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Review of attention in 
sequence to sequence models
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Attentive machine translation summary
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Attentive machine translation summary

4 (slide credit: Peter Anderson)

Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒄𝑖 ht
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖



Summary of attention
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(or values)

Final attention output

Attention weights:  (normalized) 𝜶

Weighted sum of context features

Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention score ( , )  
how well does the attention 
candidate  match the query  

𝑒𝑖 =  𝑔 𝒄𝑖 𝒛

𝒄𝑖 𝒛

• Dot-product attention: 
                      

• Neural network                    

Attention scores:  (unnormalized) 𝒆



Attention can be used to copy from input

6 (See et al, 2017)

• Probability of generating from vocabulary or copying from input


• Probability of copying specific word (similar to attention)



Motivation of attention

• How much does this attention candidate match the query vector?


• Motivated by biological attention and alignment in machine translation
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the agreement on the

get a representation that is a weighted sum over the 
attention candidates based on a query vector



Attention is a general deep learning technique

‣ Given a set of value vectors and a query vector, attention is a way to compute 
a weighted sum of the values dependent on the query.


‣ The query determines what values to focus on, 


‣ We say: the query “attends” to the values 


‣ In NMT, each decoder hidden state (query) attends to all the encoder hidden 
state (values)


‣ A more general form: use a set of keys and values


‣ The keys are used to compute the attention scores 

‣ The values are used to compute the output vector
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Attention is always computed the same way

• Assume that we have a set of key-value pairs ,
, and a query vector 


• Computing attention consists of the following steps:


• Compute the attention scores:


• Take softmax to get the attention distribution


• Use attention distribution to take weighted sum of values

k1, …, kn ∈ ℝdk

v1, …, vn ∈ ℝdv q ∈ ℝdq
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<latexit sha1_base64="Wkn3UmsJsiACET4Rhn1Dp1OBYMU="></latexit>

↵ = softmax(e) 2 Rn
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ei = g(ki,q), e 2 Rn

<latexit sha1_base64="HkF1JstH6QPyOuA+hRqJI03y+JE="></latexit>
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Query-Value-Key view of attention
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Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒄𝑖 𝒛
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒄𝑖

Attention function, 𝑓
( , )

   

𝑒𝑖 = 𝑔 𝒌𝑖 𝒒
𝜶 = softmax(𝒆)

�̂� =
𝑘

∑
𝑖=1

𝛼𝑖 𝒗𝑖

  𝒒 = 𝑊𝑄 𝒛
𝒌𝑖 = 𝑊𝐾 𝒄𝑖
𝒗𝑖 = 𝑊𝑉 𝒄𝑖

Projected query,key,value
  𝒒 = 𝑊𝑄 𝒛

𝐾 = 𝑊𝐾 𝐶𝑇

𝑉 = 𝑊𝑉 𝐶𝑇

Matrix form



General form of attention: key-value-query

‣ Attention is a way to compute a weighted sum of the values dependent on 
the query and the corresponding keys.


‣ All of these (key value query) are represented using vectors 

‣ The query and key are used for addressing (contains partial information).  
While the values provide more complete information 


• The weighted sum is a selective summary of the information found in 
the values.


• It is a way to obtain a fixed-sized representation of an arbitrary set of 
representations (values) based on some other representation (the query)
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Different types of attention
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Soft vs Hard Attention
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Xu et al. ICML 2015



Global vs Local Attention

• Global: attention over the entire input
• Local: attention over a window (or subset) of the input
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Self-Attention

• Attention (correlation) with different parts of itself

 

• Transformers: modules with scaled dot-product self-attention

15

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



Transformers: self-attention

• More recent models (e.g. Transformer, 
Vaswani et al., 2017) have replaced 
RNNs entirely with attention 
mechanisms  

• Theoretically limiting (since recurrence 
can help handle arbitrarily long 
sequences)  

• Huge gains in practical performance
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Transformers

17
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Transformers are everywhere!
• Vision

• Reinforcement Learning

An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale, Dosovitskiy et al, ICLR 2021 

Trajectory Transformer [Janner et al, 2021] Decision Transformer [Chen et al, 2021]



Transformers

• NIPS’17: Attention is All You Need 
• Originally proposed for NMT (encoder-

decoder framework) 
• Used in most LLMs! 
• Key idea: Multi-head self-attention 
• No recurrence structure any more so it 

trains much faster

Encoder Decoder
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Understanding transformers

• From attention to self-attention 
• From self-attention t0 multi-headed 

self-attention 
• Transformer encoder  
• Transformer decoder 
• Putting the pieces together

Encoder Decoder
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Multi-head self-attention
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• Each Transformer block has two-sublayers 
• Multi-Head self-attention 
• 2 layer feedforward NN (with ReLU) 

• Each sublayer has a residual connection and a 
layer normalization
• LayerNorm(x+SubLayer(x)) 

• Input layer has a positional encoding



Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads
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Self Attention
(also referred to as Intra-Attention)

• Self-attention: let’s use each word as query and compute the attention 
with all the other words (other words are the keys and values)

= the word vectors themselves select each other
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How to get key-value-query for each word?

‣ For each word, we have vectors for the key-value-query 


‣ These vectors are created by multiplying the word embedding by 
trained weight matrices

24

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

Stack into matrices and 
compute all at once!

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


• Can be any kind of attention 
function


• For transformers, this is the 
scaled dot-product attention 

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

• query, key, and value vectors 
created by multiplying learned 
weight matrices with embedding
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http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Recall: types of attention

‣ Assume keys  and query 


1. Dot-product attention (assumes equal dimensions for  and ): 
                    


2. Bilinear / multiplicative attention: 
             , where  is a weight matrix


3. Additive attention (essentially MLP): 
                   
where  are weight matrices and  is a weight vector

k1, k2, . . . , kn q

ki q
g(ki, q) = qTki ∈ ℝ

g(ki, q) = kTWki ∈ ℝ W

g(ki, q) = wT tanh (W1ki + W2q) ∈ ℝ
W1, W2 w

Perform better for 

larger dimensions

more efficient 

(matrix 

multiplication)

Simplest (no extra parameters)

Does not work well for large dimensions

More flexible 

than dot-product

(W is trainable)
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Scaled dot-product attention

‣ Assume keys  and query 


1. Dot-product attention (assumes equal dimensions for  and ): 
                    


2. Scaled dot-product attention: 

                    

k1, k2, . . . , kn q

ki q
g(ki, q) = qTki ∈ ℝ

g(ki, q) =
qTki

d
∈ ℝ

Scaled dot product will perform well

for larger dimensions

Scaling factor: d = dimension of hidden state

Scale of dot product increases 

as dimension gets larger

Perform poorly for large d


Softmax has small gradient
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• Can be any kind of attention 
function


• For transformers, this is the 
scaled dot-product attention 

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

•  is the final vector of attended 
values for “Thinking” as the query
z1

28

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Self-attention in equations

• A self-attention layer maps a sequence of input vectors  to a 
sequence of n vectors: 


• Note: this is similar as an RNN layer and can be used to replace an RNN layer

x1, …, xn ∈ ℝd1

y1, …, yn ∈ ℝd2

29

qi = WQxi, WQ ∈ ℝdq×d1

ki = WKxi, WK ∈ ℝdk×d1

vi = WVxi, WV ∈ ℝdv×d1

• First, construct a set of queries, keys, and values:


• Second, for each , compute attentions scores and 
attention distribution

qi

Scaled dot-product

so dk = dq

αi,j = softmax (
qi ⋅ kj

dk )
• Finally, compute the weighted sum:

yi =
n

∑
j=1

αi,jvj ∈ ℝdv dv = d2



Self-attention: matrix notation
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Note: the notation on this slide are following the original paper 

(= the transpose of the matrices in the previous slide)Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv

X ∈ ℝn×d1

Attention(Q, K, V) = softmax ( QKT

dk ) V

n × dq dk × n

n × dv

Be careful to make sure 

the softmax is over the correct dimension 

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/
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Scaled Dot Product Attention

Fall 2019 54

! = #! $"
% = ##&"

Return -. = /012345 !"%
6$

.

Let $ ∈ ℝ%×'! be a matrix of task context 
vectors to attend to
Let & ∈ ℝ(×'" be a matrix of input vectors to
attend over

W) ∈ ℝ'#×'"
W* ∈ ℝ'$×'%

Attention Is All You Need https://arxiv.org/pdf/1706.03762.pdf

. = #+&" W, ∈ ℝ'&×'"

:;<=>>?@>AB@ C, E :

-. ∈ ℝ%×'& be a matrix of attended values

Efficient, stable training

<latexit sha1_base64="Fcd903it+KWB3rJ8NRv1CGIFF5U=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVol6EohePFeyHtMuSzaZtaJJdk6xQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aOk4VYQ2Scxj1QmxppxJ2jTMcNpJFMUi5LQdjm6mfvuJKs1ieW/GCfUFHkjWZwQbKz1EwSO6QlEwCsoVt+rOgJaJl5MK5GgE5a9eFJNUUGkIx1p3PTcxfoaVYYTTSamXappgMsID2rVUYkG1n80OnqATq0SoHytb0qCZ+nsiw0LrsQhtp8BmqBe9qfif101N/9LPmExSQyWZL+qnHJkYTb9HEVOUGD62BBPF7K2IDLHCxNiMSjYEb/HlZdI6q3rn1dpdrVK/zuMowhEcwyl4cAF1uIUGNIGAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QPAYI+8</latexit>

dq = dk



Multi-head self-attention

Scaled Dot-Product Attention self-attention

Multiple

Heads
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Multi-head self-attention
One head is not expressive enough. Let’s have multiple heads!

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i )

In practice, , h = 8
d = dout /h, WO ∈ ℝdout×dout

https://github.com/jessevig/bertviz
33

https://github.com/jessevig/bertviz


Why different heads?
• Different heads learn to attend to different things

34
Emergent linguistic structure in artificial neural networks trained by self-supervision, Manning et al, PNAS 2019



Multiple heads

• Multiple (different) representations 
for each query, key, and values 

• Different weight matrices —> 
different vectors  

• Different ways for the words to 
interact with each other

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)35

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Multi-head attention

• In practice, we use a reduced dimension for each head.


• The total computational cost is similar to that of single-
head attention with full dimensionality

36

WQ
i ∈ ℝd1×dq, WK

i ∈ ℝd1×dk, WV
i ∈ ℝd1×dv

dq = dk = dv = d/h

WO ∈ ℝd×d2

 = hidden size,  = # of headsd h

If we stack multiple layers, usually d1 = d2 = d

Multihead(Q, K, V) = Concat(head1, …, headh)WO

headi = A(XWQ
i , XWK

i , XWV
i )



Transformer Encoder

• Each Transformer block has two sub-layers 
• Multi-head attention
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Without FFNN: No non-linearity! 

• 2-layer feedforward NN (with ReLU)



Adding nonlinearities
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Transformer Encoder

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and 
a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

residual connection

39
(He et al, 2016): Residual connections



Residual connections and Layer Normalization

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-transformer/)

LayerNorm 
• changes input features to have mean 0 and 

variance 1 per layer. 
• Adds two more parameters 

(Ba et al, 2016): Layer Normalization40

• For more stable and efficient training 

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/


Transformer Encoder

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and 
a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

41
(He et al, 2016): Residual connections

Necessary for the model to 

know the position of the token



Positional encoding

t = position 
d = embedding dimension 
i = embedding index (0 to d-1) Sine Cosine 
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Positional encoding

t = position 
d = embedding dimension 
i = embedding index (0 to d-1)

Embedding index i 

Po
si

tio
n 

t 

-1 

+1 
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Transformer encoder

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual connection and 
a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding

• BERT_base: 12 layers, 12 heads, hidden size = 768, 110M parameters

• BERT_large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

• Input embedding is byte pair encoding (BPE) 

original
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Transformer 
Non-recurrent,


deep model with

attention

(He et al, 2016): Residual connections



Transformer decoder

• Encoder-Decoder Attention, where queries 
come from previous decoder layer and keys 
and values come from output of encoder

• also 6 layers (in original paper) 

• Masked decoder self-attention on previously 
generated outputs

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-gpt2/)
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http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/


Do we need all these heads?

• Can we prune away some 
of the heads of a trained 
model during test time?

Are Sixteen Heads Really Better than One? 
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec 
6 layers, 16 heads each layer for each type 
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Do we need all these heads?

• Can we train a good MT 
model with less heads?

Are Sixteen Heads Really Better than One? 
Michel, Levy, and Neubig, NeurIPS 2019

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec 
6 layers, 16 heads each layer for each type 
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RNNs vs Transformers

the movie was terribly exciting !

Transformer layer 3

Transformer layer 2

Transformer layer 1

RNN Transformer
48



Useful Resources

nn.Transformer:

nn.TransformerEncoder:

The Annotated Transformer:
http://nlp.seas.harvard.edu/2018/04/03/attention.html 

A Jupyter notebook which explains how Transformer works line by line in PyTorch! 

49

Other details

• Learning rate with 

warmup and decay




• Label smoothing

Pytorch (https://pytorch.org/docs/stable/nn.html#transformer-layers)

https://github.com/
huggingface/transformers

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://pytorch.org/docs/stable/nn.html#transformer-layers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Perfomance on machine translation
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Attention is all you need 
Vaswani et al, NeurIPS 2017



Transformer Pros and Cons

• Pros 
• Easier to capture dependencies: we draw attention between every pair of words 
• Easier to parallelize (matrix operations) 

• Cons 
• Quadratic computation in self-attention  

• Can become very slow when the sequence length is large

 
• Are these positional representations enough to capture positional information? 
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Q = XWQ, WQ ∈ ℝd1×dq

K = XWK, WK ∈ ℝd1×dk

V = XWV, WV ∈ ℝd1×dv



Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

52

• Language models
• Can’t condition on future 

words, good for generation
• GPT-2, GPT-3, LaMDA

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5, Meena

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaNered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objecTves and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt
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