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Overview

• ELMo

Contextualized Word Representations 

= Bidirectional Encoder Representations from Transformers

= Embeddings from Language Models

• BERT
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Recap: word2vec

word = “sweden”
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What’s wrong with word2vec?

• One vector for each word type vcat =

0
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v(bank)

• Complex characteristics of word use: semantics, syntactic 
behavior, and connotations 

• Polysemous words, e.g., bank, mouse
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Sense embeddings

• Multiple embeddings for each word
• One embedding per sense 

But 
• How many senses should there be?
• Is there always a clear distinction 

between senses?
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Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!
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Note: this is different from 
sentence embeddings where we 
get one embedding for the 
en4re sentence.



Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!
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Contextualized word embeddings

Example sentences with the word play:

1. Chico Ruiz made a spectacular play on Alusik’s grounder {. . . }

2. Olivia De Havilland signed to do a Broadway play for Garson {. . . }

3. Kieffer was commended for his ability to hit in the clutch , as well as his all-round 
excellent play {. . . }

4. {. . . } they were actors who had been handed fat roles in a successful play {. . . }

5. Concepts play an important role in all aspects of cognition {. . . }
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      Which of the sentences (2-5) would should have an embedding most similar to sentence 1?

Want v(play), the vector corresponding to the word play to be different for 
each of the sentences, with similar senses having similar vectors.



Contextualized word embeddings

(Peters et al, 2018): Deep contextualized word representations

(from ELMo)

different 

senses
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ELMo

• NAACL’18: Deep contextualized word representations

• Key idea:

• Train two stacked LSTM-based language model on 
some large corpus

• Use the hidden states of the LSTM for each token to 
compute a vector representation of each word
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ELMo

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-bert/)

softmax 
layer

# tokens in the 
sentence

input 
embeddings

LSTM 
parameters

Tied (same) for 
the two directions 

Pretrain LM

Forward LM Backward LM
Let’s     stick      to in         this      skit
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(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-bert/)

To get the ELMO embedding of a word (“stick”):

ELMo
After training LM

Concatenate forward and backward embeddings 
and take weighted sum of layers 
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(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-bert/)

ELMo

To get the ELMO embedding of a word (“stick”):

Concatenate forward and backward embeddings 
and take weighted sum of layers 

LM weights are frozen 
Weights  are trained on specific task.sj
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Summary: How to get ELMo embedding?

• : allows the task model to scale the entire ELMo vectorγtask

• : softmax-normalized weights across layersstask
j

hLM
k,0 = xLM

k , hLM
k,j = [h LM

k,j ; h LM
k,j ]

• To use: plug ELMo into any (neural) NLP model: freeze all the 
LMs weights and change the input representation to:

(could also insert into higher layers)

L is # of layers

hidden statesToken representation
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Task specific learnable 
parameters

Input embeddings Hidden state



More details

• Forward and backward LMs: 2 layers each 

• Use character CNN to build initial word representation 

• 2048 char n-gram filters and 2 highway layers, 512 dim 
projection 

• User 4096 dim hidden/cell LSTM states with 512 dim 
projections to next input 

• A residual connection from the first to second layer 

• Trained 10 epochs on 1B Word Benchmark 
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ELMo: pre-training and use
Data: 10 epoches on 1B Word Benchmark (trained on single sentences) 
Pre-training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs 
• Much lower time cost if we used V100s / Google’s TPUs but still hundreds of dollars in 
compute cost to train once 
• Larger BERT models trained on more data costs $10k+ 

How to apply ELMo in practice? 
• Take the embeddings and feed them into any neural models just like word2vec

 
• The LM’s hidden states are fixed and not updated during the downstream use (only 
the scaling and softmax weights are learned) 
• Common practice: concatenate word2vec/GloVe with ELMo
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ELMo: pre-training and use
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Experimental results

• SQuAD: question answering

• SNLI: natural language inference

• SRL: semantic role labeling

• Coref: coreference resolution

• NER: named entity recognition

• SST-5: sentiment analysis
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Experimental results

• SQuAD: question answering

• SNLI: natural language inference

• SRL: semantic role labeling

• Coref: coreference resolution

• NER: named entity recognition

• SST-5: sentiment analysis
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Intrinsic Evaluation

First Layer > Second Layer

syntactic information is better represented at lower layers 
while semantic information is captured at higher layers

syntactic information

Second Layer > First Layer

semantic information
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Use ELMo in practice

https://allennlp.org/elmo

Also available in TensorFlow
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BERT

• NAACL’19: BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

• First released in Oct 2018. 

How is BERT different from ELMo? 
- Use Transformers instead of LSTMs 
- Trained on segments of text (512 word-piece tokens) 
- Use a bidirectional encoder instead of two independent LSTMs from 

both directions 
- The weights are not frozen (use fine-tuning for downstream tasks) 
- Two new pre-training objectives

22



BERT

• Transformer Encoder 
• Two training objectives 

• Masked Language Modeling 
• Next Sentence Prediction
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Bidirectional encoders
• Language models only use left context or right context (although 

ELMo used two independent LMs from each direction). 

• Language understanding is bidirectional
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Masked language models (MLMs)

• Solution: Mask out 15% of the input words, and then predict the 
masked words

• Too little masking: too expensive to train 
• Too much masking: not enough context

25



Masked language models (MLMs)

A little more complex  
(don’t always replace with [MASK]):

Because [MASK] is never seen when BERT is used…

Example: my dog is hairy, we replace the word hairy 

• 80% of time: replace word with [MASK] token 
         my dog is [MASK] 
• 10% of time: replace word with random word 
         my dog is apple 
• 10% of time: keep word unchanged to bias representation 

toward actual observed word 
         my dog is hairy
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Next sentence prediction (NSP)

Always sample two sentences, predict whether the second 
sentence is followed after the first one.

Recent papers show that NSP is not necessary…

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans 
(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach
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More details

• Input representations

• Use word pieces instead of words: playing => play ##ing (30K token vocabulary)

• Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)

• Released two model sizes: BERT_base, BERT_large

Sum of 
embeddings
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• Segment length: 512 tokens



Pre-training and fine-tuning

Key idea: all the weights are fine-tuned on downstream tasks
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Applications
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Applications
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Applications
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Applications
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Applications
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BERT Details
Two models were released:


• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.


• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.


Trained on:


• BooksCorpus (800 million words)


• English Wikipedia (2,500 million words)


Pretraining is expensive and impractical on a single GPU.


• BERT was pretrained with 64 TPU chips for a total of 4 days.


• (TPUs are special tensor operation acceleration hardware)


Finetuning is practical and common on a single GPU


• “Pretrain once, finetune many times.”
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Experimental results

(Wang et al, 2018): GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding

BiLSTM: 63.9

• QQP: Quora Question Pairs

• MNLI: multilingual NLI

• QNLI: NLI with SQuAD data

• MRPC: MS Research Paraphrase Corpus

• RTE: Textual Entailment

• SST-2: sentiment analysis

• SQuAD: question answering

• STS-B: Semantic Textual Similarity

Similarity

Entailment

• CoLA: Linguistic acceptability

Other
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Use BERT in practice

TensorFlow: https://github.com/google-research/bert

PyTorch: https://github.com/huggingface/transformers
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Contextualized word embeddings in context

• TagLM (Peters et, 2017) 
• CoVe (McCann et al. 2017) 
• ULMfit (Howard and Ruder, 2018) 
• ELMo (Peters et al, 2018) 
• OpenAI GPT (Radford et al, 2018) 
• BERT (Devlin et al, 2018) 
• OpenAI GPT-2 (Radford et al, 2019) 
• XLNet (Yang et al, 2019) 
• SpanBERT (Joshi et al, 2019) 
• RoBERTa (Liu et al, 2019) 
• ALBERT (Lan et al, 2019) 
• DistilBERT (Sanh et al, 2019) 
• ELECTRA (Clark et al, 2020) 
• …

https://github.com/
huggingface/transformers

See https://huggingface.co/transformers/
for more information and models
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ELMoULMFiT

BERT

Transformer
GPT

Bidirectional LM

GPT-2

Larger model
More data

GroverDefense

ERNIE 
(Tsinghua) ERNIE (Baidu)

BERT-wwm

+Knowledge Graph

KnowBert

Neural entity linker

VideoBERT
CBT

ViLBERT
VisualBERT

B2T2
Unicoder-VL

LXMERT
VL-BERT
UNITER

Cross-modal

XLNet

MASS
UniLM

XLM
Udify

RoBERTa

Permutation LM
Transformer-XL
More data

+ Generation

Longer time
Remove NSP
More data

Cross-lingual

MT-DNN

Multi-task

MT-DN!!"

Knowledge distillation

SpanBERT

Span prediction
Remove NSP

Whole Word Masking

Adapted from slide by 
Xiaozhi Wang & Zhengyan Zhang @THUNLP

MultiFiT

Multi-lingual

Semi-supervised Sequence Learning
context2Vec

Pre-trained seq2seq

Reduced size

ALBERT 
DistilBERT

Noise

BART
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Subword modeling
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Subword modeling

• Why subword modeling?


• Captures morphology


• Helps with OOV words


• New words, spelling variants, misspellings, and noisy text


• Ways of incorporating subword modeling


• Use subwords (word-pieces) as tokens


• Hybrid architecture where part of the word embeddings come from subword modeling


• Used in most SOTA NLP methods


• Character CNNs in ELMo 


• BPE (Byte Pair Encoding) in original Transformer paper


• Wordpiece / sentence piece (in BERT)



NN over characters to build word representations

• Convolution over characters to 
generate word embeddings

Learning Character-level Representa4ons for Part-of-
Speech Tagging (Dos Santos and Zadrozny 2014)

• Same objective as word2vec but with characters


• Bi-directional LSTM to compute embedding

Char2vec: A joint model for word embedding and 
word morphology (Cao and Rei, 2016)

Fixed window of word 
embeddings used for 
PoS tagging



• Originally a compression algorithm


• Bottom up clustering


• Most frequent byte pair ->  a new byte


• For words, replace bytes with character ngrams


• Automatically build vocabulary


• Vocabulary is pieces of words (or character ngrams)


• Deterministic algorithm that finds the common longest 
pieces of words to use in vocabulary

Byte Pair Encoding



• A word (character ngram) segmentation algorithm


• Start with a vocabulary of characters


• Take most frequent ngram pair -> add the new ngram the 
to vocabulary

5    l o w

2    l o w e r

6    n e w e s t

3    w i d e s t

Dictionary

l, o, w, e, r, n, w, s, t, i, d

Vocabulary

Start with all characters in vocabulary

count bigram
5 + 2 l o 
5 + 2 o w  
2 + 6 w e 

2 e r 
6 n e 
6 e w

6 + 3 e s
6 + 3 s t 

3 w i 
3 i d 
3 d e 

Byte Pair Encoding



Byte Pair Encoding

5    l o w

2    l o w e r

6    n e w es t

3    w i d es t

Dictionary

l, o, w, e, r, n, w, s, t, i, d, es

Vocabulary

Add a pair (e,s) with frequency 9

count bigram
5 + 2 l o 
5 + 2 o w  

2 w e 
2 e r 
6 n e 
6 e w
6 w es

6 + 3 es t 
3 w i 
3 i d 
3 d es 

• A word (character ngram) segmentation algorithm


• Start with a vocabulary of characters


• Take most frequent ngram pair -> add the new ngram the 
to vocabulary



Byte Pair Encoding

5    l o w

2    l o w e r

6    n e w est

3    w i d est

Dictionary

l, o, w, e, r, n, w, s, t, i, d, es, est

Vocabulary

Add a pair (es,t) with frequency 9

count bigram
5 + 2 l o 
5 + 2 o w  

2 w e 
2 e r 
6 n e 
6 e w
6 w est
3 w i 
3 i d 
3 d est 

• A word (character ngram) segmentation algorithm


• Start with a vocabulary of characters


• Take most frequent ngram pair -> add the new ngram the 
to vocabulary



Byte Pair Encoding

5    lo w

2    lo w e r

6    n e w est

3    w i d est

Dictionary

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

Vocabulary

Add a pair (l,o) with frequency 7

count bigram
5 + 2 lo w  

2 w e 
2 e r 
6 n e 
6 e w
6 w est
3 w i 
3 i d 
3 d est 

• A word (character ngram) segmentation algorithm


• Start with a vocabulary of characters


• Take most frequent ngram pair -> add the new ngram the 
to vocabulary



• When to stop


• Have a target vocabulary size and stop when you reach it


• Deterministic, common longest piece segmentation of 
words


• Segmentation is only within words already identified by 
some prior tokenizers


• Automatically decide vocabulary to use (vocabulary is 
pieces of words - character ngrams)

Byte Pair Encoding



• Used in Google NMT


• V1: wordpiece


• V2: sentencepiece


• Difference way to select what ngram to add


• Choose n-gram that maximally reduces perplexity


• Greedy approximation to maximizing the language model 
log likelihood

Wordpiece/Sentencepiece

only tokenizes inside words 
works directly on raw text 


(use special token _ for whitespace)



• Used in Google NMT


• V1: wordpiece


• V2: sentencepiece


• Variant of wordpiece model is used in BERT


• Common words are in vocabulary: at, Fairfax, 1910s


• Other words built from workpieces: Hypatia = h ##yp 
##ati ##a

Wordpiece/Sentencepiece


