
Transformers and Self-Attention

Spring 2024

2024-02-12

CMPT 413/713: Natural Language Processing

SFUNatLangLab

Adapted from slides from Danqi Chen and Karthik Narasimhan

(with some content from slides from Chris Manning and Abigail See)

1

Review of attention in
sequence to sequence models

2

Attentive machine translation summary

3 (slide credit: Peter Anderson)

Attentive machine translation summary

4 (slide credit: Peter Anderson)

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒄𝑖 ht
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Summary of attention

5

(or values)

Final attention output

Attention weights: (normalized) 𝜶

Weighted sum of context features

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention score (,)
how well does the attention
candidate match the query

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛

𝒄𝑖 𝒛

• Dot-product attention:

• Neural network

Attention scores: (unnormalized) 𝒆

Attention can be used to copy from input

6 (See et al, 2017)

• Probability of generating from vocabulary or copying from input

• Probability of copying specific word (similar to attention)

Motivation of attention

• How much does this attention candidate match the query vector?

• Motivated by biological attention and alignment in machine translation

7

the agreement on the

get a representation that is a weighted sum over the
attention candidates based on a query vector

Attention is a general deep learning technique

‣ Given a set of value vectors and a query vector, attention is a way to compute
a weighted sum of the values dependent on the query.

‣ The query determines what values to focus on,

‣ We say: the query “attends” to the values

‣ In NMT, each decoder hidden state (query) attends to all the encoder hidden
state (values)

‣ A more general form: use a set of keys and values

‣ The keys are used to compute the attention scores

‣ The values are used to compute the output vector

8

Attention is always computed the same way

• Assume that we have a set of key-value pairs ,
, and a query vector

• Computing attention consists of the following steps:

• Compute the attention scores:

• Take softmax to get the attention distribution

• Use attention distribution to take weighted sum of values

k1, …, kn ∈ ℝdk

v1, …, vn ∈ ℝdv q ∈ ℝdq

9

<latexit sha1_base64="Wkn3UmsJsiACET4Rhn1Dp1OBYMU=">AAAC53icbVHLbtNAFJ24PEp49MGSzagRUhFVZLdJ7CwqRbBhWRBpK8WhGk+uk1HHYzMzLo1G8w1ICCG2iK9hC6v+DZO4EU3KlSydOfcc3etzk4IzpX3/quat3bl77/76g/rDR4+fbGxubR+rvJQU+jTnuTxNiALOBPQ10xxOCwkkSzicJOevZ/2TC5CK5eK9nhYwzMhYsJRRoh11tnkYZ0RPktTEhBcTYvEhjjVcaqPyVGfk0u4uBGBf4JgJXL0T885+cP6G3/TnhW+D4Bo0ejvxy69XvenR2VbtSzzKaZmB0JQTpQaBX+ihIVIzysHW41JBQeg5GcPAQUEyUEMz/0+LnztmhNNcuk9oPGdvOgzJlJpmiVPOllSrvRn5v96g1Gk0NEwUpQZBq0FpybHO8Sw0PGISqOZTBwiVzO2K6YRIQrWLth6PIHXxz9cxCS/BGjlOrHFBtKKw297zmweR73dbDnRCPwwCu+wpSlnwf672vn/QDfcWOToQddpRu+tcAj7RPMuIGJn4gnA7CIbGxDcnNwJrV4QfS5DTJeliYCV2VwxWb3YbHO83g06z9dad8xWqah09QztoFwUoRD30Bh2hPqLoJ/qFfqM/HvM+e9+875XUq117nqKl8n78Be2v64c=</latexit>

↵ = softmax(e) 2 Rn

<latexit sha1_base64="xk5EOBLh6U6xZzBEvn4PEu3hTR0=">AAADinicbVLdbtMwGPUafkYZbINLbqxVoCGqyknaJhFCqoALLrgYiG6TmlI5jtNZzd8cZ6iy/BY8CU/DLuFJcNKWrt0sRTo+3zn+fvIFecwKgdD1TsO4d//Bw91Hzcd7T57uHxw+Oy2ykhM6JFmc8fMAFzRmKR0KJmJ6nnOKkyCmZ8HsQxU/u6K8YFn6TcxzOk7wNGURI1hoanLwmU4YfAenx/6MzqWfYHERRHKmJky1oX9ZUr5mL5V6rcnljSros3R5DeRX9V0/10IdVB94G5hL0Boc+W9+Xg/mJ5PDxis/zEiZ0FSQGBfFyES5GEvMBSMxVU2/LGiOyQxP6UjDFCe0GMu6bQVfaiaEUcb1lwpYszcdEidFMU8CrayKLLZjFXlXbFSKyB1LlualoClZJIrKGIoMVjOEIeOUiHiuASac6VohucAcE6En3fRDGum/UZcjg7ikSvJpoKQeRNd1vF4bdWwXIa+rQd9BjmmqTU9e8jxeu3oWsj2nvZqjBm6/5/a8LRen4X9Lv2tZtllbLMepLMi0XMvasmQcp9N1Is9DXVQl6iFk2l7lsm2NtCulP0iWJDgNpX+FYzUyx1L6N1tsmUptCevt2ZCuOrtDrNdvQ7qqbSHVm2Vu79FtcGp1zH6n+0Wv2HuwOLvgBTgCx8AEDhiAT+AEDAEBv8Bv8Af8NfYMy/CMtwtpY2fpeQ42jvHxH7zuIBU=</latexit>

ei = g(ki,q), e 2 Rn

<latexit sha1_base64="HkF1JstH6QPyOuA+hRqJI03y+JE=">AAAC/nicbVHLbhMxFHWGVwmPpmXJxiJCYlGicZvnAqmCTZcFNW2lTBh5PJ7Eqscz2J5UkWWJb2DBmhUbhBA7hPgEfoAdW/gKPJMWmpQrWTo69xzd63uinDOlff9Hzbty9dr1G2s367du37m73tjYPFRZIQkdkoxn8jjCinIm6FAzzelxLilOI06PopNnZf9oRqVimTjQ85yOUzwRLGEEa0eFjYNgirUJUqynUWKItfAJDFSRhoY9RvalERWBeT7FIYPBDPO/4pkNmYUBE3DBROaFM8Sh4xtNv+VXBS8DdAaau3vvPnz7/P3tfrhRexPEGSlSKjThWKkR8nM9NlhqRji19aBQNMfkBE/oyEGBU6rGpvq+hQ8dE8Mkk+4JDSv2osPgVKl5Gjlluaha7ZXk/3qjQif9sWEiLzQVZDEoKTjUGSxvCWMmKdF87gAmkrldIZliiYl2F68HMU1cKtU6JuIFtUZOImvcIdr93qCz5bd2+r4/aDvQ7fk9hOyyJy9kzv+5Otv+zqC3dX5HB/rdTr8zcC5BT0mWpljEpozIjtDYmODi5CaydkX4qqByviQ9H7gQuxTRamaXweF2C3Vb7ecuzqdgUWvgPngAHgEEemAX7IF9MAQEfAU/wS/w23vtvfc+ep8WUq925rkHlsr78gfRKfaz</latexit>

ĉ =
nX

i�1

= ↵ivi 2 Rdv

Query-Value-Key view of attention

10

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention function, 𝑓
(,)

𝑒𝑖 = 𝑔 𝒌𝑖 𝒒
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒗𝑖

 𝒒 = 𝑊𝑄 𝒛
𝒌𝑖 = 𝑊𝐾 𝒄𝑖
𝒗𝑖 = 𝑊𝑉 𝒄𝑖

Projected query,key,value
 𝒒 = 𝑊𝑄 𝒛

𝐾 = 𝑊𝐾 𝐶𝑇

𝑉 = 𝑊𝑉 𝐶𝑇

Matrix form

General form of attention: key-value-query

‣ Attention is a way to compute a weighted sum of the values dependent on
the query and the corresponding keys.

‣ All of these (key value query) are represented using vectors

‣ The query and key are used for addressing (contains partial information).
While the values provide more complete information

• The weighted sum is a selective summary of the information found in
the values.

• It is a way to obtain a fixed-sized representation of an arbitrary set of
representations (values) based on some other representation (the query)

11

Different types of attention

12

Soft vs Hard Attention

13

Xu et al. ICML 2015

Global vs Local Attention

• Global: attention over the entire input
• Local: attention over a window (or subset) of the input

14

Self-Attention

• Attention (correlation) with different parts of itself

• Transformers: modules with scaled dot-product self-attention

15

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformers: self-attention

• More recent models (e.g. Transformer,
Vaswani et al., 2017) have replaced
RNNs entirely with attention
mechanisms

• Theoretically limiting (since recurrence
can help handle arbitrarily long
sequences)

• Huge gains in practical performance

16

Transformers

17

18

Transformers are everywhere!
• Vision

• Reinforcement Learning

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, Dosovitskiy et al, ICLR 2021

Trajectory Transformer [Janner et al, 2021] Decision Transformer [Chen et al, 2021]

Transformers

• NIPS’17: Attention is All You Need
• Originally proposed for NMT (encoder-

decoder framework)
• Used in most LLMs!
• Key idea: Multi-head self-attention
• No recurrence structure any more so it

trains much faster

Encoder Decoder

19

Understanding transformers

• From attention to self-attention
• From self-attention t0 multi-headed

self-attention
• Transformer encoder
• Transformer decoder
• Putting the pieces together

Encoder Decoder

20

Multi-head self-attention

21

• Each Transformer block has two-sublayers
• Multi-Head self-attention
• 2 layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and a
layer normalization
• LayerNorm(x+SubLayer(x))

• Input layer has a positional encoding

Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads

22

Self Attention
(also referred to as Intra-Attention)

• Self-attention: let’s use each word as query and compute the attention
with all the other words (other words are the keys and values)

= the word vectors themselves select each other

23

How to get key-value-query for each word?

‣ For each word, we have vectors for the key-value-query

‣ These vectors are created by multiplying the word embedding by
trained weight matrices

24

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

Stack into matrices and
compute all at once!

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

• Can be any kind of attention
function

• For transformers, this is the
scaled dot-product attention

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

• query, key, and value vectors
created by multiplying learned
weight matrices with embedding

25

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Recall: types of attention

‣ Assume keys and query

1. Dot-product attention (assumes equal dimensions for and): 

2. Bilinear / multiplicative attention: 
 , where is a weight matrix

3. Additive attention (essentially MLP): 
  
where are weight matrices and is a weight vector

k1, k2, . . . , kn q

ki q
g(ki, q) = qTki ∈ ℝ

g(ki, q) = kTWki ∈ ℝ W

g(ki, q) = wT tanh (W1ki + W2q) ∈ ℝ
W1, W2 w

Perform better for

larger dimensions

more efficient

(matrix

multiplication)

Simplest (no extra parameters)

Does not work well for large dimensions

More flexible

than dot-product

(W is trainable)

26

Scaled dot-product attention

‣ Assume keys and query

1. Dot-product attention (assumes equal dimensions for and): 

2. Scaled dot-product attention: 

k1, k2, . . . , kn q

ki q
g(ki, q) = qTki ∈ ℝ

g(ki, q) =
qTki

d
∈ ℝ

Scaled dot product will perform well

for larger dimensions

Scaling factor: d = dimension of hidden state

Scale of dot product increases

as dimension gets larger

Perform poorly for large d

Softmax has small gradient

27

• Can be any kind of attention
function

• For transformers, this is the
scaled dot-product attention

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

• is the final vector of attended
values for “Thinking” as the query
z1

28

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Self-attention in equations

• A self-attention layer maps a sequence of input vectors to a
sequence of n vectors:

• Note: this is similar as an RNN layer and can be used to replace an RNN layer

x1, …, xn ∈ ℝd1

y1, …, yn ∈ ℝd2

29

qi = WQxi, WQ ∈ ℝdq×d1

ki = WKxi, WK ∈ ℝdk×d1

vi = WVxi, WV ∈ ℝdv×d1

• First, construct a set of queries, keys, and values:

• Second, for each , compute attentions scores and
attention distribution

qi

Scaled dot-product

so dk = dq

αi,j = softmax (
qi ⋅ kj

dk)
• Finally, compute the weighted sum:

yi =
n

∑
j=1

αi,jvj ∈ ℝdv dv = d2

Self-attention: matrix notation

30

Note: the notation on this slide are following the original paper

(= the transpose of the matrices in the previous slide)Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv

X ∈ ℝn×d1

Attention(Q, K, V) = softmax (QKT

dk) V

n × dq dk × n

n × dv

Be careful to make sure

the softmax is over the correct dimension

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

31

Scaled Dot Product Attention

Fall 2019 54

! = #! $"
% = ##&"

Return -. = /012345 !"%
6$

.

Let $ ∈ ℝ%×'! be a matrix of task context
vectors to attend to
Let & ∈ ℝ(×'" be a matrix of input vectors to
attend over

W) ∈ ℝ'#×'"
W* ∈ ℝ'$×'%

Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf

. = #+&" W, ∈ ℝ'&×'"

:;<=>>?@>AB@ C, E :

-. ∈ ℝ%×'& be a matrix of attended values

Efficient, stable training

<latexit sha1_base64="Fcd903it+KWB3rJ8NRv1CGIFF5U=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVol6EohePFeyHtMuSzaZtaJJdk6xQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aOk4VYQ2Scxj1QmxppxJ2jTMcNpJFMUi5LQdjm6mfvuJKs1ieW/GCfUFHkjWZwQbKz1EwSO6QlEwCsoVt+rOgJaJl5MK5GgE5a9eFJNUUGkIx1p3PTcxfoaVYYTTSamXappgMsID2rVUYkG1n80OnqATq0SoHytb0qCZ+nsiw0LrsQhtp8BmqBe9qfif101N/9LPmExSQyWZL+qnHJkYTb9HEVOUGD62BBPF7K2IDLHCxNiMSjYEb/HlZdI6q3rn1dpdrVK/zuMowhEcwyl4cAF1uIUGNIGAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QPAYI+8</latexit>

dq = dk

Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads

32

Multi-head self-attention
One head is not expressive enough. Let’s have multiple heads!

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i)

In practice, , h = 8
d = dout /h, WO ∈ ℝdout×dout

https://github.com/jessevig/bertviz
33

https://github.com/jessevig/bertviz

Why different heads?
• Different heads learn to attend to different things

34
Emergent linguistic structure in artificial neural networks trained by self-supervision, Manning et al, PNAS 2019

Multiple heads

• Multiple (different) representations
for each query, key, and values

• Different weight matrices —>
different vectors

• Different ways for the words to
interact with each other

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)35

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Multi-head attention

• In practice, we use a reduced dimension for each head.

• The total computational cost is similar to that of single-
head attention with full dimensionality

36

WQ
i ∈ ℝd1×dq, WK

i ∈ ℝd1×dk, WV
i ∈ ℝd1×dv

dq = dk = dv = d/h

WO ∈ ℝd×d2

 = hidden size, = # of headsd h

If we stack multiple layers, usually d1 = d2 = d

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i)

Transformer Encoder

• Each Transformer block has two sub-layers
• Multi-head attention

37

Without FFNN: No non-linearity!

• 2-layer feedforward NN (with ReLU)

Adding nonlinearities

38

Transformer Encoder

• Each Transformer block has two sub-layers
• Multi-head attention
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and
a layer normalization

 LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

residual connection

39
(He et al, 2016): Residual connections

Residual connections and Layer Normalization

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

LayerNorm
• changes input features to have mean 0 and

variance 1 per layer.
• Adds two more parameters

(Ba et al, 2016): Layer Normalization40

• For more stable and efficient training

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Transformer Encoder

• Each Transformer block has two sub-layers
• Multi-head attention
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and
a layer normalization

 LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

41
(He et al, 2016): Residual connections

Necessary for the model to

know the position of the token

Positional encoding

t = position
d = embedding dimension
i = embedding index (0 to d-1) Sine Cosine

42

Positional encoding

t = position
d = embedding dimension
i = embedding index (0 to d-1)

Embedding index i

Po
si

tio
n

t

-1

+1

43

Transformer encoder

• Each Transformer block has two sub-layers
• Multi-head attention
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and
a layer normalization

 LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

• BERT_base: 12 layers, 12 heads, hidden size = 768, 110M parameters

• BERT_large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

• Input embedding is byte pair encoding (BPE)

original

44

Transformer
Non-recurrent,

deep model with

attention

(He et al, 2016): Residual connections

Transformer decoder

• Encoder-Decoder Attention, where queries
come from previous decoder layer and keys
and values come from output of encoder

• also 6 layers (in original paper)

• Masked decoder self-attention on previously
generated outputs

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-gpt2/)

45

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/

Do we need all these heads?

• Can we prune away some
of the heads of a trained
model during test time?

Are Sixteen Heads Really Better than One?
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec
6 layers, 16 heads each layer for each type

46

Do we need all these heads?

• Can we train a good MT
model with less heads?

Are Sixteen Heads Really Better than One?
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec
6 layers, 16 heads each layer for each type

47

RNNs vs Transformers

the movie was terribly exciting !

Transformer layer 3

Transformer layer 2

Transformer layer 1

RNN Transformer
48

Useful Resources

nn.Transformer:

nn.TransformerEncoder:

The Annotated Transformer:
http://nlp.seas.harvard.edu/2018/04/03/attention.html

A Jupyter notebook which explains how Transformer works line by line in PyTorch!

49

Other details

• Learning rate with

warmup and decay

• Label smoothing

Pytorch (https://pytorch.org/docs/stable/nn.html#transformer-layers)

https://github.com/
huggingface/transformers

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://pytorch.org/docs/stable/nn.html#transformer-layers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

Perfomance on machine translation

50

Attention is all you need
Vaswani et al, NeurIPS 2017

Transformer Pros and Cons

• Pros
• Easier to capture dependencies: we draw attention between every pair of words
• Easier to parallelize (matrix operations)

• Cons
• Quadratic computation in self-attention

• Can become very slow when the sequence length is large

• Are these positional representations enough to capture positional information?

51

Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv

Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

52

• Language models
• Can’t condition on future

words, good for generation
• GPT-2, GPT-3, LaMDA

• Combine benefits of both
• Original Transformer,

UniLM, BART, T5, Meena

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaNered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objecTves and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt

53

