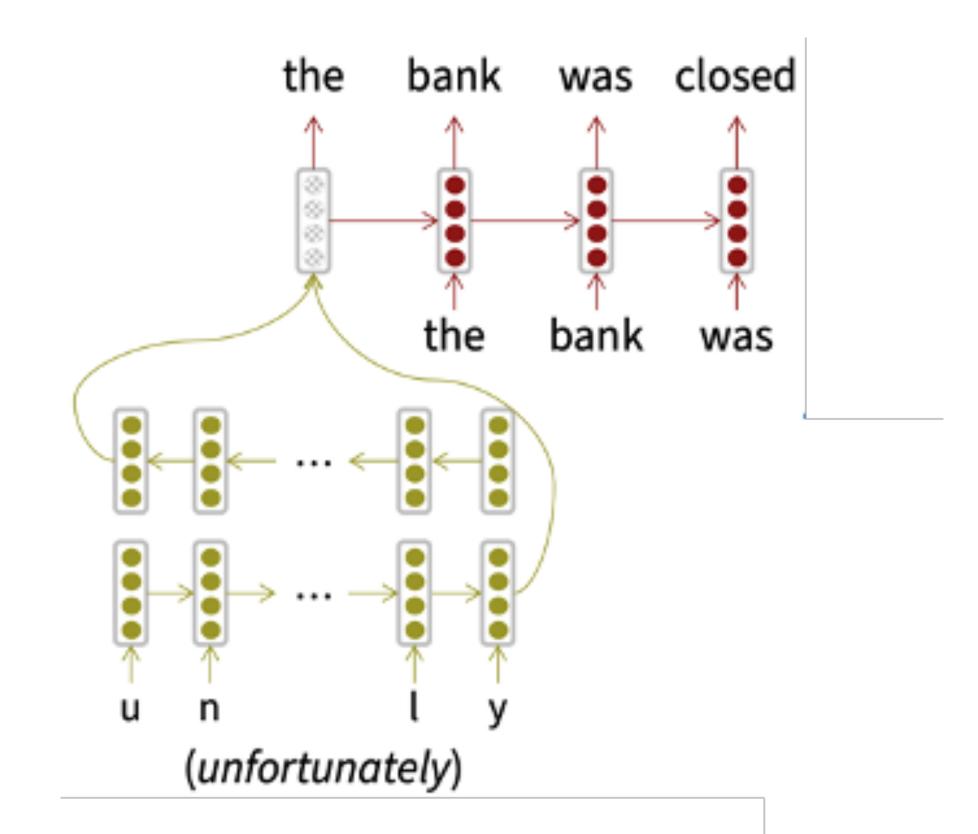
NN over characters to build word representations

Convolution over characters to generate word embeddings



Fixed window of word embeddings used for PoS tagging

- Same objective as word2vec but with characters
- Bi-directional LSTM to compute embedding



Char2vec: A joint model for word embedding and word morphology (Cao and Rei, 2016)

Learning Character-level Representations for Part-of-Speech Tagging (Dos Santos and Zadrozny 2014)

- Originally a compression algorithm
 - Bottom up clustering
 - Most frequent byte pair -> a new byte
 - For words, replace bytes with character ngrams
- Automatically build vocabulary
 - Vocabulary is pieces of words (or character ngrams)
 - Deterministic algorithm that finds the common longest pieces of words to use in vocabulary

count	bigram
5 + 2	lo
5 + 2	O W
2 + 6	we
2	e r
6	ne
6	e w
6 + 3	e s
6 + 3	st
3	wi
3	i d
3	d e

- A word (character ngram) segmentation algorithm
 - Start with a vocabulary of characters
 - Take most frequent ngram pair -> add the new ngram the to vocabulary

Dictionary

5 Iow 2 Iower 6 newest

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d

Start with all characters in vocabulary

count	bigram
5 + 2	Ιο
5 + 2	o w
2	we
2	er
6	n e
6	e w
6	w es
6 + 3	es t
3	wi
3	id
3	d es

- A word (character ngram) segmentation algorithm
 - Start with a vocabulary of characters
 - Take most frequent ngram pair -> add the new ngram the to vocabulary

Dictionary

5 low2 lower6 newest3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, **es**

Add a pair (e,s) with frequency 9

count	bigram
5 + 2	Ιo
5 + 2	O W
2	we
2	er
6	n e
6	e w
6	w est
3	wi
3	i d
3	d est

- A word (character ngram) segmentation algorithm
 - Start with a vocabulary of characters
 - Take most frequent ngram pair -> add the new ngram the to vocabulary

Dictionary 5 low 2 lower 6 newest 3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es,t) with frequency 9

count	bigram
5 + 2	lo w
2	w e
2	e r
6	n e
6	e w
6	w est
3	wi
3	i d
3	d est

- A word (character ngram) segmentation algorithm
 - Start with a vocabulary of characters
 - Take most frequent ngram pair -> add the new ngram the to vocabulary

Dictionary

5 **lo** w

2 **lo** wer

6 newest

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, **lo**

Add a pair (I,o) with frequency 7

- When to stop
 - Have a target vocabulary size and stop when you reach it
- Deterministic, common longest piece segmentation of words
- Segmentation is only within words already identified by some prior tokenizers
- Automatically decide vocabulary to use (vocabulary is pieces of words - character ngrams)

Wordpiece/Sentencepiece

- Used in Google NMT
 - V1: wordpiece
 - V2: sentencepiece
- Difference way to select what ngram to add
 - Choose n-gram that maximally reduces perplexity
 - Greedy approximation to maximizing the language model log likelihood

Wordpiece/Sentencepiece

- Used in Google NMT
 - V1: wordpiece
 - V2: sentencepiece
- Variant of wordpiece model is used in BERT
 - Common words are in vocabulary: at, Fairfax, 1910s
 - Other words built from workpieces: Hypatia = h ##yp ##ati ##a

Wordpiece/Sentencepiece

- Used in Google NMT
 - V1: wordpiece only tokenizes inside words
 - V2: sentencepiece works directly on raw text (use special token _ for whitespace)

Also accommodates Unigram

https://github.com/google/sentencepiece

Unigram

• Finds vocabulary V that gives the maximum likelihood for a given vocabulary size. For given segmentation $T=(x_1,\ldots x_M)$ for input X, likelihood is given by

$$P(\mathbf{x}) = \prod_{i=1}^{M} p(x_i) \qquad x_i \in V \qquad \sum_{x \in V} p(x) = 1$$

- Need to estimate vocabulary V, possible segmentations, and token probabilities $p(x_i)$ jointly: use EM
- With vocabulary V and input X, can get optimal segmentation using Viterbi, or output multiple segmentations with their probabilities (with sampling with subword regularization).

Unigram algorithm

- Start with heuristic seed vocabulary V (that is sufficiently large)
 - For example: all characters + frequent substrings (can also run BPE)
- ullet Repeat until |V| reaches the desired vocabulary size
 - Given V, optimize likelihood of text data (P(X)) and tokenization T using EM algorithm
 - Compute $loss(x_i)$ for each token $x_i \in V$ where loss is how much the likelihood is to be reduced if token x_i is removed
 - Sort by loss and keep top 80% tokens in V (note: always keep single character subwords to avoid OOV)