EdNatLanglLab

CMPT 413/713: Natural Language Processing

Contextualized Word Embeddings

Spring 2025
2025-02-10

Adapted from slides from Dangi Chen and Karthik Narasimhan
(with some content from slides frgm Chris Manning and Abigail See)



Overview

Contextualized Word Representations

e ELMo = Embeddings from Language Models

Deep contextualized word representations

https://arxiv.org»>cs v
by ME Peters - 2018 - Cited by 1683 - Related articles
Deep contextualized word representations. ... Our word vectors are learned functions of the

internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text

COrpus.

e BERT = Bidirectional Encoder Representations from Transformers

BERT: Pre-training of Deep Bidirectional Transformers for ...

https://arxiv.org»cs v

by J Devlin - 2018 - Cited by 2259 - Related articles

Oct 11, 2018 - Unlike recent language representation models, BERT is designed to pre-train deep ...
As a result, the pre-trained BERT model can be fine-tuned with just one additional output ... Which

authors of this paper are endorsers?




Recap: word2vec

P(We_p | W) P(Weyo | We)

P(We—q | we) P(Wesq | We)

problems  turning into crises  as

\ )\ J
\ )
Y Y y

outside context words center word outside context words

in window of size 2 at positiont in window of size 2
Word Cosine distance

norway 0.760124

denmark 0.715460

word = “sweden” finland 0.620022
switzerland 0.588132

belgium 0.585835

netherlands 0.574631

iceland 0.562368

estonia 0.547621

slovenia 0.531408



What'’s wrong with word2vec!

—0.224

e One vector for each word type p(bank) _ | 0130
-1 —0.290

0.276

e Complex characteristics of word use: semantics, syntactic
behavior, and connotations

e Polysemous words, e.g., bank, mouse

mouse! : .... a mouse controlling a computer system in 1968.

mouse? : .... a quiet animal like a mouse
bank! : ...a bank can hold the investments in a custodial account ...

bank? : ...as agriculture burgeons on the east bank, the river ...




Sense embeddings

deu".'“n”
Bundenng - oy
* Multiple embeddings for each word ~ m
* One embedding per sense -
ssoch . o cash
But ,
e How many senses should there be?
emober
 |sthere always a clear distinction S
petween senses?
1w 1en
1980 1945
1985 1568

CONMversatson

iNnvero™

VM‘W.

145 ‘L ; (}’J -"cn. ”."f';
:’.,’ ccLem . m
, (380N

s

- Jaguar
3 rsuwgom, 27tasy  slas jr..uc

o — mCroso®
relaton .
AR
e ¢ olr Mo
camerd venue Caerdw
“‘
e p‘q”" hedul At MOCn
(X ”~
oo df a ’.n
strrng hey:r:a-??“ e
ien
e e
et ey’
’C‘CJ N,yﬂl - gear UO&'.‘ ach R
(3
: Chvairy
coupll ™ o . tigmng Daard A
coat Dk 1 -
oc
_— . = O .
300 neanng tig ~) %}thgn, rocton ”l;be‘J -
.. . ’ﬁ
mee NI P ) pot
- iﬁ "t ac
- »
WDQ.‘. a s
*f'{‘ ol Ao
A% s
SOk~ |
orange
ﬁ’i.“n




Contextualized word embeddings

Let's build a vector for each word conditioned on its context!

~— ~— — — — —

O O O O O O

O O O O O O

O O O O O O

O O O O O O

—_— e — — —_— e
$

Note: this is different from
sentence embeddings where we
get one embedding for the

Contextualized word embeddings entire sentence.

g: (wy, Wy, ...,wp) — s € R?

e movie  was terribly exciting !

f:(wy, Wy, ..,Wy) — Xq, ..., X, € R?



Contextualized word embeddings

Let's build a vector for each word conditioned on its context!

EI_MO stick improvisation this
L HEN NN

Embeddings 0 R o v

Let's SKit

Contextualized word embeddings
ELMo

oy
+(0000)

the movie was  terribly exciting !

f:(wy, Wy, ..,Wy) — Xq, ..., X, € R? ords to embed



Contextualized word embeddings

Example sentences with the word play:
1. Chico Ruiz made a spectacular play on Alusik’s grounder {. . . }
2. Olivia De Havilland signed to do a Broadway play for Garson {. . . }

3. Kieffer was commended for his ability to hit in the clutch , as well as his all-round
excellent play {.. .}

4.{. ..} they were actors who had been handed fat roles in a successful play {. . . }

5. Concepts play an important role in all aspects of cognition {. . . }

Want v(play), the vector corresponding to the word play to be different for
each of the sentences, with similar senses having similar vectors.

Which of the sentences (2-5) would should have an embedding most similar to sentence 17

8



Contextualized word embeddings

Source Nearest Neighbors
playing, game, games, played, players, plays, player,
GloVe  play Play, football, multiplayer
Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik ’s | for his ability to hit in the clutch , as well as his all-round
, grounder {...} excellent play .
s Olivia De Havilland | {...} they_were actors who had been handed fat roles in
(from ELMo)

signed to do a Broadway
play for Garson {... }

a successful play , and had talent enough to fill the roles
competently , with nice understatement .

(Peters et al, 2018): Deep contextualized word representations

9

different
senses



ELMo

0.1% Aardvark

e NAACL’18: Deep contextualized word representations iﬁSESib'l? E'assed& .
nglish words -
® Key idea: O% ”Z.yzzyva
e Train two stacked LSTM-based language model on Output

some large corpus Layer

e Use the hidden states of the LSTM for each token to e T F T

compute a vector representation of each word Layer #2

LSTM
Layer #1

Embedding T 1 1] [T T 11 (LT 1]

10



# tokens in th
ELMo sentence LSTM

Pretrain LM / parameters
0.1% Aardvark N _{
Possible classes: 1 tr | t1.....t0_1:0,. 6 ©
All English words ~ [110%. Improvisatior ;::1( ogP(tk | t1; - tk-1; O, © rlsar, )
o (—
0% Zyz;yva -{-logp(t;C ‘ lkt1y---5UN; O, Orsrm, @3) )

Output | T \
i nput softmax
Layer \ edd

H embeddings layer
LSTM - - Ml . AGd . A \ /

Layer #2 Tied (same) for

| | |
LSTM r ? T
Layer #1 ‘ ‘ '
| J |

. | the two directions
Embedding T 117 [T 111 (L1

Forward LM | | | | \ . Backward LM
Let’'s stick to N this skit

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-bert/) 11

G |
® o ® o

.,/ . . .



http://jalammar.github.io/
http://jalammar.github.io/illustrated-bert/

After training LM =LMo

Forward Language Model Backward Language Model

LSTM
Layer #2

LSTM
Layer #1

Embedding

To get the ELMO embedding of a word (“stick”):

Concatenate forward and backward embeddings

(figure credit: Jay Alammar and take weighted sum of layers
http://jalammar.github.io/illustrated-bert/) 12



http://jalammar.github.io/
http://jalammar.github.io/illustrated-bert/

1- Concatenate hidden layers
N o
_ LT 11

T T T T

2- Multiply each vector by
a weight based on the task

R

LI X S

3- Sum the (now weighted)
vectors

ELMo embedding of “stick” for this task in this context

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-bert/)

|

“

—

|

stick

stick

LM weights are frozen

Weights s; are trained on specific task.

To get the ELMO embedding of a word (“stick”):

Concatenate forward and backward embeddings

and take weighted sum of layers
13


http://jalammar.github.io/
http://jalammar.github.io/illustrated-bert/

Summary: How to get ELMo embedding!?

Input embeddings\ Hidden state

— .
Re = (VT L,g,w,‘}:m‘,:l,..

{hy}|j=0,...,L},

., L} «— Lis # of layers

Token representation — hy ¢ = x;, hLM [hLM hLM] <— hidden states

ELMotask E(Rk, @task _ task: Z Staskh

Task specific learnable o ¥k allows the task model to scale the entire ELMo vector

—>
parameters task.

* 5 . softmax-normalized weights across layers

e To use: plug ELMo into any (neural) NLP model: freeze all the
LMs weights and change the input representation to:

[Xk, ELI\/IOtaSIC
(could also insert into higher layers)

14



More details

Forward and backward LMs: 2 layers each
Use character CNN to build initial word representation

e 2048 char n-gram filters and 2 highway layers, 512 dim
projection

User 4096 dim hidden/cell LSTM states with 512 dim
projections to next input

A residual connection from the first to second layer

Trained 10 epochs on 1B Word Benchmark

15



ELMo: pre-training and use

Data: 10 epoches on 1B Word Benchmark (trained on single sentences)
Pre-training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs

« Much lower time cost if we used V100s / Google’s TPUs but still hundreds of dollars in
compute cost to train once

« Larger BERT models trained on more data costs $10k+

How to apply ELMo in practice?

» Take the embeddings and feed them into any neural models just like word2vec
fi(w,wa,...,wy) = X1,...,%X, €RY

« The LM’s hidden states are fixed and not updated during the downstream use (only

the scaling and softmax weights are learned)

« Common practice: concatenate word2vec/GloVe with ELMo

16



ELMo: pre-training and use

Example: A BiLSTM model for sentiment classification

Sentence encoding

Sl (el o] [s] 3
@)

O ) O @) O

the movie was terribly exciting

T

le(terribly); ELMo {s*

17




Experimental results

INCREASE
TASK PREVIOUS SOTA OUR ELMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuet al. (2017) 84.4 | 81.1 85.8 4.7 1 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £ 0.17 0.7/ 5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 0222 +0.10 § 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 547 £ 0.5 3.3/6.8%

SNLI NER SQUAD Coref SRL SST-5

SQuAD: question answering

SNLI: natural language inference

SRL: semantic role labeling

SR4E

Coret: corefterence resolution

o

%

N\

NER: named entity recognition

CRRLLLES

%

SST-5: sentiment analysis

18 (X Previous SOTA mmm Baseline



Experimental results

INCREASE
TASK PREVIOUS SOTA OUR ELMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuet al. (2017) 84.4 | 81.1 85.8 4.7/ 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 = 0.17 0.77/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 0222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 51.4 547 £ 0.5 3.3/6.8%
SNLI NER SQuUAD Coref SRL SST-5

SQuAD: question answering

SNLI: natural language inference

SRL: semantic role labeling

/" —
[+)]
N EE

X
0

N\

Coret: corefterence resolution

NER: named entity recognition

CRRLLLKES

%

SST-5: sentiment analysis

19 (X Previous SOTA mmm Baseline



Intrinsic Evaluation

syntactic information semantic information
0a 0 PTB POS Tagging Fine Grained WSD
| 97.8 71
97.8 - 70 -4
69.0
97.6 -
97.3 '
97.4 - 69 A
97.2 - o 67.4
270 96.8
96.8 - 67 -
96.6 -
— | I . 66 +— i — | — i —
First i_ayer Secon('j Layer Ling et all. (2015) First Layer Second Layer  lacobacci et al. (2016)
First Layer > Second Layer Second Layer > First Layer

syntactic information is better represented at lower layers

while semantic information is captured at higher layers

20



https://allennlp.org/elmo

Pre-trained ELMo Models

Use ELMo in practice

, , , it LSTM Hidden it
Link(Weights/Options , .
Model File) Parameters Size/Output Highway
[
(Millions) size Layers>
Small weights options 13.6 1024/128 1
Medium weights options 28.0 2048/256 1
Original weights options 93.6 4096/512 2
Original , :
weights options 93.6 4096/512 2
(5.5B)

21

from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096

# Compute two different representation for each token.

# Each representation is a linear weighted combination for the

# 3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

# use batch _to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'l], ['Another', '.']]

character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

Also available in TensorFlow


https://allennlp.org/elmo

BERT

e First released in Oct 2018.

e NAACL’19: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

How is BERT different from ELMo?
- Use Transformers instead of LSTMs
- Trained on segments of text (512 word-piece tokens)

- Use a bidirectional encoder instead of two independent LSTMs from
both directions

- The weights are not frozen (use fine-tuning for downstream tasks)
- Two new pre-training objectives

22



out

BERT

Add & Norm
Multi-Head sub-layer 1
Attention

e Transformer Encoder

e Two training objectives
e Masked Language Modeling
e Next Sentence Prediction

23

Masked Sentence A

*

Unlabeled Sentence A and B Pair

I
Masked Sentence B

Pre-training




Bidirectional encoders

e Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

e Language understanding is bidirectional

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
T T T T T T
Layer2 [—| Layer2 [—| Layer2 Layer 2 : Layer 2 : Layer 2
T T T T T T
Layer2 (—=| Layer2 [—| Layer2 Layer 2 : Layer 2 : Layer 2
T T T T T T
<s> open a <s> open a

24



Masked language models (MLMs)

e Solution: Mask out 15% of the input words, and then predict the
masked words

store gallon

T T
the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: too expensive to train
¢ Too much masking: not enough context

25



Masked language models (MLMs)

A little more complex

(don’t always replace with [ MASK]):

Example: my dog is hairy, we replace the word hairy
e 80% of time: replace word with [ MASK ] token

my dog 1s [MASK]
e 10% of time: replace word with random word

my dog 1s apple

e 10% of time: keep word unchanged to bias representation
toward actual observed word

my dog 1s hairy

Because [ MASK ] is never seen when BERT is used...

20



Next sentence prediction (NSP)

Always sample two sentences, predict whether the second
sentence 1s followed after the first one.

IIlpllt — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

LLabel = 1snext

Iﬂpllt [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label — NotNext

Recent papers show that NSP is not necessary...

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans

(Liu et al, 2019): RoBERTa: A Rob%s7tly Optimized BERT Pretraining Approach



More details

e Input representations

- 4 N N N
Input [CLS] 1 my || dog is
Token
Embeddings E[CLS] Emy Edog E.
== - + -+
Sum of Segment E E E E
embeddings Embeddings A A A A
== == -+ =+
Position
Embeddings EO El E2 E3

e Use word pieces instead of words: playing => play ##ing (30K token vocabulary)

e Segment length: 512 tokens

e Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)
¢ Released two model sizes: BERT base, BERT_large

28



Pre-training and fine-tuning

Start/End Spam

Masked Sentence A Masked Sentence B Question Paragraph
* o~
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

Key idea: all the 2vgreights are fine-tuned on downstream tasks



Applications

Class

Label

—

e (e )

BERT
EICLSI E1 EN E[SEP] E1 EM.
— o yfily
=R EEE- G
I |
Sentence 1 Sentence 2

(@) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

Class

Label

5

BERES

BERT

E[CLS] E1 Ez EN

— i —
[CLS) Tok 1 Tok 2 Tok N

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

a0
(e () [ [ Teem | 70 ]~
BERT
B E, Ex Eiser) E, Ey
—{—r —{—r afiy
{[CLSI][ T] [1}}"]{[3@11[“{"1... @
I !
Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

(@) B-PER @)
S & 4 x
B
BERT
E[CLS] E1 Ez EN
T —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER



Applications

E.

S

M‘ Tok 1 ” TOKZW ( TokNW
|

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColA

31



Applications

O B-PER O

(oo [or [z . [ron)

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

32



Applications

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

33



Applications

Start/End Span

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

34



BERT Details

Two models were released:

- BERT-base: 12 layers, 7/68-dim hidden states, 12 attention heads, 110 million params.
» BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
Trained on:

» BooksCorpus (800 million words)

» English Wikipedia (2,500 million words)

Pretraining is expensive and impractical on a single GPU.

» BERT was pretrained with 64 TPU chips for a total of 4 days.

» (TPUs are special tensor operation acceleration hardware)

Finetuning is practical and common on a single GPU

* “Pretrain once, finetune many times.”

35



Experimental results

BiLSTM: 63.9

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE} Average

Entailment

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k
e MNLI: multilingual NLI Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 932 350 &1.0 86.0 61.7
. OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 80.0 82.3 56.0
e RTE: Textual Entailment BERTRASE 84.6/83.4 712 90.1 935 521 858 889 66.4
BERT[ ArRGE 86.7/85.9 721 911 949 60.5 865 893 70.1
Similarity
e (QQP: Quora Question Pairs Model data bsz steps (3??/‘33) MNLI-m SST-2
e STS-B: Semantic Textual Similarity RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 05.3
e MRPC: MS Research Paraphrase Corpus + additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
Other ——
e SST-2:sentiment analysis with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7
. . . .y XLNet; srce
e CoLA: Linguistic acceptability with BOOKS + WIKI  13GB 256 1M  94.0/87.8 884  94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

e SQuAD: question answering

(Wang et al, 2018): GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
30



Use BERT in practice

TensorFlow: https://github.com/google-research/bert

.-/ google-research / bert ®©Watch~ 871  YrsStar 196k  YFork 5.2k

<> Code Issues 498 Pull requests 59 Actions Projects 0 Wiki Security Insights

TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805

nlp google natural-language-processing natural-language-understanding tensorflow

PyTorch: https://github.com/huggingface/transformers

- huggingface / transformers OWatch~ 419  YuUnstar 17k  YFork 3.9k

<> Code Issues 305 Pull requests 54 Actions Projects 0 Wiki Security Insights

w Transformers: State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch. https://huggingface.co/transformers
nlp natural-language-processing natural-language-understanding pytorch language-model natural-language-generation tensorflow bert gpt

xInet language-models xlm transformer-xl pytorch-transformers

37


https://github.com/google-research/bert
https://github.com/huggingface/transformers

Contextualized word embeddings in context

TagLM (Peters et, 2017)

CoVe (McCann et al. 2017)

ULMfit (Howard and Ruder, 2018)
ELMo (Peters et al, 2018)
OpenAl GPT (Radford et al, 2018)
BERT (Devlin et al, 2018)
OpenAl GPT-2 (Radford et al, 2019)
XLNet (Yang et al, 2019)
SpanBERT (Joshi et al, 2019)
RoBERTa (Liu et al, 2019)
ALBERT (Lan et al, 2019)
DistilBERT (Sanh et al, 2019)
ELECTRA (Clark et al, 2020)

38

v Transformers

https://github.com/
huggingtace/transtormers

See https://huggingface.co/transtormers/
for more information and models



https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/transformers/

Semi-supervised Sequence Learning
context2Vec
Pre-trained seq2seq

ULMFiT ELMo

Multi{lingual Transformer
"
MultiFiT

Cross-lingual uced size

XLM

Udity VT DNN MASS

Knowledgeldistillation UNILM More/data

\
MT-DNNkp
ERNIE
Tsinghua
XLNet ( ghua)
SpanBERT RoBERTa Neural|entity linker
\

KnowBert

39

Bidirectional LM
o Larger model

BART VideoBERT

GPT

More data

Detfense

GPT-2

—- Grover

ALBERT
DistilBERT

ord Masking

CBT ’(’?

VILBERT N
VisualBERT =

lSlllaasz ERNIE (Baidu)
Unicoder-VL BERT-wwm

LXMERT

VL-BERT Adapted from slide by

UNITER Xiaozht Wang & Zhengyan Zhang (@ THUNLP



Subword modeling



Subword modeling

e \Why subword modeling?

e Captures morphology

e Helps with OOV words

* New words, spelling variants, misspellings, and noisy text

e Ways of incorporating subword modeling

e Use subwords (word-pieces) as tokens

 Hybrid architecture where part of the word embeddings come from subword modeling
e Used in most SOTA NLP methods

e Character CNNs in ELMo

e BPE (Byte Pair Encoding) in original Transformer paper

 Wordpiece / sentence piece (in BERT)



NN over characters to build word representations

» Convolution over characters to  Same objective as word2vec but with characters

generate word embeddings e Bi-directional LSTM to compute embedding

! the bank was closed
. I Y
= 2 =} =
,® ,® ., ®
J i L L
PR
\
Fixed window of word the bank was
embeddings used for o = o
o s S S o W PoS tagging ° o oo
---------- . u n |y
max(.) (unfortunately)

v

&
T~

Char2vec: A joint model for word embedding and

Learning Character-level Representations for Part-of-
5 P word morphology (Cao and Rei, 2016)

Speech Tagging (Dos Santos and Zadrozny 2014)



Byte Pair Encoding

e QOriginally a compression algorithm
e Bottom up clustering
e Most frequent byte pair -> a new byte
e For words, replace bytes with character ngrams
e Automatically build vocabulary
e \ocabulary is pieces of words (or character ngrams)

e Deterministic algorithm that finds the common longest
pieces of words to use in vocabulary



Byte Pair Encoding

count bigram
e A word (character ngram) segmentation algorithm

5+ 2 e

> +2 oW o Start with a vocabulary of characters

2+ 0 w e
2 er  Take most frequent ngram pair -> add the new ngram the
6 ne to vocabulary
0 ew

Dictionary Vocabulary
6 +3 S t 5 low -
,o,w,e, rnn,w,sS,tid

3 W i 2 lower
3 | d 6 newest

3 de 3 widest Start with all characters in vocabulary



Byte Pair Encoding

count bigram

540 o A word (character ngram) segmentation algorithm

> +2 oW o Start with a vocabulary of characters
2 W e
2 er  Take most frequent ngram pair -> add the new ngram the
6 ne to vocabulary
0 ew
6 W es Dictionary Vocabulary

5 low -
_ ,o,w,e, r,n,w,S, 11, d,es

3 W | 2 lower
3 | d 6 newest
3 d es 3 widest Add a pair (e,s) with frequency 9



Byte Pair Encoding

count  bigram

e A word (character ngram) segmentation algorithm
_|_

O+ 2 o W e Start with a vocabulary of characters

2 w e

5 or * Take most frequent ngram pair -> add the new ngram the
to vocabulary

6 ne

° oW Dictionary Vocabulary

6 w est 5 low |

3 Wi 5 lower ,o,w,e,r,n,w,s,t,1,d, es, est

3 | d 6 newest

3 d est 3 widest Add a pair (es,t) with frequency 9



Byte Pair Encoding

count bigram | |
e A word (character ngram) segmentation algorithm

S5+ 2 lo w
2 W e e Start with a vocabulary of characters
2 ef * Take most frequent ngram pair -> add the new ngram the
6 ne to vocabulary
0 ew
6 W est Dictionary Vocabulary
3 W i > low ,o,w,e, rn,w,sS,t I d, es, est lo
| 2 lower
3 0 6 new est
3 d est 3 widest Add a pair (I,0) with frequency 7



Byte Pair Encoding

When to stop
e Have a target vocabulary size and stop when you reach it

Deterministic, common longest piece segmentation of
words

Segmentation is only within words already identified by
some prior tokenizers

Automatically decide vocabulary to use (vocabulary is
pieces of words - character ngrams)



Wordpiece/Sentencepiece

e Used in Google NMT
e \/1: wordpiece
e \/2: sentencepiece
e Difference way to select what ngram to add
e Choose n-gram that maximally reduces perplexity

e (Greedy approximation to maximizing the language model
log likelihood

Japanese and Korean Voice Search [Schuster and Nakajima 2012]



https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37842.pdf

Wordpiece/Sentencepiece

e Used in Google NMT
e \V1: wordpiece
e \/2: sentencepiece
e Variant of wordpiece model is used in BERT

e Common words are in vocabulary: at, Fairfax, 1910s

e Other words built from workpieces: Hypatia = h ##yp
atl ##a




Wordpiece/Sentencepiece

e Used in Google NMT

* V1. wordpiece only tokenizes inside words Also

e V2: sentencepiece works directly on raw text accommodates
(use special token _ for whitespace) Unigram

https://github.com/google/sentencepiece

https://arxiv.org/pdf/1808.06226 [Kudo and Richardson 2018]



https://arxiv.org/pdf/1808.06226

Unigram

e Finds vocabulary V that gives the maximum likelihood for a given
vocabulary size. For given segmentation 7' = (x;, .. .x,;,) for

input X, likelihood is given by

P(x) = | [ p(z:) ey p p@)=1

zeV
 Need to estimate vocabulary V, possible segmentations, and

token probabilities p(x;) jointly: use EM

e With vocabulary V and input X, can get optimal segmentation

using Viterbi, or output multiple segmentations with their
probabilities (with sampling with subword regularization).

Unigram Models for Subword Segmentation [Kudo 2018]



https://arxiv.org/abs/1804.10959

Unigram algorithm

e Start with heuristic seed vocabulary V (that is sufficiently large)

 For example: all characters + frequent substrings (can also run BPE)

e Repeat until | V| reaches the desired vocabulary size

e Given V, optimize likelihood of text data (P(X)) and tokenization T°
using EM algorithm

» Compute loss(x;) for each token x; € V where loss is how much the

likelihood is to be reduced if token Xx; is removed

e Sort by loss and keep top 80% tokens in V (note: always keep single
character subwords to avoid OOV)



