EdNatLanglLab

CMPT 413/713: Natural Language Processing

Transformers and Self-Attention

Spring 2024
2024-02-12

Adapted from slides from Dangi Chen and Karthik Narasimhan
(with some content from slides frgm Chris Manning and Abigail See)

Review of attention in
sequence to sequence models

Attentive machine translation summary

understand

Attention
output
_“\

E
AR

M ch U [

C; is the weighted sum of encoder hidden states

C = {Cl, ...,CT}

Feedforward Net

Concatenation

Cq C) C3 Cr

t 1t t hy
RNN —» RNN —» RNN -====-=-- » RNN —» RNN —» RNN —» RNN
T)) T T) T
Je ne comprehends ... <EO0OS> <Start> I don'’t

3 (slide credit: Peter Anderson)

Attentive machine translation summary

understand

Attention function, /
e; = g(c;, hy)

a = softmax(e)

Feedforward Net

~ Concatenation
Ct
c—{Atond
Cq C) C3 Cr
t ot 1 t hy
RNN —» RNN —» RNN ======= » RNN —» RNN —» RNN —» RNN
T) T T T T T
Je ne comprehends ... <EO0S> <Start> I don’t

4 (slide credit: Peter Anderson)

Summary of attention

Attention function, /

ei — g(cia Z)
a = softmax(e) Attention weights: a (normalized)

Attention scores: e (unnormalized)

Final attention output

Weighted sum of context features

(or values)
» Dot-product at%ention:
Attention score e, = g(c;, z) g(cfh Z) — <~ G
how well does the attention e Neural network

candidate ¢; match the query z Q(Cia Z) — o tanh (chz- + WQZ)

5

Attention can be used to copy from input

Final Distribution

. = N
Argentina ' |
o | B - <
X l-.l — Pgen) > h Xl)gcn , g
- I el Z00
QO
| :
N S
2
Context Vector I l I _—
O
- - : 73
i <*veoossesseoscoag 200 J 5‘
-1
- o)
o 2 ~ . >
- - I] Pgea
—] o o] | [| [o
a 2 L b
)
o C
- 90 O
8 :8 o Ml P e e B e > — —
_—
g L @ T T i
y emerge victorious In 2-0 win against Argentina on Saturday ... <START> Germany beat
Y Y
Source Text Partial Summary

e Probabillity of generating from vocabulary or copying from input

e Probability of copying specific word (similar to attention)
6 (See et al, 2017)

Motivation of attention

e How much does this attention candidate match the query vector?

e Motivated by biological attention and alignment in machine translation

=
c O
q) -
(v)
- v £
T} o O
T}
—

get a representation that is a weighted sum over the

0. 058885 2§ § attention candidates based on a query vector
L'E
accord
2 e | Attention
économzizzz P : Ny Q‘LJ’L‘[_)UL
européenne generated . 4_/_.‘ , I
. (French) £ U -
sané < 4 Il o
ao(t
1992
<end>
source (English) {the} {agreement}[on } { the J
Attention weights a; (0 = black, 1 = white)

v

Attention is a general deep learning technique

> @Given a set of value vectors and a query vector, attention is a way to compute
a weighted sum of the values dependent on the query.

> The query determines what values to focus on,
> We say: the query “attends” to the values

> In NMT, each decoder hidden state (query) attends to all the encoder hidden
state (values)

> A more general form: use a set of and values
> The are used to compute the attention scores

> The values are used to compute the output vector

Attention is always computed the same way

» Assume that we have a set of key-value pairs Ky, ..., K, € R%

Vi,....V, € [Rdv, and a query vector (& R%

e Jake softmax to get the attention distribution

a = softmax(e) € R"

e Use attention distribution to take weighted sum of values

mn

(AI:Z:OéiViE Rt

1—1

Query-Value-Key view of attention

Attention function, f Attention function, f

e; = g(c;, 2) e; = g(k,,q)
a = softmax(e) a = softmax(e)

Matrix form

Projected query,key,value =» Wyee =» W, CT
v =Wye V=w,C"

. C e RV*dc

General form of attention: key-value-query

> Attention is a way to compute a weighted sum of the values dependent on
the query and the corresponding

> All of these (key value query) are represented using vectors

> The query and are used for addressing (contains partial information).
While the values provide more complete information

* The weighted sum is a selective summary of the information found in
the values.

e |tis a way to obtain a fixed-sized representation of an arbitrary set of
representations (values) based on some other representation (the query)

11

Different types of attention

12

Soft vs Hard Attention

» Soft: Each attention candidate is weighted by «;

25 Kk
V= 1= 1alvl

* Easy to train (smooth and differentiable)
» But can be expensive over large input

| f

* Hard: Use a; as a sample probability to pick one
attentlon candidate as input to subsequent layers

» Trainable with REINFORCE approaches (Xu et al. ICML
2015), or Gumbel-Softmax (Jang et al. ICLR 2017)

13

bird

Soft

Hard

Global vs Local Attention

» Global: attention over the entire input
» Local: attention over a window (or subset) ot the input

Context vector suis Context vector suis

?

""""
Yo

[

am a student _ Je a student _

|

Global: all source states. Local: subset of source states.

Luong et al, 2015

14

Self-Attention

o Attention (correlation) with different parts of itself

The The The The
animal animal animal animal
didn’t didn’t didn’t didn’t
Cross Cross Cross Cross
the the the the
street street street street
because because because because
it it it it

was was was was
too too too too
tired tired wide wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

* Transtformers: modules with scaled dot-product self-attention

15

Nx

Positional
Encoding

Transformers: self-attention

Output
Probabilities

| Linear |

Add & Norm

Feed
Forward

.

Add & Norm

Multi-Head

Attention

1

f
Add & Norm <=~

Feed
Forward

=

Input
Embeddlng

lnputs

Output
Embedding

Outputs
(shifted right)

t y
| Add &INorm J
Multi-Head
Attention
N x
_J
| Add & Norm h
Masked
Multi-Head
Attention
k _J
Positional
Encoding

e More recent models (e.g. Transformer,
Vaswani et al., 2017) have replaced
RNNSs entirely with attention
mechanisms

e Theoretically limiting (since recurrence
can help handle arbitrarily long
sequences)

e Huge gains in practical performance

16

Transformers

17

Transtormers are everywhere!

e \Vision

Vision Transformer (ViT) i Transformer Encoder
l , A :
MLP I
k Head : f; MLP
A

w@w& |

ani%%iiwa :

ura IL"lrndeC

. Remforcement Learning

oo (5282 oo (&) (ol (a2) (o) oo (Bl r: () oo

1 17 1 1 1 1
[Trajectory Transformer J
11 [[

- D0 HO@EE - -

Trajectory Transformer [Janner et al, 2021]

18

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, Dosovitskiy et al, ICLR 2021

@t; @t

causal transformer

T@H@T@ @
21 i —

Decision Transformer [Chen et al, 2021]

NIPS’17: Attention is All You Need

Transformers

Output
Probabilities

| Linear |

Originally proposed for NMT (encoder- (—~(azivom
decoder framework) | Fggfgrd \
Used in most LLMs! \
N orm
Key idea: Multi-head self-attention e |
. Attention
No recurrence structure any more so 1t et
. _ J
trains much faster N E
Positional
Encoding
Input
’ Embeddlng
Inputs
Encoder

19

| Add & Norm |ﬂ

Feed
Forward

Nx

| Add &INorm J

Masked
Multi-Head
Attention

Positional
Encoding
Output
Embedding

Outputs
(shifted right)

Decoder

Understanding transformers

e From attention to self-attention

e From self-attention to multi-headed
self-attention

e Transformer encoder
e Transformer decoder
e Putting the pieces together

20

(
~>| Add & Norm
Feed
Forward

4

Nx ~>| Add & Norm

1
Multi-Head
Attention

r[Add & Norm |ﬂ

\. /
Positional
Encoding

Input
Embedding

T

Inputs

Encoder

& >,

Output
Probabilities

i

| Softmax |

| Linear |

m—

Feed
Forward
)
| Add &INorm e

Multi-Head
Attention

J
(Add & Norm Je-

Masked
Multi-Head
Attention

Nx

Positional
Encoding

Output
Embedding

Outputs
(shifted right)

Decoder

Multi-head self-attention

e Each Transformer block has two-sublayers

e Multi-Head self-attention
e 2]ayer feedforward NN (with ReLU)

e Each sublayer has a residual connection and a

layer normalization
e LayerNorm(x+SubLayer(x))

e Input layer has a positional encoding

Helps the training
process!

21

(

—

Add & Norm

Nx

.

|
Feed
Forward

—

Add &lNorm

\.

\,

Multi-Head
Attention

—

Positional

Encodin

g

Input
Embedding

Inputs

Multi-head self-attention

Scaled Dot-Product Attention

Attention Is All You Need https://arxiv.ora/pdf/1706.03762.pdf

self-attention

Scaled Dot-Product l N

Attention /

Multiple
Heads

22

~ | a
~>| Add & Norm }
|

Feed
Forward

N Add & Norm)
Multi-Head l

= Attention

A_t

Positional
Encoding
Input
Embedding

Inputs

P

Self Attention

(also referred to as Intra-Attention)

o Self-attention: let’s use each word as query and compute the attention
with all the other words (other words are the and values)

= the word vectors themselves select each other

this 1s an example ' ‘T T

this - self-attention
1S ki 1 v1 ky G, v, ks q3 v3
g " g
examp\e - self-attention
ki 1 V1 ky G2 v, ks q3 v3
v vV v v N N RN
W1 W}_ Wa
The chef who

23

kr qr vr

food

How to get

-value-query for each word?

> For each word, we have vectors for the -value-query

> These vectors are created by multiplying the word embedding by
trained weight matrices

Input

Embedding

Queries

Keys

Values

X1

Thinking

X2

Machines

g2

24

Stack into matrices and
compute all at once!

X wa Q
X —
X
)4 —
X WV V
X —
IYUIG LIGUIL. vay Aialiiiiicl

http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (d)

Softmax

Softmax
X
Value

Sum

V1

Z1

Thinking

¢ query,

. and value vectors

created by multiplying learned
weight matrices with embedding

25

e Can be any kind of attention
function

e For transformers, this is the
scaled dot-product attention

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Recall: types of attention

» Assume keys K, K,, ..., K and query q

1. Dot-product attention (assumes equal dimensions for K; and ():

- k.q) = q’k. € Simplest (no extra parameters)
more efficient 8k @) = a'k, Does not work well for large dimensions
(matrix

multiplication)

2. Bilinear / multiplicative attention: More flexible

g(ki, q) = kTWki € R, where W is a weight matrix than dot-product
(W is trainable)

3. Additive attention (essentially MLP):

g(k,q) = w' tanh (W Kk, + W,q) € Perform better for
larger dimensions

where W, W, are weight matrices and w is a weight vector

20

Scaled dot-product attention

» Assume keys K, K,, ..., K and query q

1. Dot-product attention (assumes equal dimensions for K and q):

gk, q) = qui €

Scale of dot product increases
as dimension gets larger

. Perform poorly for large d

qk, Softmax has small gradient

=3
V/a

2. Scaled dot-product attention:

g(Kk;,q) =

Scaled dot product will perform well
for larger dimensions

Scaling factor: d = dimension of hidden state

27

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (Vd))

Softmax

Softmax

X
Value

Sum

Z1

Thinking

28

e Can be any kind of attention
function

e For transformers, this is the
scaled dot-product attention

e 7 Is the final vector of attended
values for “Thinking” as the query

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-transformer/)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Self-attention in equations

A self-attention layer maps a sequence of input vectors X, ..., X € | 410 a
d2

sequence of n vectors: y,, ..., y, € |

e Note: this is similar as an RNN layer and can be used to replace an RNN layer
q;, = W, W¢ € R%*“

First, construct a set of queries, keys, and values:
q y ki — WKXi, WK & deXdl

Second, for each (;, compute attentions scores and v; = W'x;, W¥ € R%*4
attention distribution q. - k.
a; . = softmax J Scaled dot-product
’ Vi sod, =d,
Finally, compute the weighted sum: n

j=1

29

Self-attention: matrix notation

- d.Xd Note: the notation on this slide are following the original paper
Q = X WQ, WQ SH S (= the transpose of the matrices in the previous slide)
K = XWX, Wk € Ré> nXd, dixn
. |
V V dXd \ /
V=XW" W e R%% QKT
Attention(Q, K, V) = softmax V
d] T
nxd
Be careful to make sure
the softmax is over the correct dimension Q T
X . [T
softmax() -]
Vdy

(figure credit: Jay Alammar
http.//jalammar.qgithub.io/illustrated-transformer/)

30

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Scaled Dot Product Attention

cfficient, stable training Let Z € RMXdz he a3 matrix of task context
vectors to attend to

Let C € RV*4c be a matrix of input vectors to
attend over

SDPAttention(Z, C):

— T d,xd
o= et Wo€RWH
—— = WyCT Wy € R%k>dc
_as opt.

Q KV

Scaled Dot-Product Attention

V =Ww,CT Wy € R%*dc

R 0'K
Return| V = softmax \/d_ V
k

V € RM*Xd he 3 matrix of attended values

Attention Is All You Need https://arxiv.org/pdf{/1706.03762.pdf

31

Multi-head self-attention

Scaled Dot-Product Attention

Attention Is All You Need https://arxiv.ora/pdf/1706.03762.pdf

self-attention

Scaled Dot-Product l N

Attention /

Multiple
Heads

32

~ | a
~>| Add & Norm }
|

Feed
Forward

N Add & Norm)
Multi-Head l

= Attention

A_t

Positional
Encoding
Input
Embedding

Inputs

P

Multi-head self-attention

One head is not expressive enough. Let’s have multiple heads!

Multihead(Q, K, V) = Concat(head,, ..., headh)WO
0 P v In practice, h = 8,
head, = A(XWZ. , XW=, XW") d=d [h WO € Rnxdou

out

Layer:| 2 § Attention: All

<

Layer: 2 § Attention: All Layer: 6 & Attention:| All

<>
<>

= s
[CLS] [CLS] [CLS] [CLS] [CLS] [CLS]
i i i i i i
went went went went went went
to to to to to to
the the the the the the
store store store store store store
SEP] ISEP] [SEP] [SEP] [SEP]) [SEP]
at at at at at at
the the the the the the
store store store store store store
i i i i i i
bought bought bought bought bought bought
trash fraah fresh fresh fresh fresh
straw - straw straw str.aw straw |
##berries ##berries EReITIen #iberries Auomes AleiTies
. - SEP) [SEP) SEP) \ (s

https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz

Why different heads?

e Different heads learn to attend to different things

Head 8-10 Head 8-11 Head 9-6
Direct objects most attend to their verbs 86.8% Noun premodifiers attend to their noun. Determiners Prepositions most attend to their objects 76.3% of
of the time. most attend to their noun 94.3% of the time. the time
[CLS] [CLS] [CLS] [CLS] [CLS], [CLS] [CLS]., [CLS]
h h [CLS]. [CLS] Short-term - < Short-term
It It It It (CLS] (CLS) They The Prices . taroce b I terest
goes goes declined _-declined The The 45-year-old ! 45-year-old FICeS rices neres) Neres
v . | : former former of < - of rates: \, rates
on on to- to complicated | complicated - \ T fell X fell
to- to discuss. discuss language, language General General reasury - N7 reasury ell- e
. /". : : Electric Electric bonds- \\\bonds yesterday: yesterday
plug gPlug Itsq| . " e Co.: -Co. tumbled- Stumbled at / at
)8\ g | | the the . : / /
a a plans plans huge huge executive executive in\ /in the. " the
few) few for¢™ for New « new figures. figures moderate moderate government- -/ —-government
diversified. | diversified upgrading .upgrading law law It It t0 < to 'S '
Fidelity, . \§f Fidelity it \, its has. has Vgg A\ M :)V;” active - ~~active weekly - weekly
funds: funds current< current muddied muddied casier R Y easier trading’ / trading Treasury- ~ “Treasury
by by product- product the the this | i N : bill - il
name name line line fight fight time 4 N\N=time [SEP] [SEP] auction- ‘auction
. . . .)] z . s ‘,
[SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] A(sEp) [SEP] [SEP]
Head 7-6 Head 4-10 Head 5-4
Possessive pronouns and _apostrophesomost attend to Passive a]uxiliarx verbs most attend to the verb Coreferent mentions most attend to their
the head of the corresponding NP 80.5% of the time. they modify 82.5% of the time. antecedents 65.1% of the time.
[CLS] . [CLS] '--- --o'
many - many But- But Wl.th W.Ith T -
employees, employees in in : I;um flr;\ joining joining
[CLS], [CLS] are are [CLS] [CLS] the the oday oday peace peace
. ~ _ . . as as talks talks
Not. Not working ~~working This This absence- absence <he <he between between
his<\ hi t t market market of . of
IS IS a a h h ick icle got / got Israel Israel
autograph. —»autograph its its b B bas panclic; Y par;n_c y some / some and and
N ; giant\ giant een een trading trading expert ' expert the the
\ \ very very 'Y ,
power-hitter. “\ » power-hitter Renton \ Renton badly padly e s opmloni / opinions Palestinians Palestinians
.\ . on—/——on : .
McGwire- ,“\MCGW“'Q ' , damaged damaged presence! presence the—/—the The The
SENNN S Wash. Wash. was was damage / damage negotiations negotiations
4 N\ N , " " never: never to4—nto are are
[SEP] ————=[SEP] plant plant [SEP] \[SEP] overtly 7 X overtly her! her
. fElt/ felt home home
[SEP] ~W[SEP] [SEPi ‘iSEP]

Emergent linguistic structure in artificial neural networks trained by self-supervision, Manning et al, PNAS 2019

34

e Multiple (different) representations
for each query, key, and values

e Different weight matrices —>
different vectors

e Different ways for the words to
interact with each other

Multiple heads

4) Calculate attention
using the resulting
Q/K/V matrices

Qo
H | VO

35

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix to
produce the output of the layer

(figure credit: Jay Alammar
http.//jalammar.qgithub.io/illustrated-transformer/)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Multi-head attention

Multihead(Q, K, V) = Concat(head,, ..., head,) WY
head; = AXWZ, XW/, XW})

e |n practice, we use a reduced dimension for each head.

W€ e Ré4¥d WK € Raxd WV e R4,
] ? l ? l

dq — dk — dv =d/h d = hidden size, h = # of heads

WO e | dXd; If we stack multiple layers, usually d; = d, = d

e The total computational cost is similar to that of single-
head attention with full dimensionality

36

Transformer Encoder

r |

Add & Norm
e Each Transformer block has two sub-layers
Forward . .
e Multi-head attention
N> e 2-layer feedforward NN (with ReLU)
'\/ll\Li'lt:n'_’tliiid
-
I QU e Without FFNN: No non-linearity!

Input
Embedding

Inputs

37

Adding nonlinearities

® There is no elementwise nonlinearities in self-
attention; stacking more self-attention layers just re-

averages value vectors

5w
T

e Simple fix: add a feed-forward network to FF FF
post-process each output vector T T
self-attention
A S
FFN(Xz) — WzReLU(Wlxi + bl) + b2 EF FF FF
T T T
W, € R45Xe b, € RU! self-attention
. . . (N
Wa € R*%7 by € R Wi W, W,
The chef who

In practice, they use ds; = 4d

38

Transformer Encoder

r |

Add & Norm
Feed
Forward

residual connection o FEach Transformer block has two sub-layers

e Multi-head attention

N> e 2-layer feedforward NN (with ReL.U)
l
—— Each sublayer has a residual connection and
postional (] a layer normalization
Encodir
e] LayerNorm(x + SubLayer(x))
Embedding
Inputs

(He et al, 2016): Residual connections - (Ba et al, 2016): Layer Normalization

|COL

ol

Residual connections and Layer Normalization

e memene = A e A
z1 [z, [
A i
> LayerNorm(+)
A A
. L[] [T]
s
: A A
oo ...xal L0t Xz L[T]
POSITIONAL é é
ENCODING
x+ EET x2
Thinking Machines

(figure credit: Jay Alammar

http://jalammar.github.io/illustrated-transformer/) ,

LayerNorm

e changes input features to have mean o0 and
variance 1 per layer.

e Adds two more parameters

AR - l l I« l A%
M:EZCL U:\EZ(CL—/L)
i=1 =1

9i
hi = —(a;i — i)+ b;
Ui(a i) +

e For more stable and efficient training

(Ba et al, 2016): Layer Normalization

http://jalammar.github.io/
http://jalammar.github.io/illustrated-transformer/

Transformer Encoder

e Each Transformer block has two sub-layers
e Multi-head attention
e 2-layer feedforward NN (with ReLU)

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

—
Embedding

Inputs

e Each sublayer has a residual connection and
a layer normalization

LayerNorm(x + SubLayer(x))

e Input layer has a positional encoding

Necessary for the model to
know the position of the token

(He et al, 2016): Residual connections " (Ba et al, 2016): Layer Normalization

Positional encoding

pe = f{t)7 = {cos(wk.t), ifi =2k +1

" sin(wi.t)]
cos(ws. t)
sin(wz. t)
_ cos(ws. t)
Pt =
sin(wd/2. t)
cos(wgy2.t) |
t = position

d = embedding dimension
i = embedding index (0 to d-1)

Cosine

Positional encoding

. : o 1
@) Q) sin(wg. t), ifi =2k Wr =
pe = ft)" = { cos(wg.t), ifi=2k+1 k 100007/
" sin(w;.t) .'.'.'.I.II:'I"I""II I
'
cos(ws. t)) Illll I'III II
sin(ws. t) C II
o cos(ws. t) 9 ? |
p: = =+ lﬂ l e
: N = S0 1
' O ..l,-'l"lui'
. Q. | '.'l'
sin(wgq/2- t) 'I- -I. ! ! i
cos(wayz-t)] gy ..1'I'I|I||. J
t = position Embeddlng iIndex /

d = embedding dimension
i = embedding index (0 to d-1)

43

+ 1

Transformer
Non-recurrent,
deep model with

attention §

Transformer encoder

i
Add & Norm

Feed
Forward

e Each Transformer block has two sub-layers
e Multi-head attention

e 2-layer feedforward NN (with ReL.U)

Multi-Head
Attention

e Each sublayer has a residual connection and
a layer normalization

Positio.nal e
-neodnd L LayerNorm(x + SubLayer(x))
Embedding
T e Input layer has a positional encoding
Inputs

¢ Input embedding is byte pair encoding (BPE)

e BERT base: 12 layers, 12 heads, hidden size = 768, 110M parameters

e BERT large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

(He et al, 2016): Residual connections "

original

Encoder Layer 6

Encoder Layer 5

Encoder Layer 4

Encoder Layer 3

Encoder Layer 2

Encoder Layer 1

(Ba et al, 2016): Layer Normalization

out

|

4 \
__/\dd & Norm

Feed
Forward

N

f-.' Add & Norm l

.

J

4)
f-" Add & Norm l

Feed
Forward

N

f-" Add & Norm l

Multi-Head
Attention

0

— J

N
f-" Add & Norm l

Feed
Forward

| S—

f-" Add & Norm l

Multi-Head
Attention

_‘

0

J

_‘

4)
r-" Add & Norm l

Feed
Forward

]

f-’l Add & Norm |

Multi-Head
Attention

0

J

4)
f-" Add & Norm l

Feed

Forward

| S—

r—" Add & Norm l

J

4)
f-" Add & Norm l

Feed

Forward

| S—

f-" Add & Norm l

Multi-Head
Attention

_‘

L

J

in

Transformer decoder

Output . .
Probabilities Encoder-Decoder Attention, where queries
come from previous decoder layer and keys
— e and values come from output of encoder
r[Add &tNorm |<ﬁN
Feed o o
l Forward l : : : : : : : :
t J A T T L
| Add &INorm J
& AddF& ';O'm Multi-Head
ee Attenti . .
7 Nx Masked decoder self-attention on previously
. (e Nom) generated outputs
Nx | —(CAdd & Norm) —=
Multi-Head Multi-Head Self-Attention Masked Self-Attention
Attention Attention
Positional Positional O
Encoding Encoding
Input | Output \
Embeddmg Embedding
(figure credit: Jay Alammar
Inputs Outputs http.//jalammar.qgithub.io/illustrated-gpt2/)

(shifted right) e also 6 layers (in original paper)

45

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/

Do we need all these heads?

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec
6 layers, 16 heads each layer for each type

35 - B
e (Can we prune away some 30 -
of the heads of a trained
model during test time? 20 N\
-
£a 20 -
—
M 15 -
10 -

—&— Enc-Enc
51 —&— Enc-Dec

A\ Y - M
0. —— Dec-Dec .

0% 20% 40% 60% 80% 100%
Percentage pruned

Are Sixteen Heads Really Better than One?
46 Michel, Levy, and Neubig, NeurlPS 2019

Do we need all these heads?

3 types of attention: Enc-Enc, Enc-Dec, Dec-Dec
6 layers, 16 heads each layer for each type

07, - .
100% — Percentage of
heads pruned
—— ()%
80%

= & —— ()%
e Can we train a good MT I % . —e— 20%
. = = 70 30%
model with less heads? <& v
;;C f 400{) . : . 3()(,:-'{
== 60
55 20%- e
A, | —— R,
—— ()()

0% |

1 2 3 3 10 20 30 40
3.0] 6.2 [18.1] [26.9] (30.6)] 34.5] [34.7]34.9]
ipoch

lun-pruned BLEU score|

Are Sixteen Heads Really Better than One?
47 Michel, Levy, and Neubig, NeurlPS 2019

RNNs vs Transformers

Transformer layer 3
Transformer layer 2
Transformer layer 1

]

L Ll

exciting

~—|o00®

Pe e

N rYYY)

was

Transformer

~—|oo0®

@)
@)
@)
@)
movie

(o000 l-—{0000|——(000O | -

]

(o000} {0000 {000O® T“‘W
icc‘—coicc‘—oo < To‘—ooT W

[

~—|(e000}—{0000| {0000 | —

L[]

(o000 0000|—{0000

L]

(o000} {0000 (000®|—

was

RNN

movie

RNN layer 3
RNN layer 2
RNN layer 1

48

Useful Resources

Pytorch (https://pytorch.org/docs/stable/nn.html#transformer-layers)

nn.Transtormer:

>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> sxc = torch.rand((10, 32, 512))

>>> tgt = toxch.rand((20, 32, 512))

>>> out = transformer_model(sxc, tgt)

~ Transformers

https://github.com/
nn.TransformerEncoder: huggingface/transformers

Other details >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)

>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)

>>> out = transformer_encodexr(src)

 |earning rate with
warmup and decay

- 512:4000
© 512:8000
- 256:4000

0.0010

00005 The Annotated Transformer:

0.0004

0.0002 1

http://nlp.seas.harvard.edu/2018/04/03/attention.html

0.0000 1

o 5000 10000 15000 20000 A Jupyter notebook which explains how Transformer works line by line in PyTorch!
e |Label smoothing

49

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://pytorch.org/docs/stable/nn.html#transformer-layers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

Perfomance on machine translation

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%Y
GNMT + RL [38] 24.6 39.92 2.3.-1017 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10"® 1.5-10%
MoE [32] 26.03 40.56 2.0-10" 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-.10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-107 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%

Attention is all you need
Vaswani et al, NeurlPS 2017

50

Transformer Pros and Cons

e Pros
e Lasier to capture dependencies: we draw attention between every pair of words
e Easier to parallelize (matrix operations) 0 = XW2, W2 e R4,

K = XWK WKk € Ré>d4
V=XW'W"e R

e Cons
¢ (Quadratic computation in self-attention
¢ Can become very slow when the sequence length is large

[
R S ‘
=l 0 O
0
0 “JD |
m mY | | HH Y g |

(a) Random attention (b) Window attention (¢) Global Attention (d) BIGBIRD

e Are these positional representations enough to capture positional information?

51

Transformers for pretraining

e Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

®* Trained on large text corpus with self-supervised objectives and then transferred.

Encoder only Decoder only

el L =v]

e Masked language models e Language models

e Bidirectional context e Can’t condition on future

e BERT + variants (e.g. ROBERTa) words, good for generation
- ¢ GPT-2, GPT-3, LaMDA

Slide adapted from: Stanford C5224n, John Hewitt 50

Encoder-Decoder

e Combine benefits of both

¢ Original Transformer,
UnilLLM, BART, T5, Meena

53

