



CMPT 413/713: Natural Language Processing

# Pretraining Language Models

Spring 2025  
2025-02-24

Some slides adapted from Stanford CS224n and Anoop Sarkar

# Pretraining and fine-tuning

## Pretraining

- Big pile of unlabeled text data!
- Lots of resources to train!

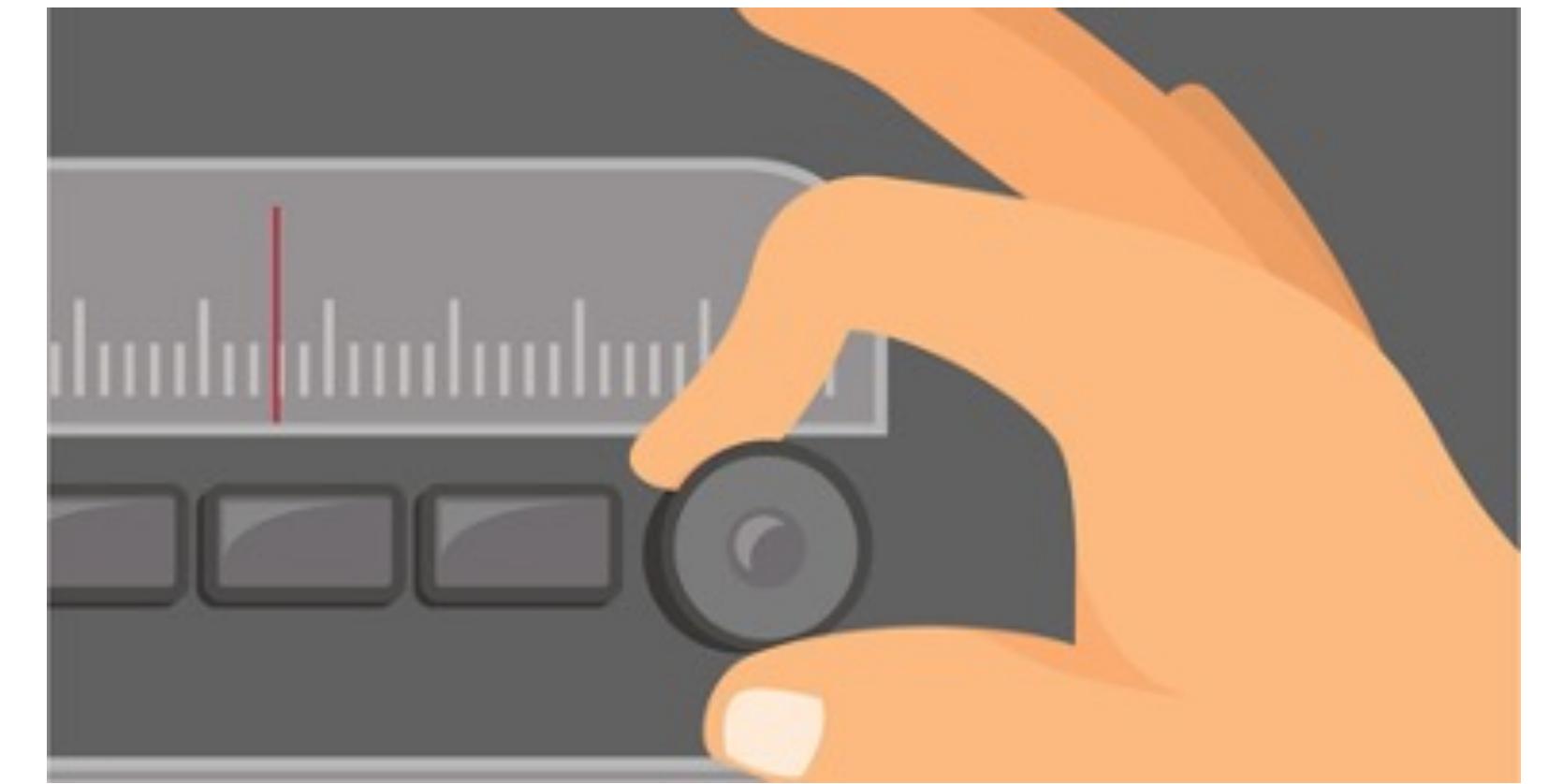


## Helps to build

- Useful representations of language
- Provide good initial parameters for downstream tasks
- Probability distributions that can be sampled from

## Supervised fine-tuning

- Annotated data specific (usually small)
- Initialize with pre-trained model



## Useful for

- Task / domain specific fine-tuning
- Instruction fine-tuning

# Brief History of Pre-training

## 1960 to 2015

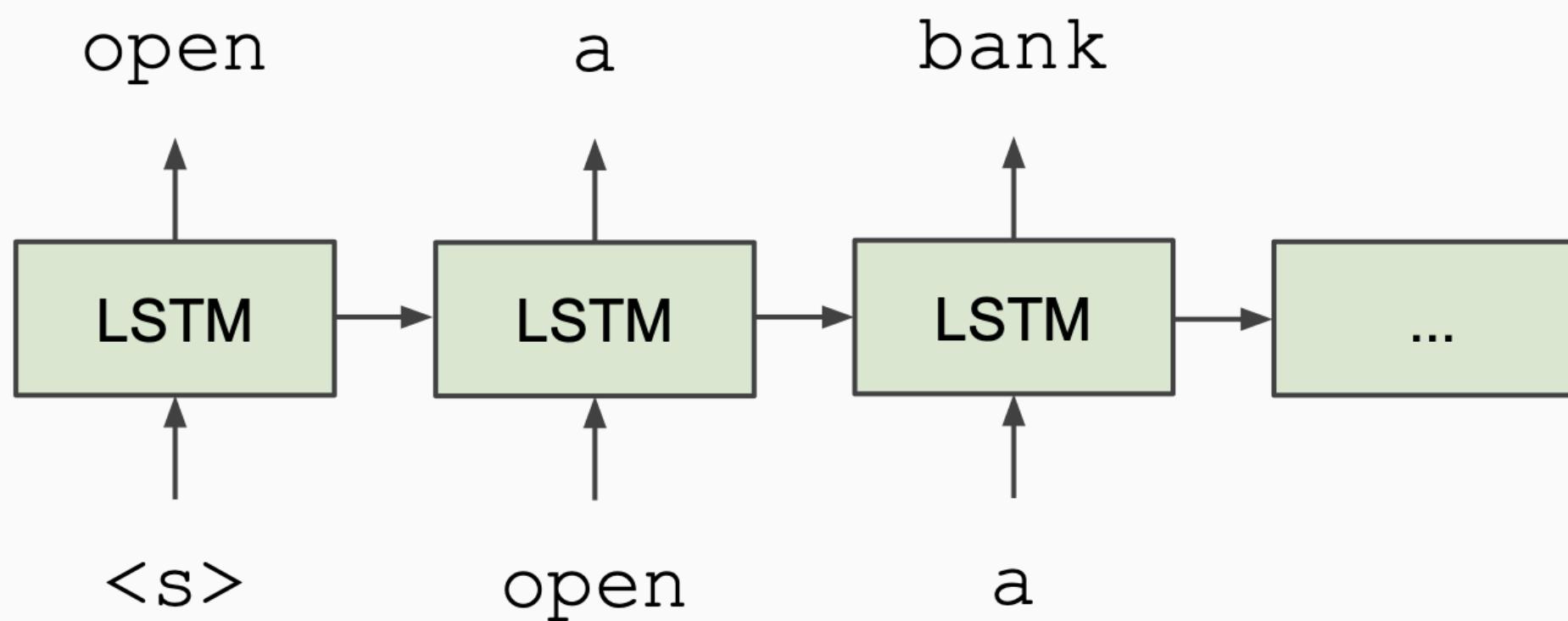
- Singular Value Decomposition (1960s):
  - Take matrix  $M \in |V| \times |V|$  of word co-occurrence counts
  - Use SVD to map  $M = USV^T$  truncate to  $|V| \times k$  initial singular values
  - Use truncated  $U$  use as word embeddings.
- Word2Vec/GloVe (2010):
  - Continuous Bag of Words (CBOW) - context words predict target word
  - Skip-gram - target word predicts each context word

# Semi-supervised Sequence Learning

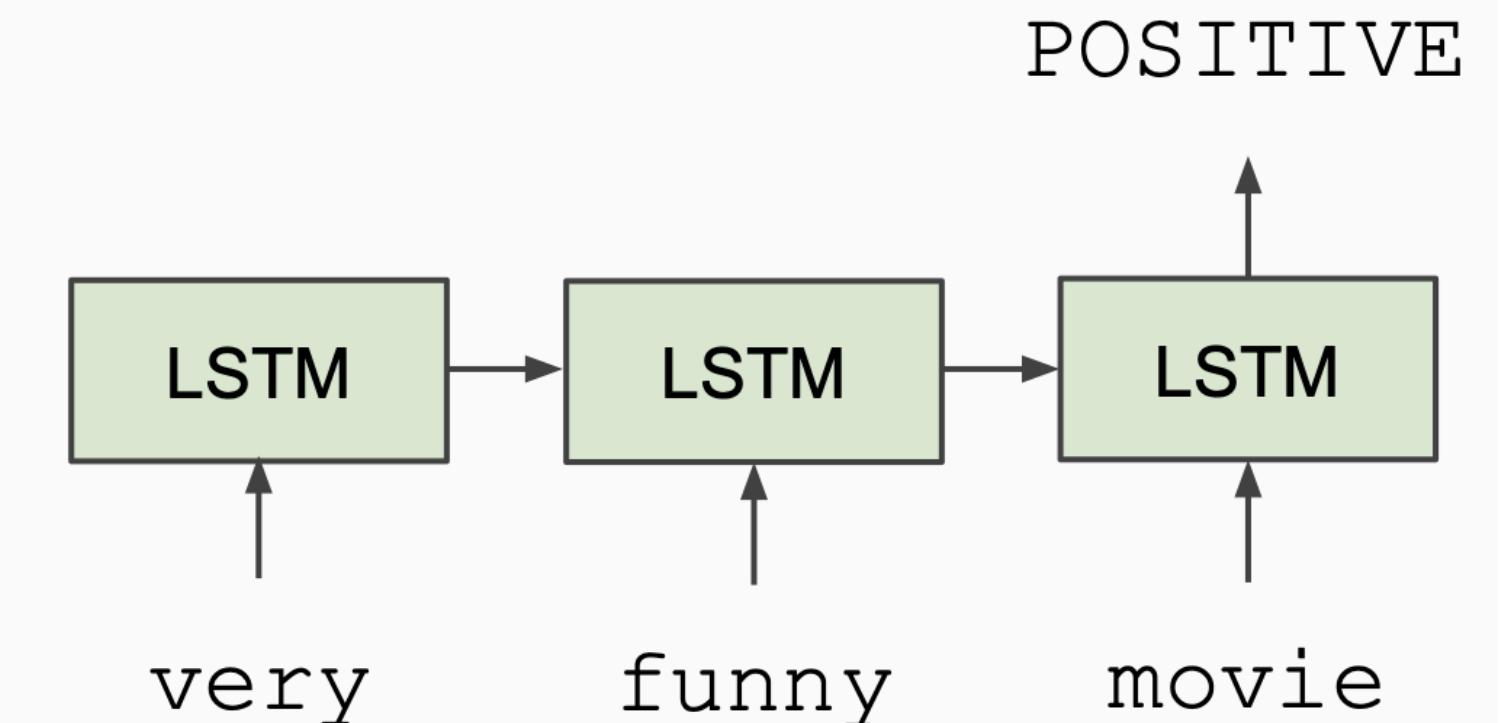
**Andrew M. Dai**  
Google Inc.  
adai@google.com

**Quoc V. Le**  
Google Inc.  
qvl@google.com

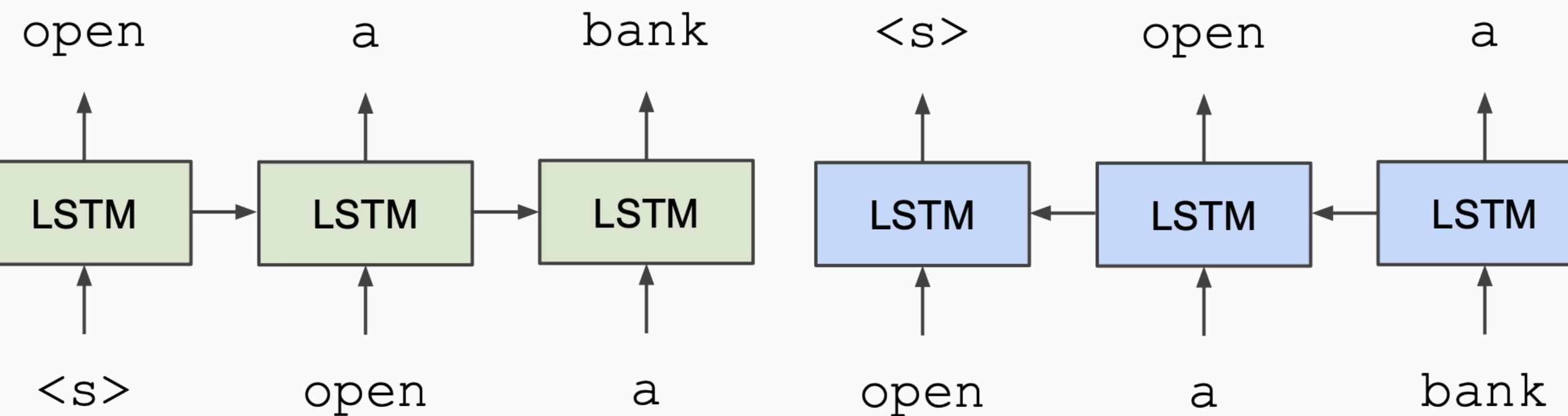
## Train LSTM Language Model



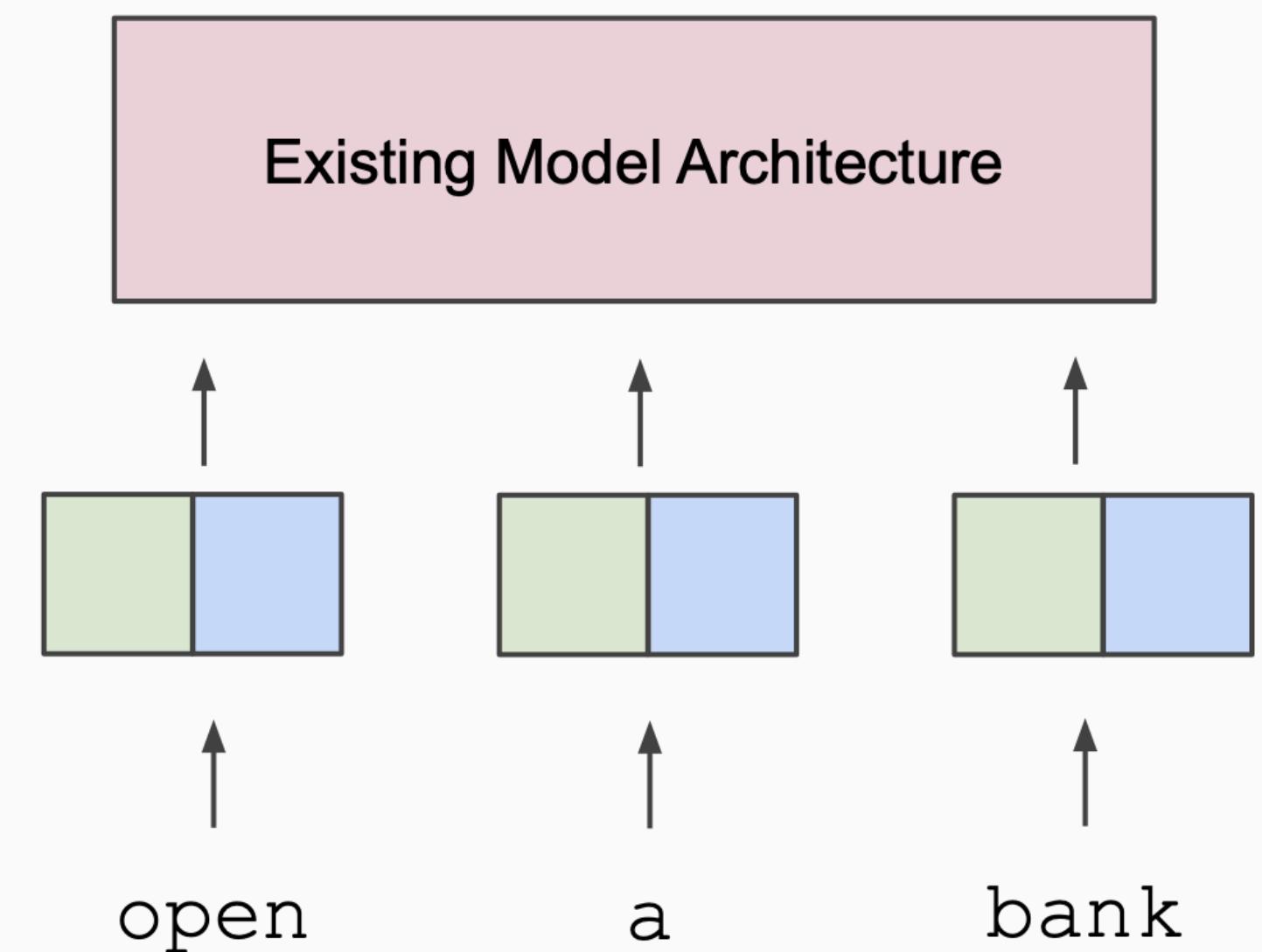
## Fine-tune on Classification Task



## Train Separate Left-to-Right and Right-to-Left LMs

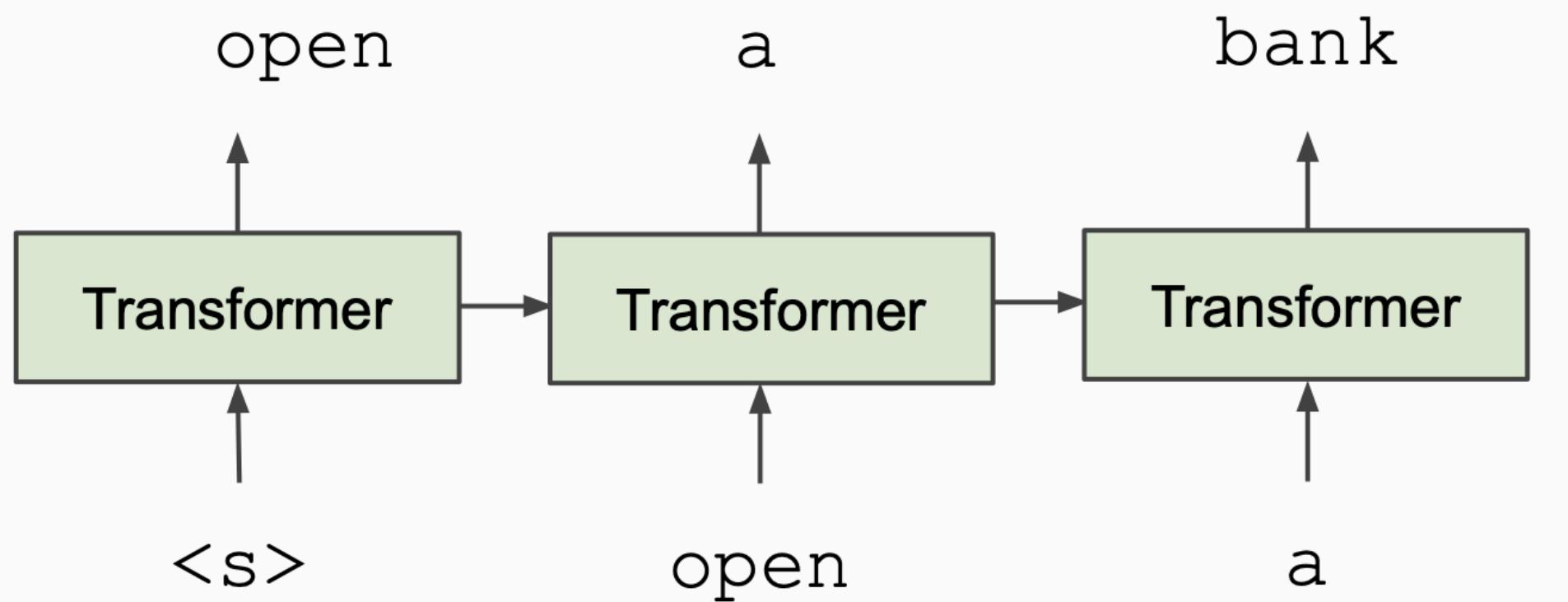


## Apply as “Pre-trained Embeddings”



GPT1

## Train Deep (12-layer) Transformer LM



## Fine-tune on Classification Task

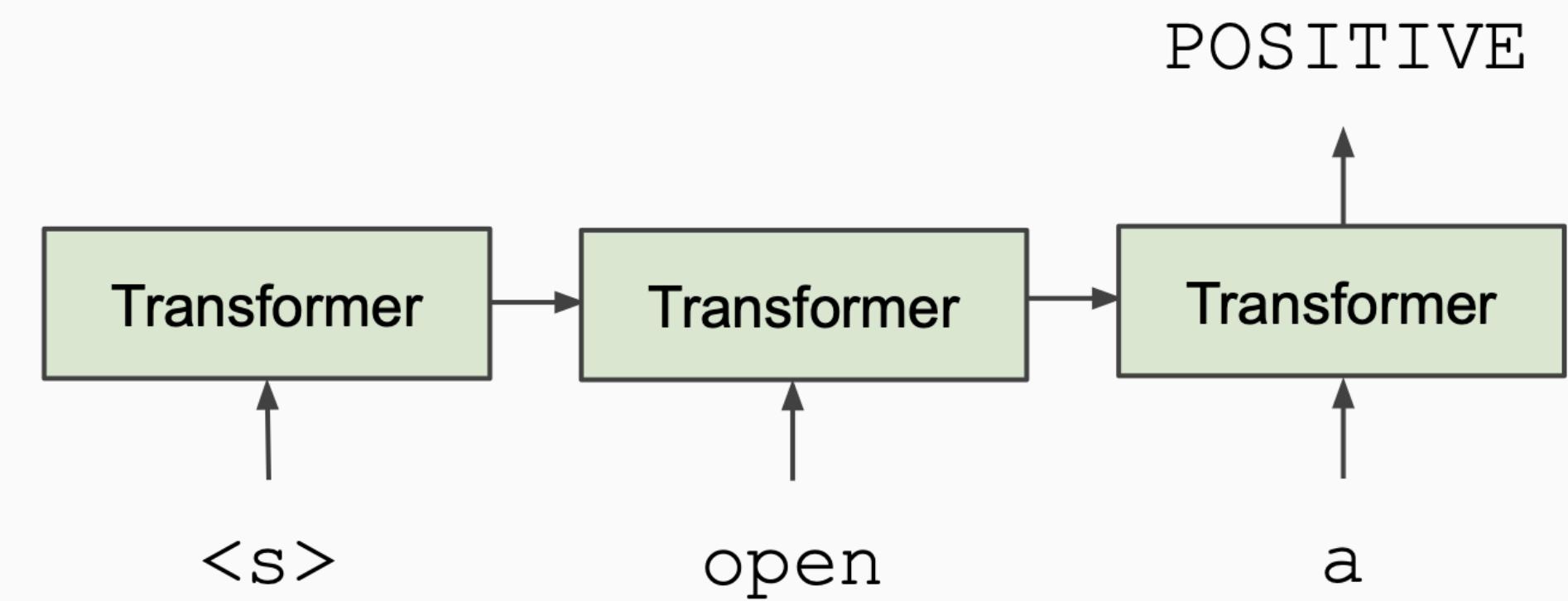


Fig from J. Devlin BERT slides

See also ULMFit: <https://arxiv.org/abs/1801.06146>

# GPT models



## GPT

- Improving language understanding by generative pre-training [Radford et al, 2018]
- Large language model with transformers with **supervised fine-tuning**
  - different model for each task
- Trained on BooksCorpus (800M words), 117M parameters (12 layers)

## GPT-2

- Language Models are Unsupervised Multitask Learner [Radford et al, 2019]
- Model all tasks as **sequence completion** with special tokens indicating task
- Trained on WebText (40B words), 1.5B parameters (48 layers)
- No fine-tuning, demonstrated **few-shot learning**

## GPT-3

- Language Models are Few-Shot Learners [Brown et al, 2020]
- Trained on Web+Books+Wikipedia (300B words), 175B parameters (96 layers)
- Demonstrated zero-shot and few-shot **prompting** abilities

# GPT models (after GPT-3)

## InstructGPT and GPT-3.5 [2022]

- Align responses to human feedback
- [Instruction fine-tuning](#)
- [Reinforcement learning from human feedback](#)
- Used in initial ChatGPT

## GPT-4 [March 2023]

- Multimodal with [images](#) and text (GPT-4V)
- Larger, better model (estimated 1.7 trillion parameters)
- Turbo [Nov 2023] - longer context (128K)

## GPT-4o (omni) [May 2024]

- Multimodal with [audio](#), [images](#) and text (GPT-4V)
- Real-time processing and generation

- Supervised fine-tuning on human conversations
- Data where human will pretend to be user or AI assistant

- Human rank generated output
- Use reinforcement learning to improve generation

o1 [September 2024], o3 [mini - January 2025] - Reasoning

## Post-training

### Pre-training

LM training on large, large amount of data

### Fine-tuning

Supervised fine-tuning for instructions

### Preference optimization

Align to human preferences

### Model compression

Reduce size of model for efficient deployment

### Task specific fine-tuning

Custom domains, improved performance on specialized tasks

### Prompting

Generate responses

Use to build LLM agents

# Training recipe for LLMs

**Pre-training**  
LM training on large, large amount of data

**Fine-tuning**  
Supervised fine-tuning for instructions

**Preference optimization**  
Align to human preferences

Pre-training can be broken into stages (mid-training)



Post-training

# LLM performance depends on

- Model architecture
- Training strategy
- Training objective
- Training data

# Pretraining language models

- Model (Neural Architecture)
  - Does it use FFN, RNN (LSTM, GRU), or Transformer?
    - Is it an **encoder**-based, **decoder**-based, or **encoder-decoder** model?
  - Specifics of the neural architecture (number of layers, embedding size, etc)
- Dataset
  - What is the data that is used to pretrain the model?
- Training objective
  - What is the training objective?
- Other details
  - Tokenization: what tokenization is applied?
  - Implementation and training details?

# Summary of pretrained models we looked at

| Paper                            | Model                          | Dataset                                        | Training Objective                    |
|----------------------------------|--------------------------------|------------------------------------------------|---------------------------------------|
| W2V CBOW<br>[Miklov et al, 2013] | FFN                            | Google News<br>(100B words)                    | Masked LM<br>(within window)          |
| ELMo<br>[Peters et al, 2018]     | Bi-LSTM                        | 1B Word benchmark<br>(800M words)              | Bidirectional LM                      |
| BERT<br>[Devlin et al, 2018]     | Transformer<br>(encoder block) | BookCorpus + English Wikipedia<br>(3.3B words) | Masked LM<br>Next sentence prediction |

# Development of Open LLMs

## Closed LLMs

- **GPT (OpenAI)**
- Claude (Anthropic)
- Gemini (Google)

## Open weights

- **LLaMa (Meta)**
- DeepSeek
- Mistral (Mistral AI)
- Qwen (Alibaba)
- Gemma (Google)

## Open weights + data

- **OLMo (AI2)**
- DCLM
- Amber
- BLOOM
- Pythia

## Open weights + partial data

- StableLM
- Zamba
- Falcon

# Pre-training Transformers

Representation Learning

# Preliminaries

# Tokenization

# Word structure and subword models

- NLP used to model the vocabulary in simplistic ways based on English
- Tokenize based on spaces into a sequence of "words"
- All novel words at test time were mapped to [UNK] (unknown token)



# Byte Pair Encoding algorithm

- Learn a vocabulary of parts of words (subwords)
- Vocabulary of subwords is produced before training a model on the training dataset (larger the better)
- At training and test time the vocabulary is split up into a sequence of known subwords
- Byte Pair Encoding (BPE) algorithm (takes max merges as input)
  - Init subwords with individual characters/bytes and "end of word" token.
  - Using the training data find most common adjacent subwords, merge and add to list of subwords
  - Replace all pairs of characters with new subword token; iterate until max merges

# Word structure and subword models

- Common words are kept as part of the vocabulary (ignore morphology)
- Rarer words are split up into subword tokens
- In the worst case, words are split up into characters (or bytes)



# Positional embeddings

# Positional encoding

- Original transformer: fixed sinusoidal absolute embeddings
- Learned encoding
- Absolute vs relative
  - In most cases, it is the relative position between two words that matter (not their absolute position)
  - Relative encoding can be learned [Self-Attention with Relative Position Representations, Shaw et al. 2018]
- Rotary embeddings (RoPE)

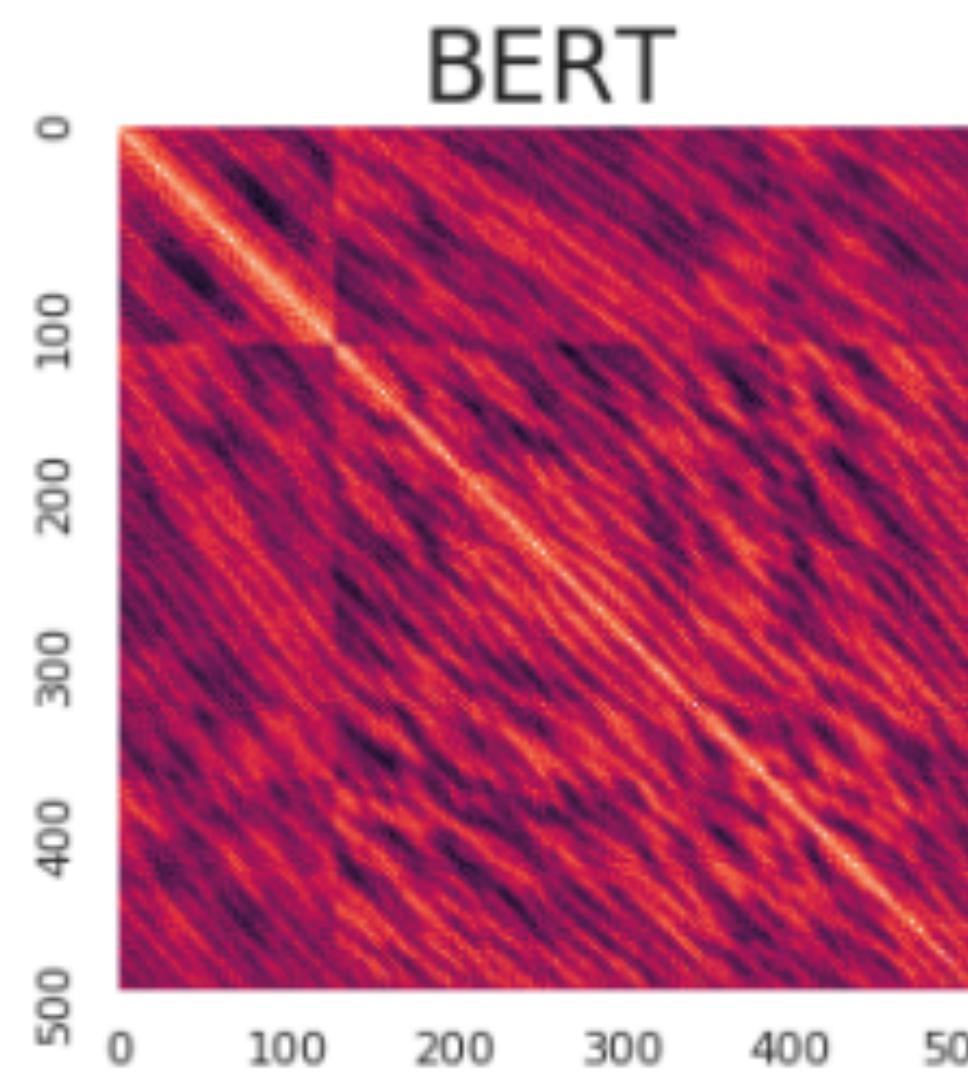
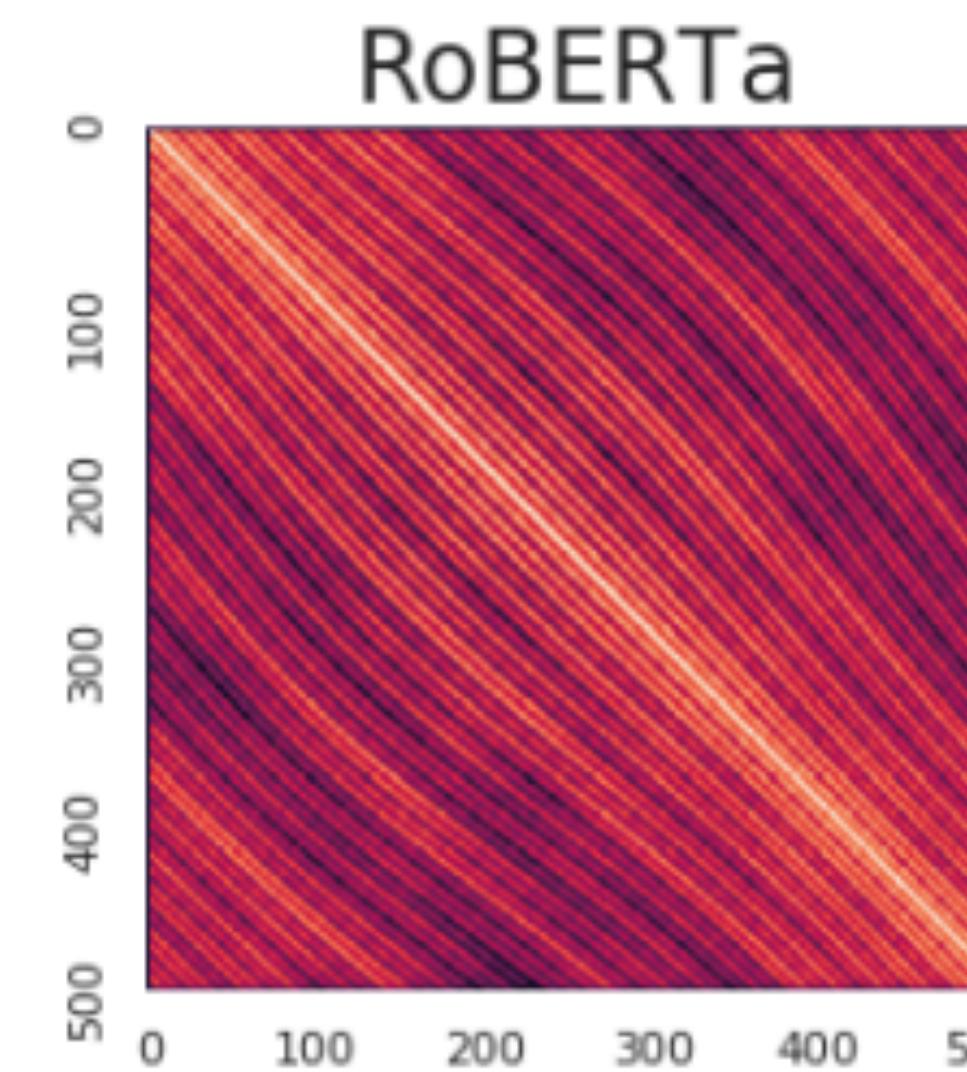
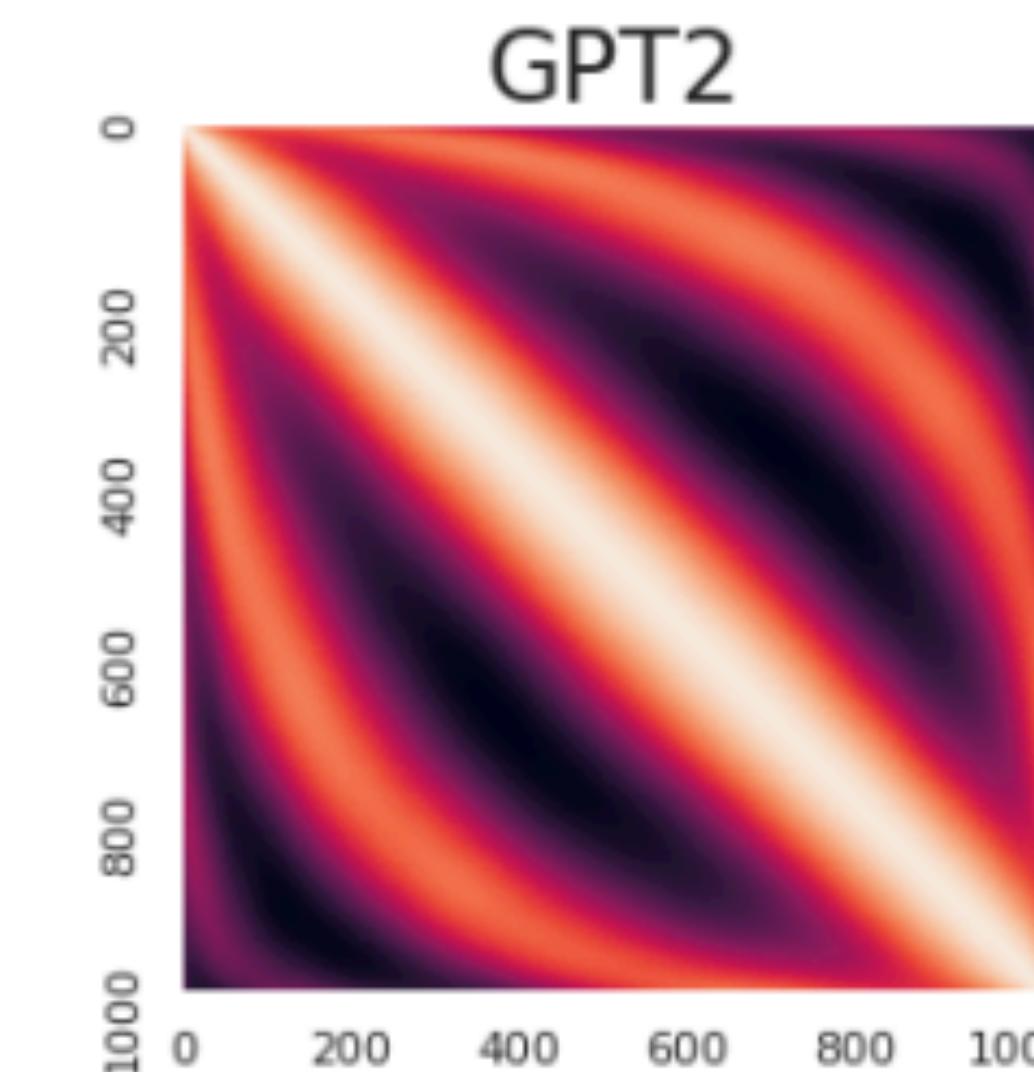
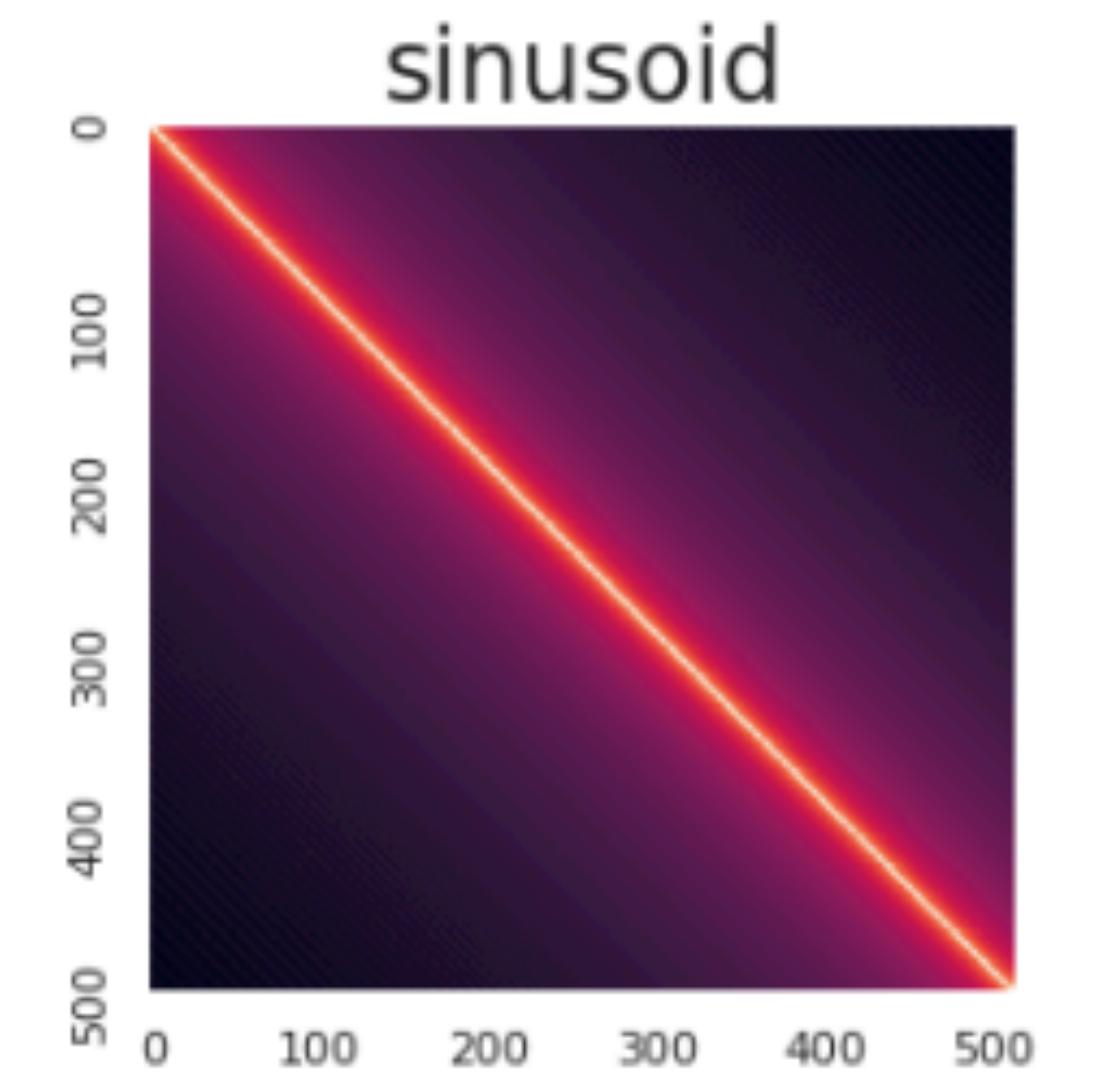
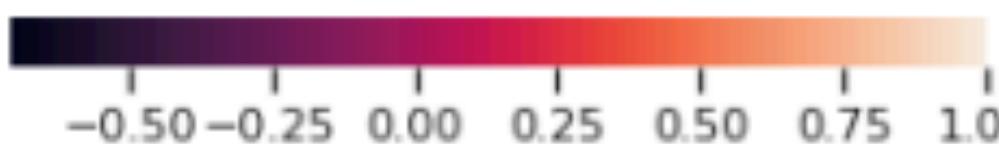
# Learned encoding

- Advantage: Flexible, learned representations
- Disadvantage: bunch of extra parameters that need to be learned
- Disadvantage: impossible to extrapolate to longer sequences

# Learned encoding

## What do position embeddings learn?

- Visualize cosine similarity between position embeddings
- GPT-2 learned embeddings are quite good: can effectively predict absolute position using linear regression and relative ordering using logistic regression



# Learned encoding

## What do position embeddings learn?

- Visualize cosine similarity between position embeddings
- GPT-2 learned embeddings are quite good: can effectively predict absolute position using linear regression and relative ordering using logistic regression

Absolute

| Type        | PE       | MAE   |
|-------------|----------|-------|
| Learned     | BERT     | 34.14 |
|             | RoBERTa  | 6.06  |
|             | GPT-2    | 1.03  |
| Pre-Defined | sinusoid | 0.0   |

Relative

| Type        | PE       | Error Rate |
|-------------|----------|------------|
| Learned     | BERT     | 19.72%     |
|             | RoBERTa  | 7.23%      |
|             | GPT-2    | 1.56%      |
| Pre-Defined | sinusoid | 5.08%      |

# Relative encoding

- Learnable relative embeddings

$$f_q(\mathbf{x}_m) := \mathbf{W}_q \mathbf{x}_m$$

$$f_k(\mathbf{x}_n, n) := \mathbf{W}_k(\mathbf{x}_n + \tilde{\mathbf{p}}_r^k)$$

$$f_v(\mathbf{x}_n, n) := \mathbf{W}_v(\mathbf{x}_n + \tilde{\mathbf{p}}_r^v)$$

Self-Attention with Relative Position Representations  
[Shaw et al. 2018]

- Modify attention scores to capture relative embedding

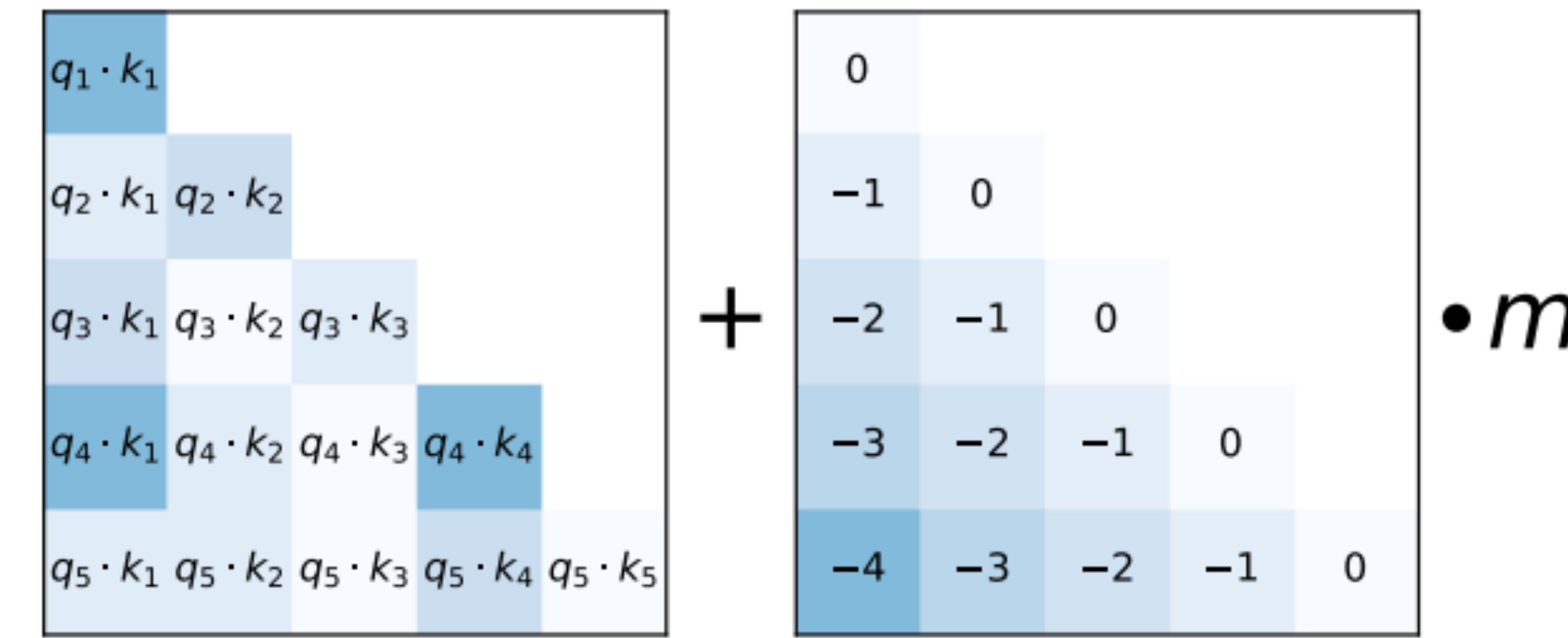
$$\mathbf{q}_m^\top \mathbf{k}_n = \mathbf{x}_m^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{x}_n + \mathbf{x}_m^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{p}_n + \mathbf{p}_m^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{x}_n + \mathbf{p}_m^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{p}_n$$

- Simplify to just learning a bias term

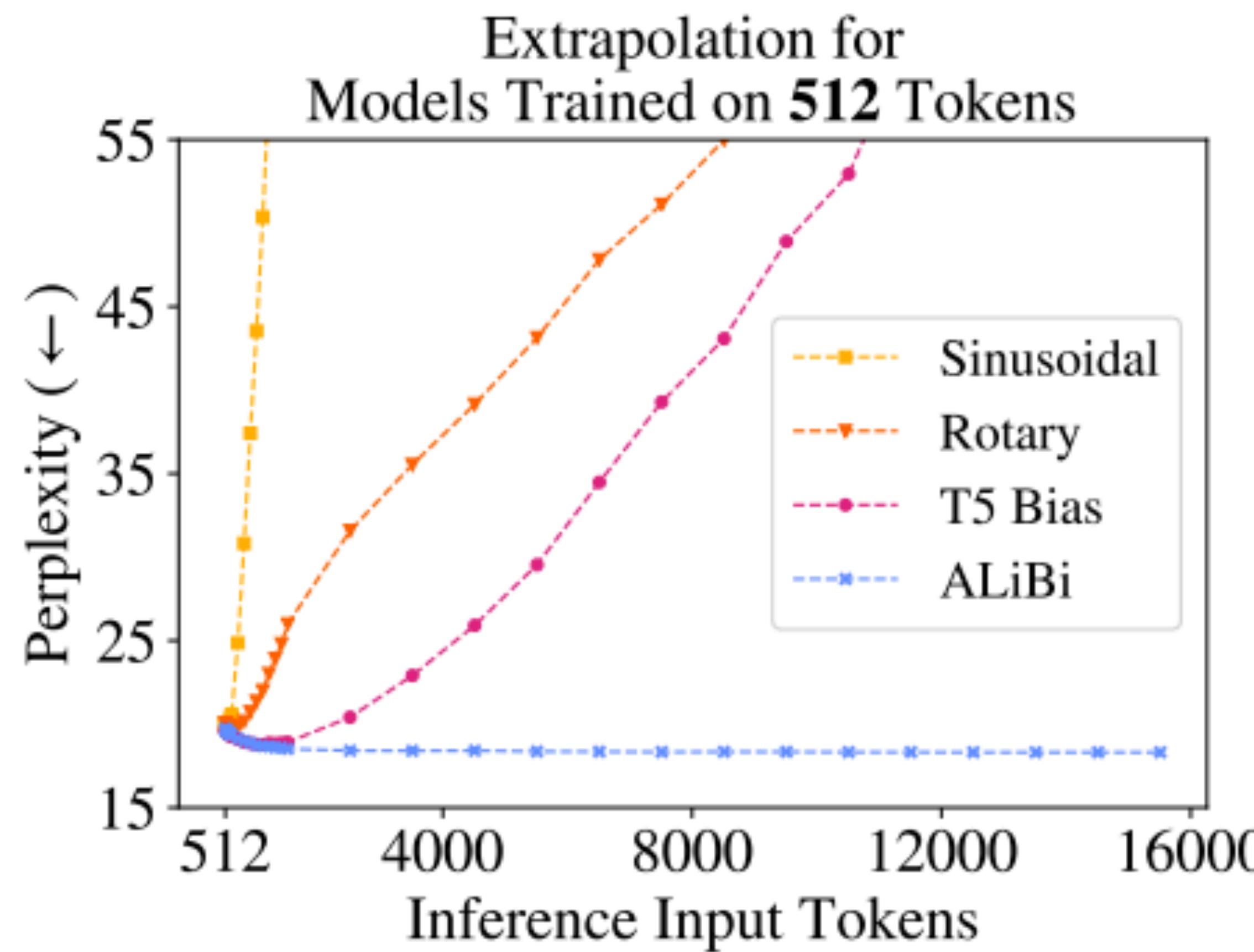
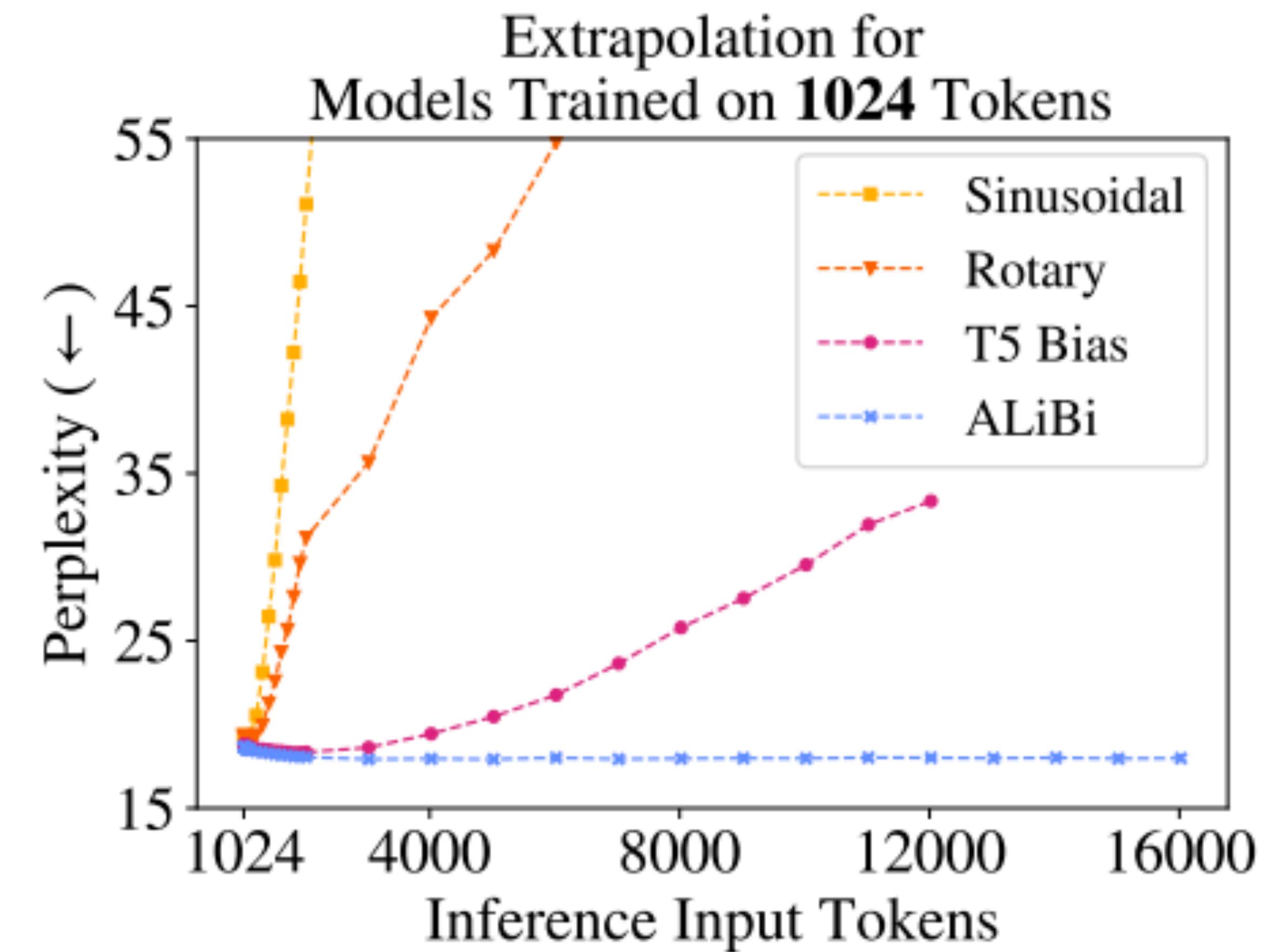
$$\mathbf{q}_m^\top \mathbf{k}_n = \mathbf{x}_m^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{x}_n + b_{i,j}$$

# Attention with Linear Biases (ALiBi)

- Remove positional embedding altogether
- Bias query-key attention scores with fixed penalty that is proportional to the distance
- Allows for better extrapolation to long sequences at test time



# Attention with Linear Biases (ALiBi)



# Rotary encoding

- Design absolute embeddings so the dot product result in function of relative position

$$f_q(\mathbf{x}_m, m) \cdot f_k(\mathbf{x}_n, n) = g(\mathbf{x}_m, \mathbf{x}_n, m - n)$$

- **Rotary Position Embedding (RoPE):** Apply rotation to encode positional encoding (vs using addition).

$$f_{\{q,k\}}(\mathbf{x}_m, m) = \mathbf{R}_{\Theta, m}^d \mathbf{W}_{\{q,k\}} \mathbf{x}_m$$

$$R_{\Theta, m}^d = \begin{bmatrix} \cos m\theta_1 & -\sin m\theta_1 & 0 & 0 & \cdots & 0 & 0 \\ \sin m\theta_1 & \cos m\theta_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos m\theta_2 & -\sin m\theta_2 & \cdots & 0 & 0 \\ 0 & 0 & \sin m\theta_2 & \cos m\theta_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{\frac{d}{2}} & -\sin m\theta_{\frac{d}{2}} \\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{\frac{d}{2}} & \cos m\theta_{\frac{d}{2}} \end{bmatrix}$$

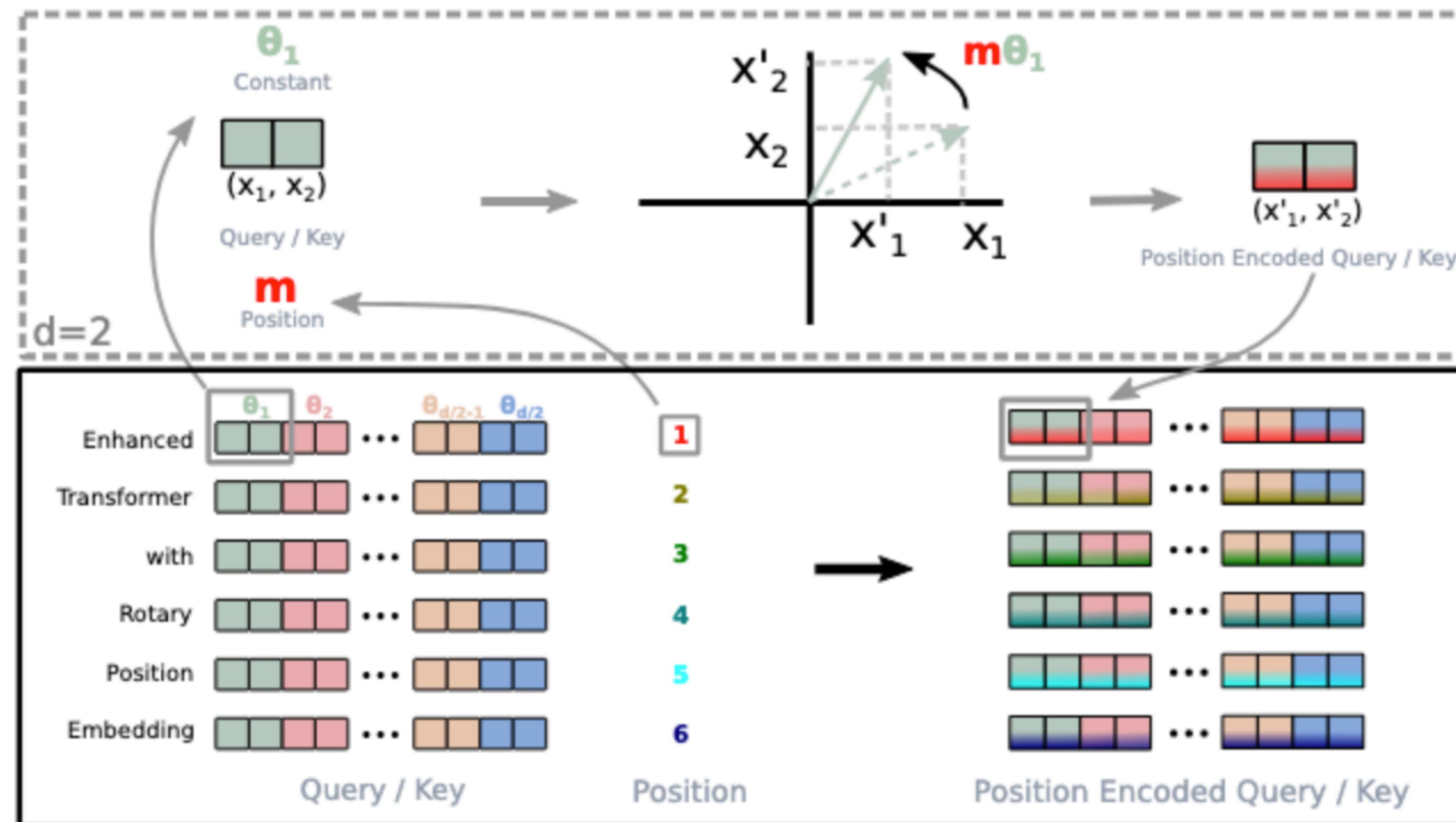
# Rotary encoding

## More efficient form

- With just element wise multiply and addition

$$R_{\Theta, m}^d \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{bmatrix} \otimes \begin{bmatrix} \cos m\theta_1 \\ \cos m\theta_1 \\ \cos m\theta_2 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_{\frac{d}{2}} \\ \cos m\theta_{\frac{d}{2}} \end{bmatrix} + \begin{bmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_d \\ x_{d-1} \end{bmatrix} \otimes \begin{bmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_{\frac{d}{2}} \\ \sin m\theta_{\frac{d}{2}} \end{bmatrix}$$
$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1 \dots d/2]\}$$

# Rotary encoding

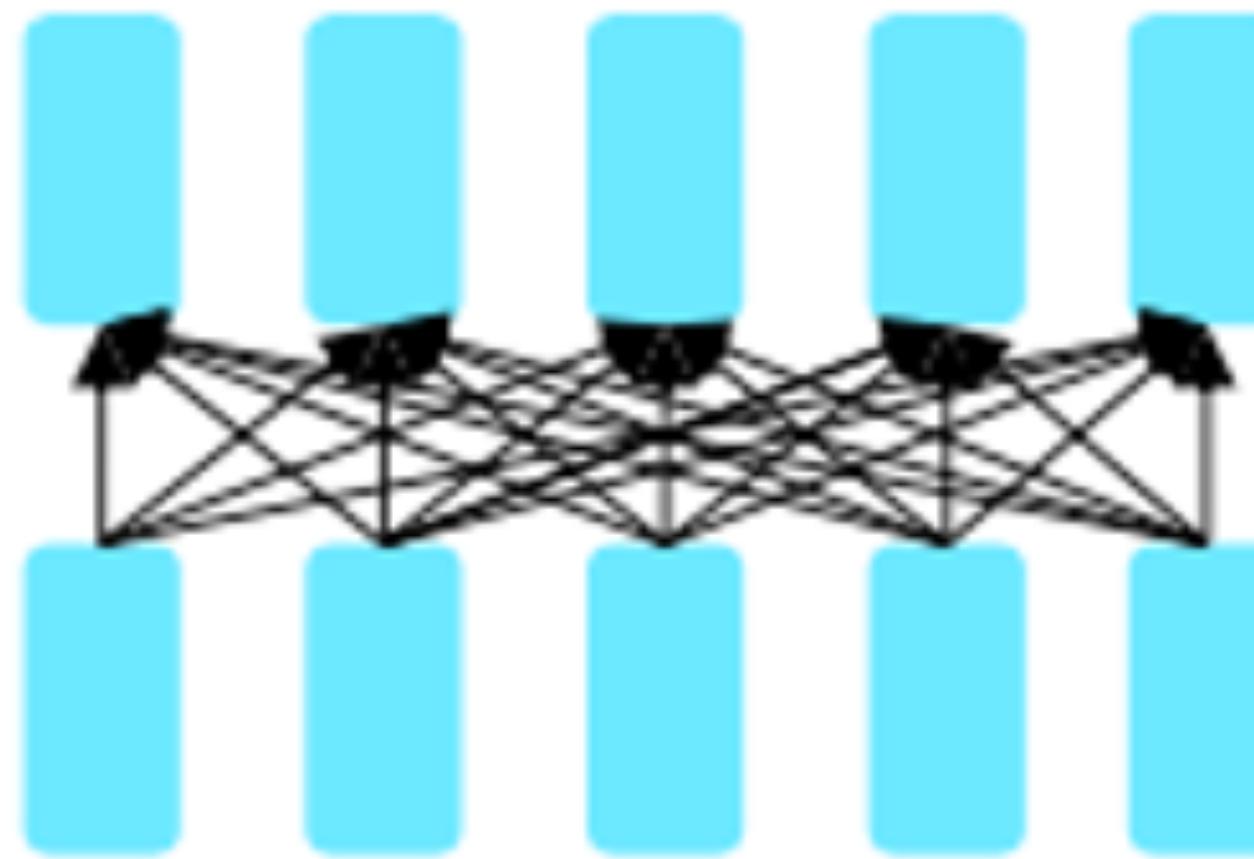


RoFormer: Enhanced Transformer with Rotary Position Embedding [Su et al. 2021]

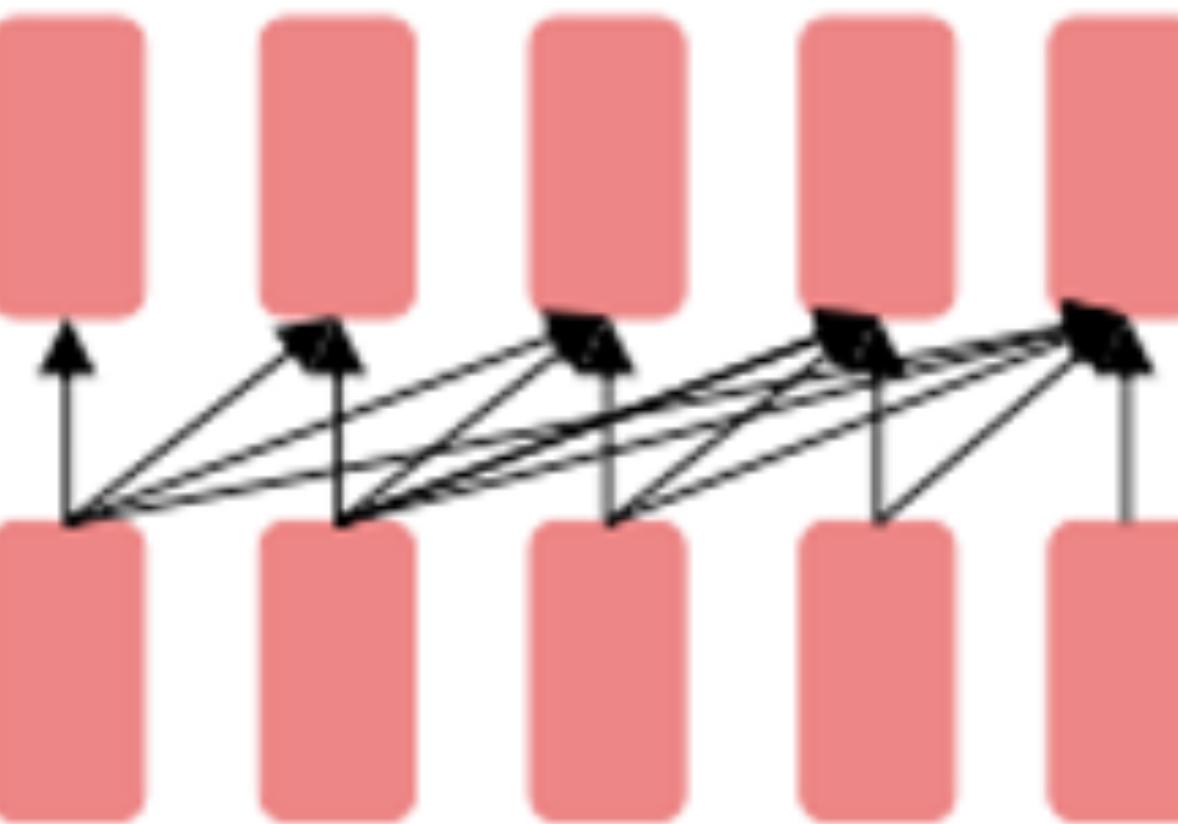
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

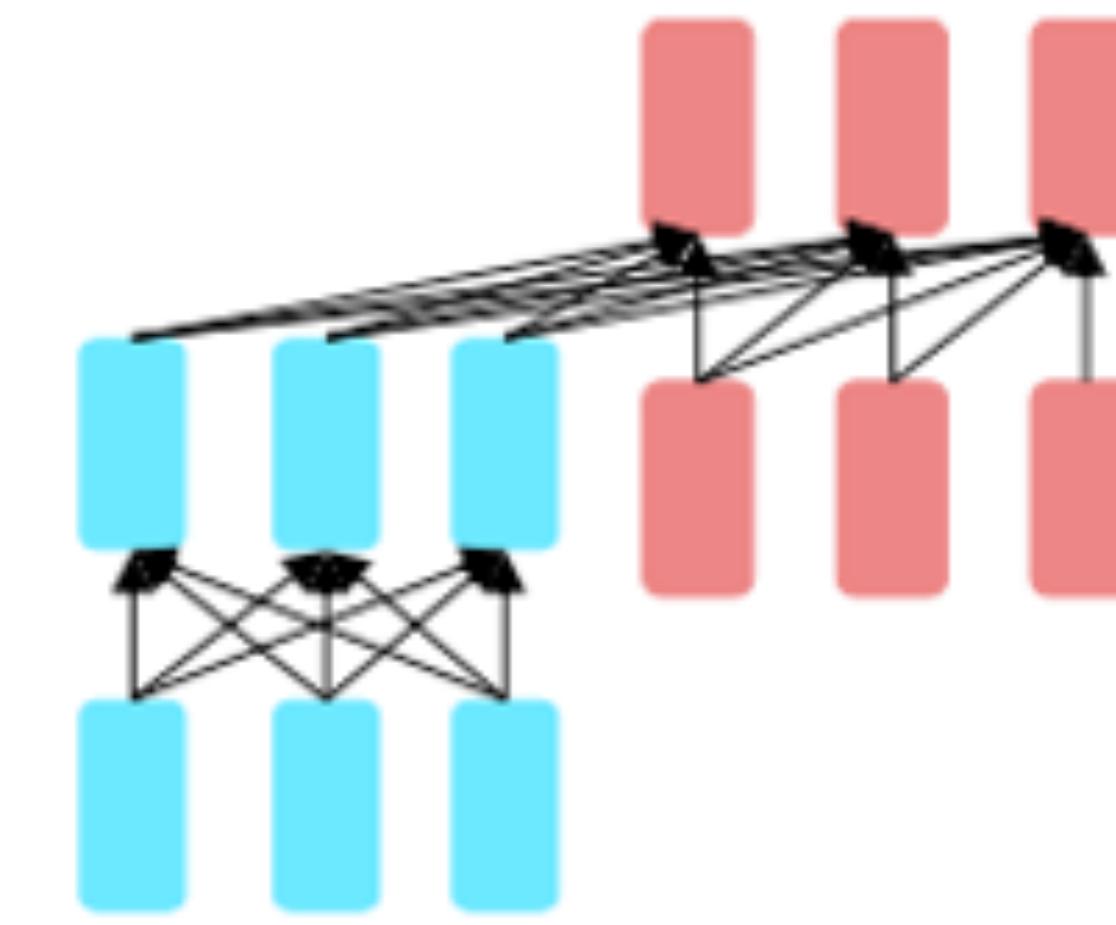
Encoder only



Decoder only



Encoder-Decoder



- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- 

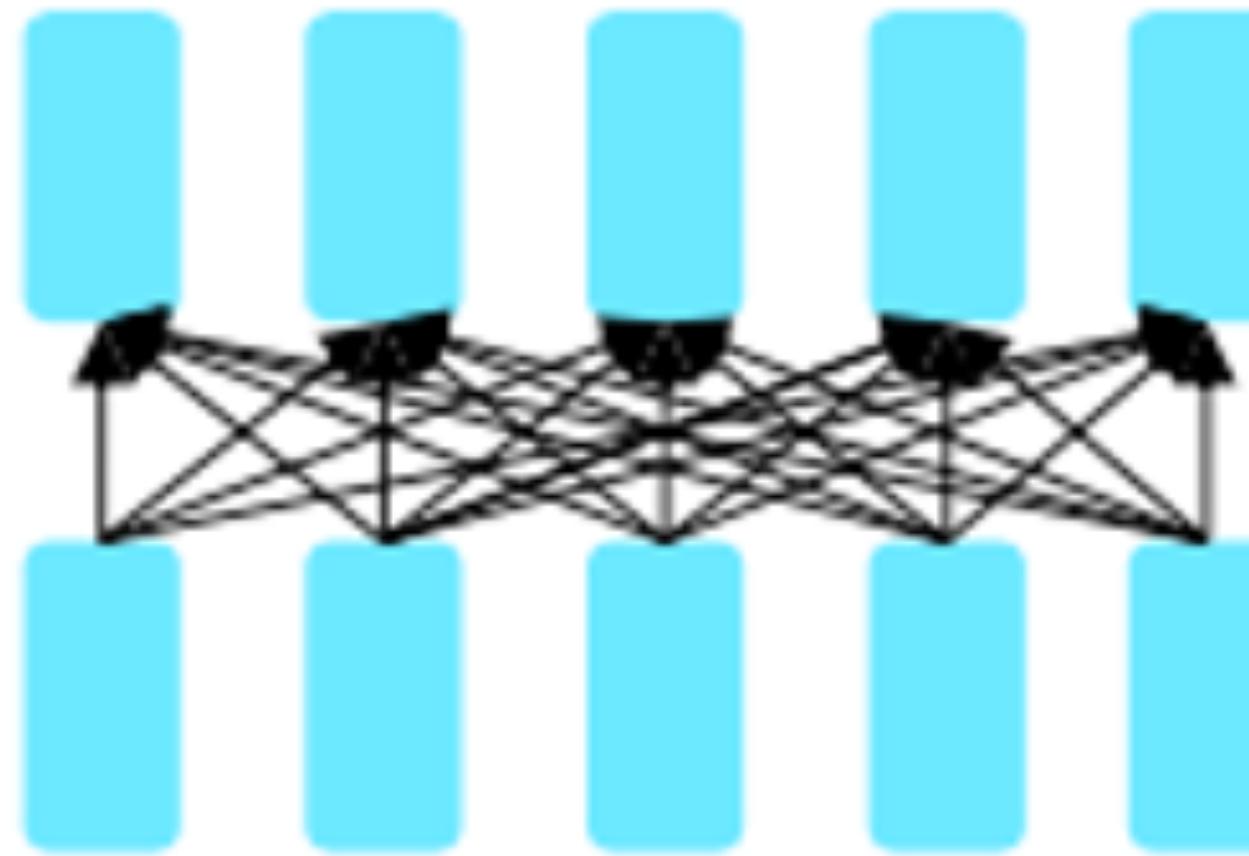
- Language models
- Can't condition on future words, good for generation
- GPT, LLaMa, PaLM

- Combine benefits of both
- Original Transformer, UniLM, BART, T5

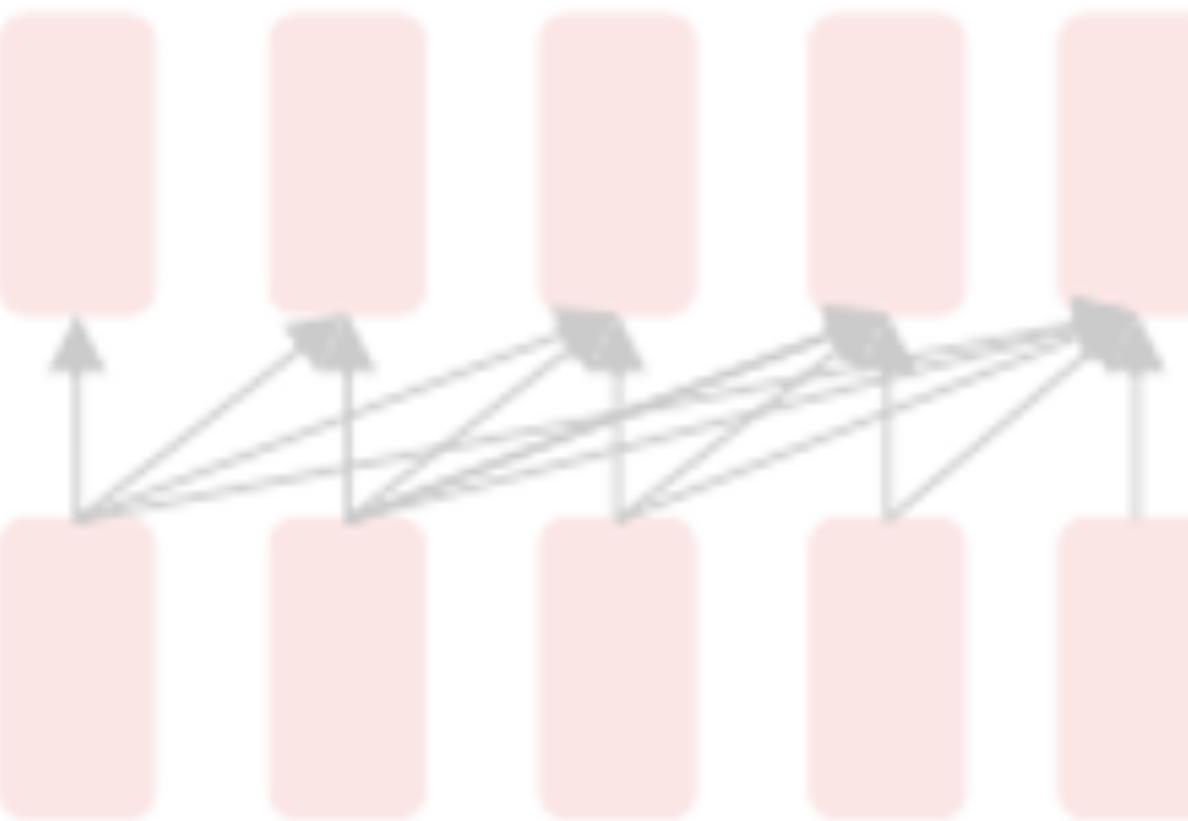
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

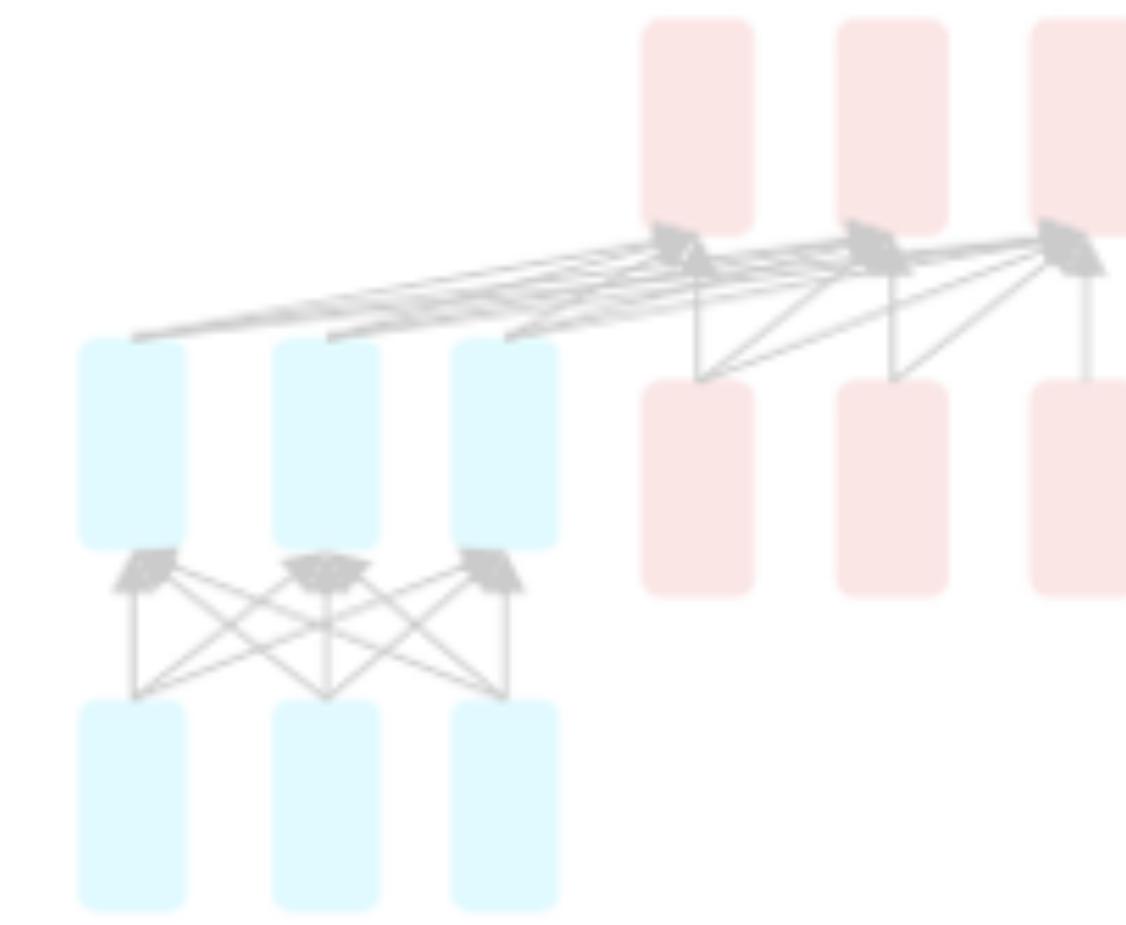
Encoder only



Decoder only



Encoder-Decoder

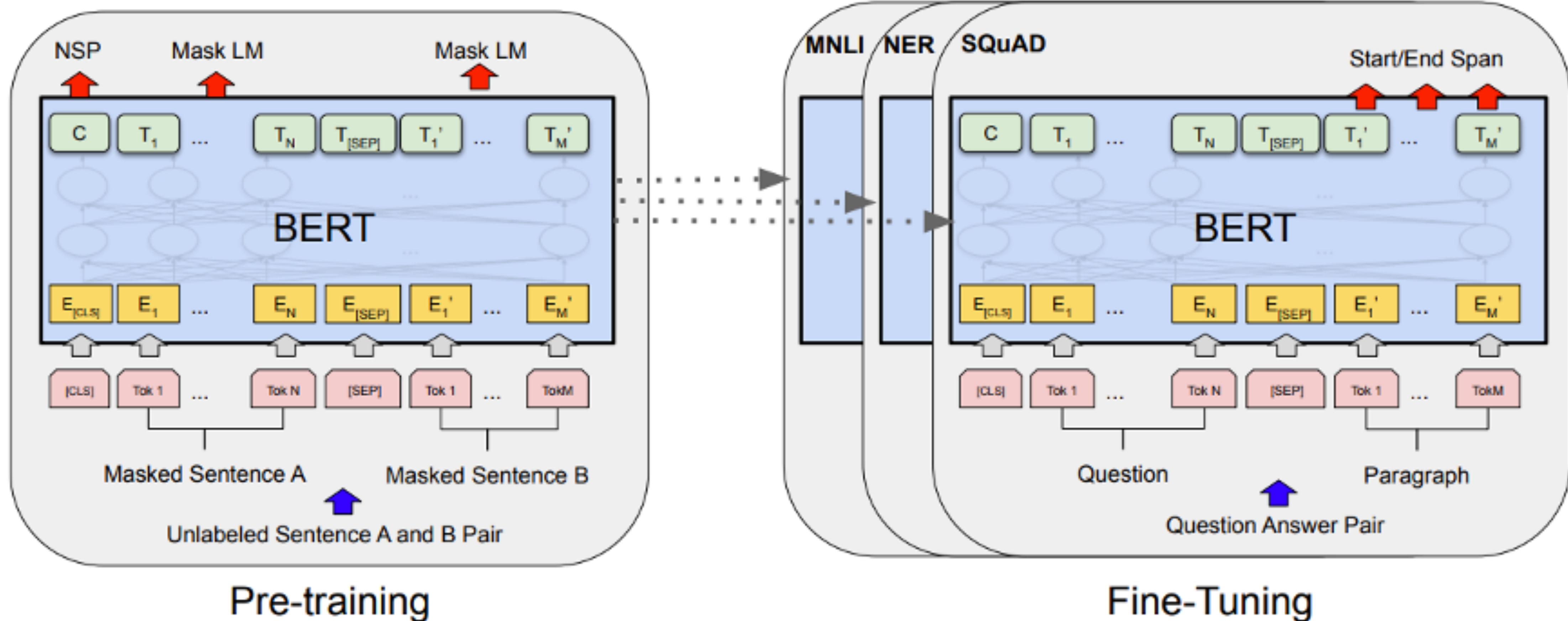


- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- GPT, LLaMa, PaLM

- Language models
- Can't condition on future words, good for generation

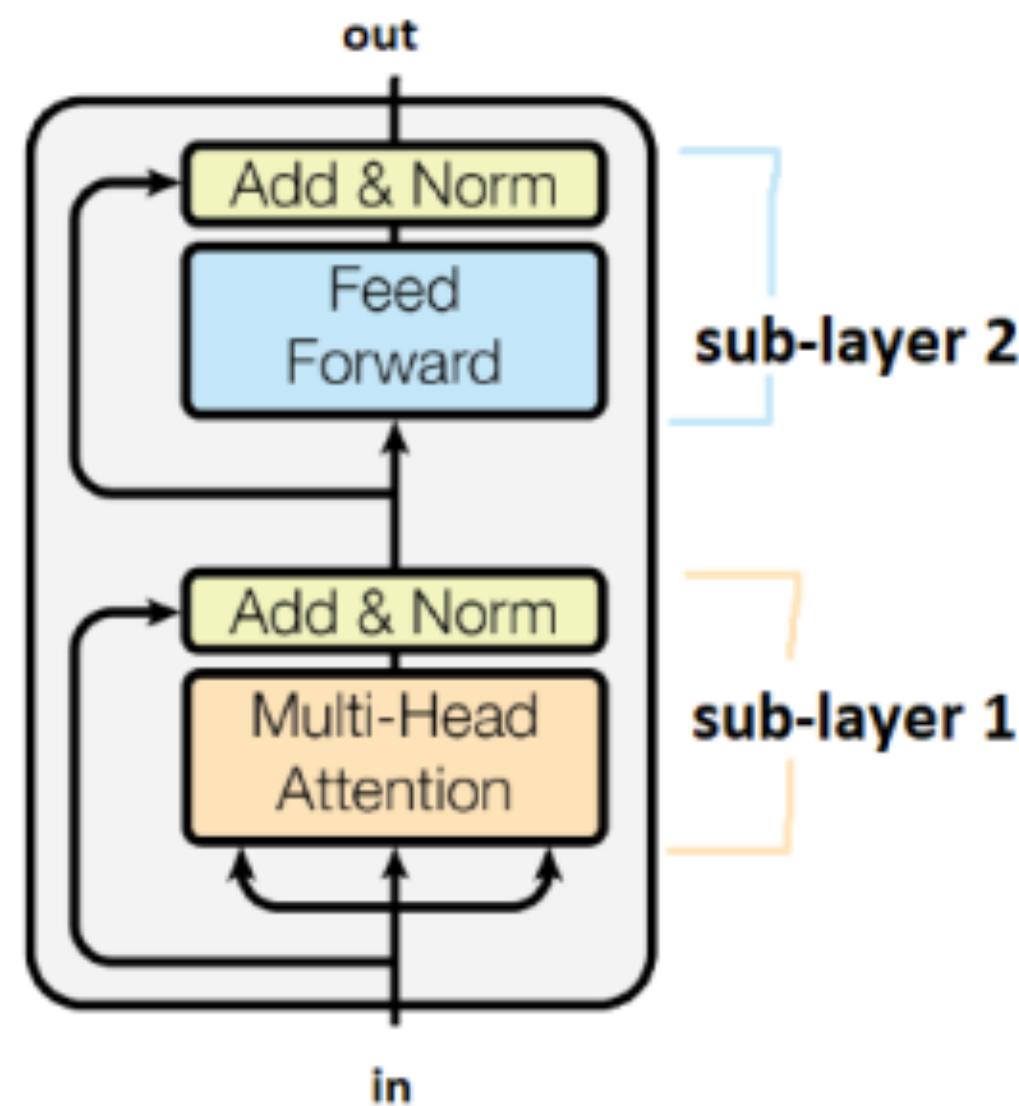
- Combine benefits of both
- Original Transformer, UniLM, BART, T5

# Pre-training and fine-tuning

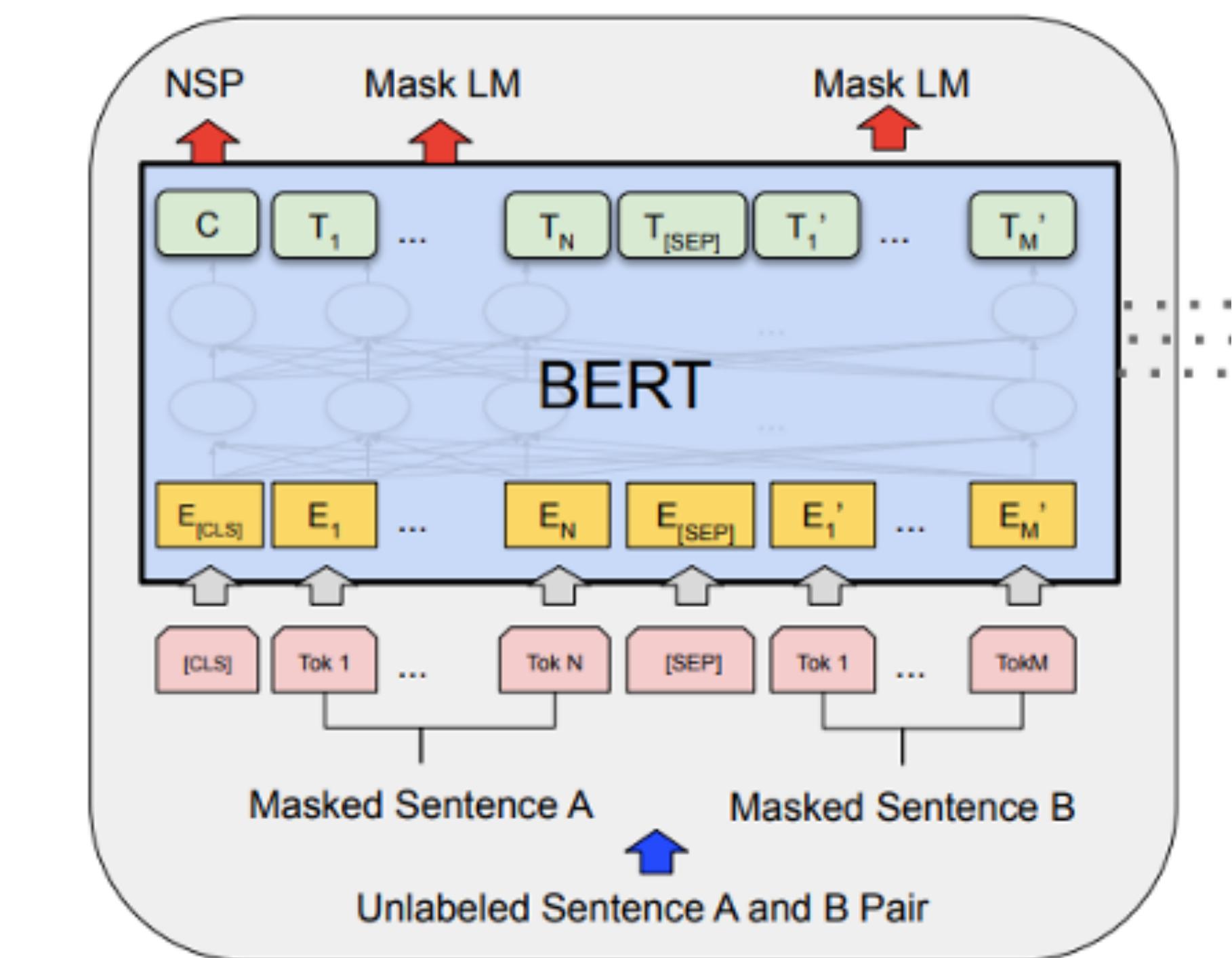


*BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding* <https://arxiv.org/pdf/1810.04805.pdf>

# BERT



- Transformer Encoder
- Two training objectives
- Masked Language Modeling
- Next Sentence Prediction



Pre-training

# Masked language models (MLMs)

Mask 15% of tokens

Example: `my dog is hairy`, we replace the word `hairy`

- 80% of time: replace word with `[ MASK ]` token  
`my dog is [ MASK ]`
- 10% of time: replace word with random word  
`my dog is apple`
- 10% of time: keep word unchanged to bias representation toward actual observed word  
`my dog is hairy`

# RoBERTa

- Train with more data and for more epochs
  - Vocabulary size of 50K subword units vs 30K for BERT
  - Larger batch size and more training data
- No need for NSP

| Model                    | data  | bsz | steps | SQuAD<br>(v1.1/2.0) | MNLI-m      | SST-2       |
|--------------------------|-------|-----|-------|---------------------|-------------|-------------|
| RoBERTa                  |       |     |       |                     |             |             |
| with BOOKS + WIKI        | 16GB  | 8K  | 100K  | 93.6/87.3           | 89.0        | 95.3        |
| + additional data (§3.2) | 160GB | 8K  | 100K  | 94.0/87.7           | 89.3        | 95.6        |
| + pretrain longer        | 160GB | 8K  | 300K  | 94.4/88.7           | 90.0        | 96.1        |
| + pretrain even longer   | 160GB | 8K  | 500K  | <b>94.6/89.4</b>    | <b>90.2</b> | <b>96.4</b> |
| BERT <sub>LARGE</sub>    |       |     |       |                     |             |             |
| with BOOKS + WIKI        | 13GB  | 256 | 1M    | 90.9/81.8           | 86.6        | 93.7        |

pretrain with **1024 V100 GPUs** for ~1 day

*RoBERTa: A Robustly Optimized BERT Pretraining Approach*  
Liu et al, UW and Facebook, arXiv 2019

# RoBERTa

- Train with more data and for more epochs
  - Vocabulary size of 50K subword units vs 30K for BERT
  - Larger batch size and more training data
- No need for NSP

Dynamic masking (masking changes)

| Masking                      | SQuAD 2.0 | MNLI-m | SST-2 |
|------------------------------|-----------|--------|-------|
| reference                    | 76.3      | 84.3   | 92.8  |
| <i>Our reimplementation:</i> |           |        |       |
| static                       | 78.3      | 84.3   | 92.5  |
| dynamic                      | 78.7      | 84.0   | 92.9  |

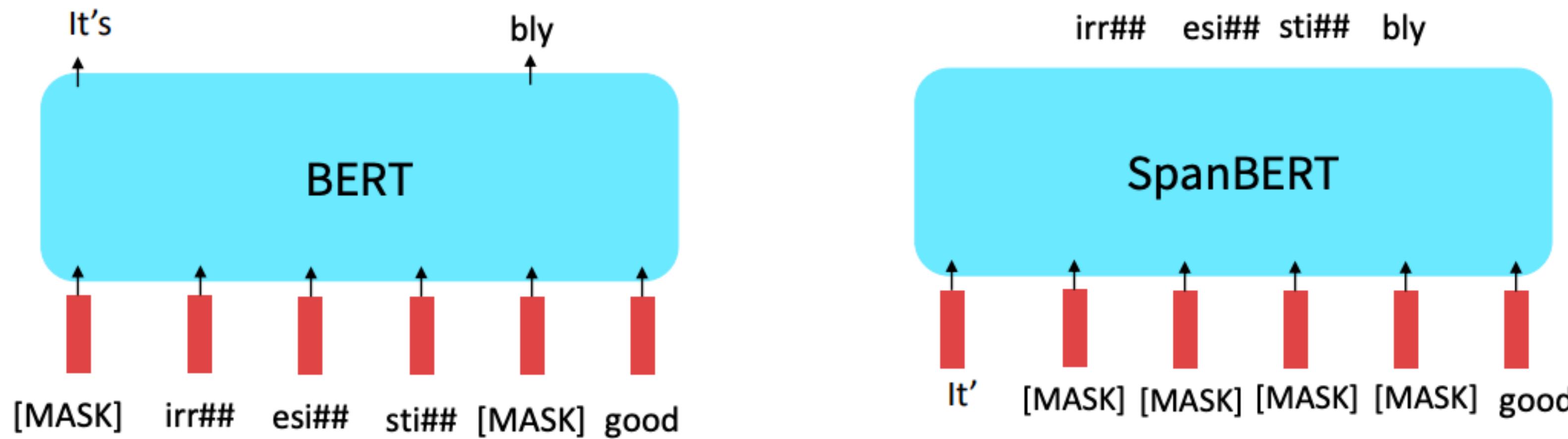
Better results with careful reimplementation.

Mean over 5 random seeds.

| Model                                           | SQuAD 1.1/2.0 | MNLI-m | SST-2 | RACE |
|-------------------------------------------------|---------------|--------|-------|------|
| <i>Our reimplementation (with NSP loss):</i>    |               |        |       |      |
| SEGMENT-PAIR                                    | 90.4/78.7     | 84.0   | 92.9  | 64.2 |
| SENTENCE-PAIR                                   | 88.7/76.2     | 82.9   | 92.1  | 63.0 |
| <i>Our reimplementation (without NSP loss):</i> |               |        |       |      |
| FULL-SENTENCES                                  | 90.4/79.1     | 84.7   | 92.5  | 64.8 |
| DOC-SENTENCES                                   | 90.6/79.7     | 84.7   | 92.7  | 65.6 |
| BERT <sub>BASE</sub>                            | 88.5/76.3     | 84.3   | 92.8  | 64.3 |
| XLNet <sub>BASE</sub> (K = 7)                   | -/81.3        | 85.8   | 92.7  | 66.1 |
| XLNet <sub>BASE</sub> (K = 6)                   | -/81.0        | 85.6   | 93.4  | 66.7 |

# SpanBERT

- Mask out spans!

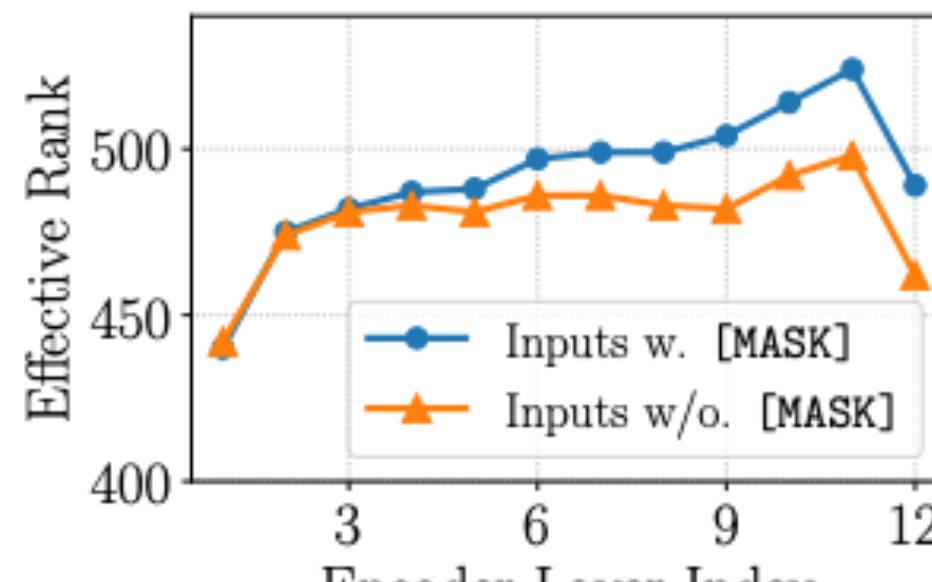


|               | NewsQA      | TriviaQA    | SearchQA    | HotpotQA    | Natural Questions | Avg.        |
|---------------|-------------|-------------|-------------|-------------|-------------------|-------------|
| Google BERT   | 68.8        | 77.5        | 81.7        | 78.3        | 79.9              | 77.3        |
| Our BERT      | 71.0        | 79.0        | 81.8        | 80.5        | 80.5              | 78.6        |
| Our BERT-1seq | 71.9        | 80.4        | 84.0        | 80.3        | 81.8              | 79.7        |
| SpanBERT      | <b>73.6</b> | <b>83.6</b> | <b>84.8</b> | <b>83.0</b> | <b>82.5</b>       | <b>81.5</b> |

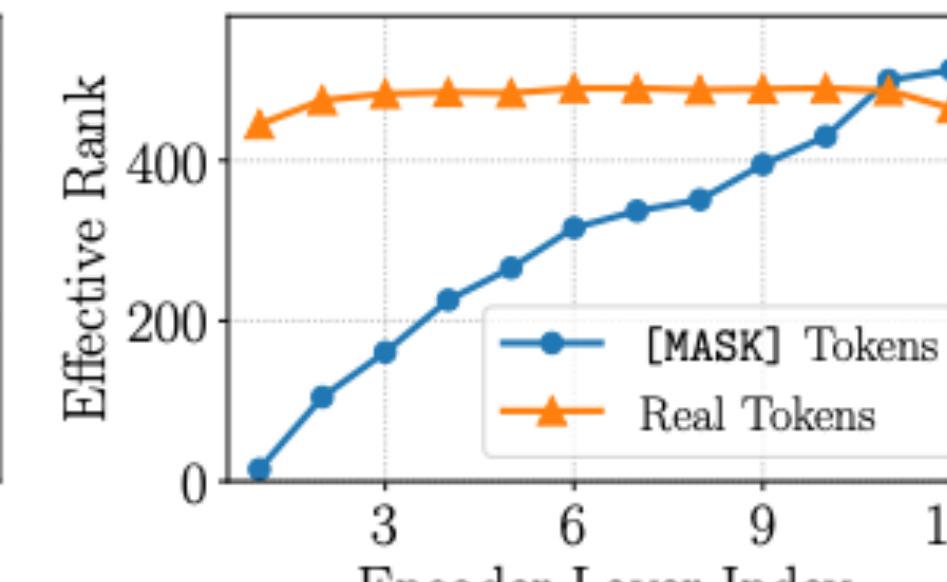
Table 2: Performance (F1) on the five MRQA extractive question answering tasks.

# MAE-LM (Masked Autoencoder LM)

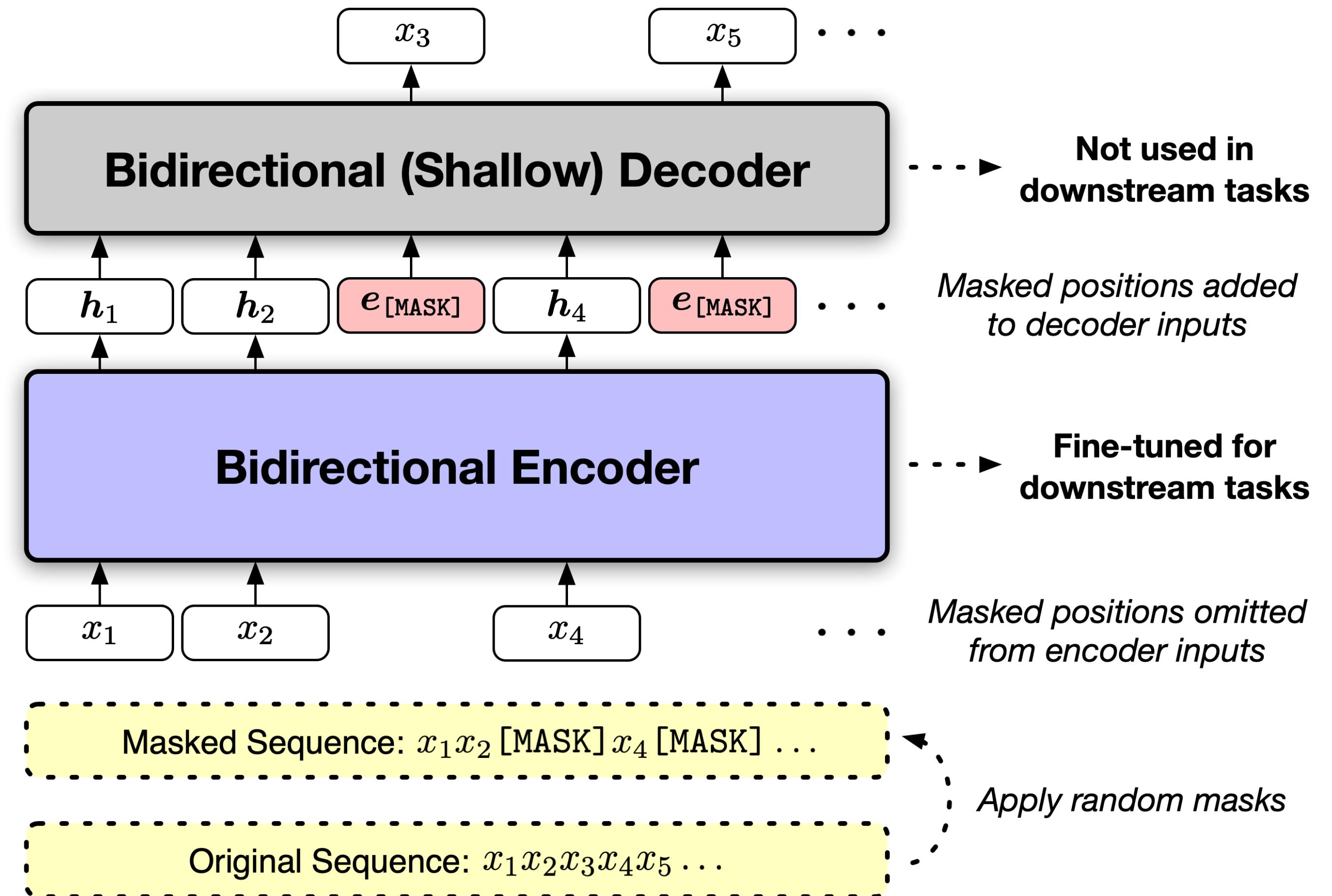
- [MASK] tokens are not observed in downstream tasks
- Model capacity wasted for [MASK] tokens
- Only feed non-masked tokens into encoder, have separate decoder (discarded) that predicts masked tokens



(a)



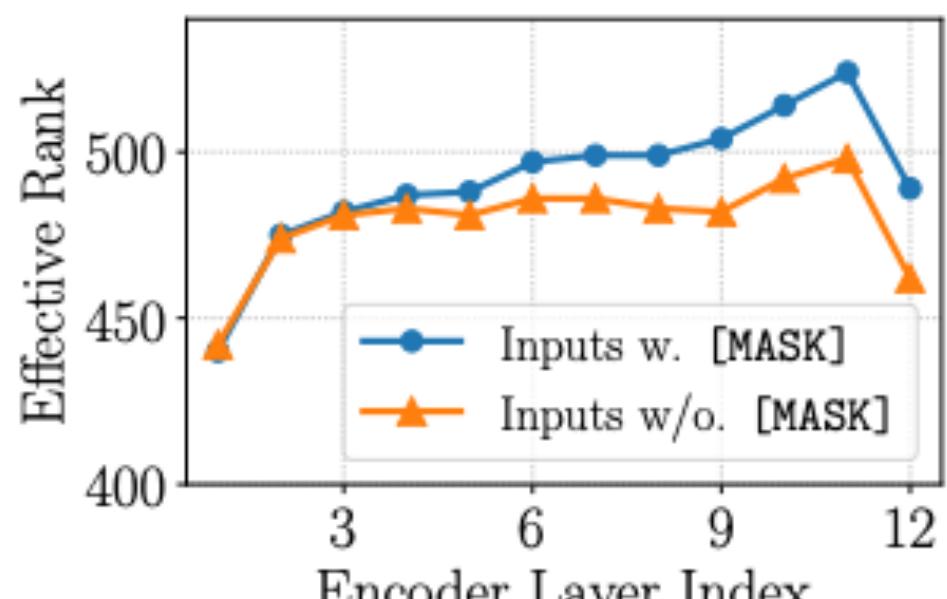
(b)



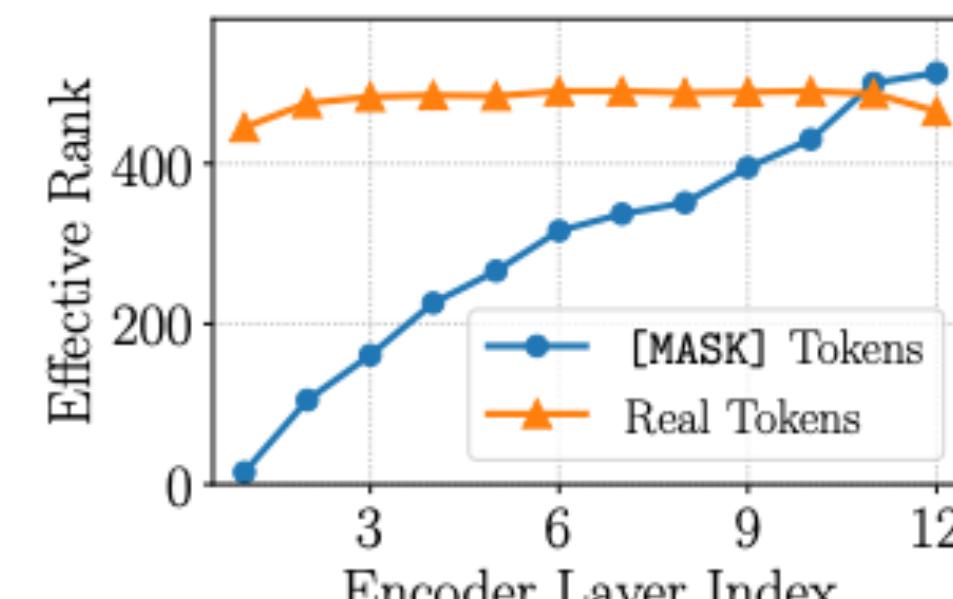
Representation Deficiency in Masked Language Modeling [Meng et al. 2024]

# MAE-LM (Masked Autoencoder LM)

- [MASK] tokens are not observed in downstream tasks
- Model capacity wasted for [MASK] tokens
- Only feed non-masked tokens into encoder, have separate decoder (discarded) that predicts masked tokens



(a)



(b)

Table 2: Ablations evaluated with GLUE average scores. The setting of MAE-LM<sub>base</sub> is: enc. w/o. [MASK] ; aligned position encoding w. relative position encoding; bi. self-attention; 4 layer, 768 dimension.

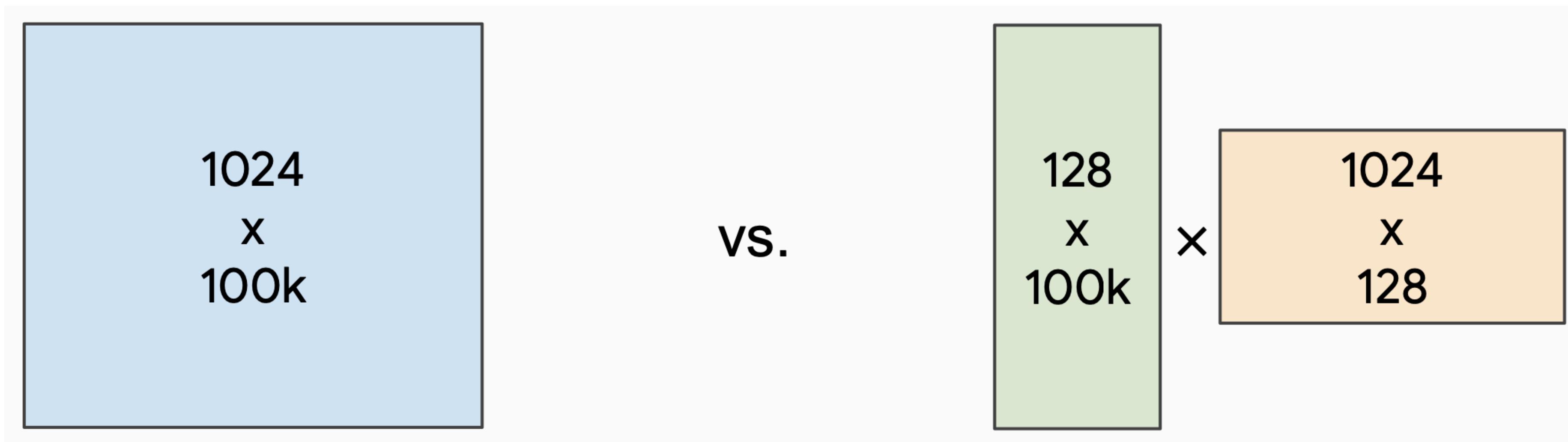
| Group                              | Setting                               | GLUE |
|------------------------------------|---------------------------------------|------|
| <b>Original</b>                    | MAE-LM <sub>base</sub>                | 86.1 |
| <b>Naive</b>                       | enc. w. [MASK] ( <i>i.e.</i> , MLM)   | 85.2 |
|                                    | enc. w. [MASK] + dec.                 | 85.1 |
| <b>Handling</b><br>[MASK]          | enc. w. [MASK], dec. resets [MASK]    | 85.9 |
|                                    | random replace w. real token          | 85.1 |
| <b>Position</b><br><b>Encoding</b> | misaligned position encoding          | 86.0 |
|                                    | no relative position encoding         | 86.1 |
| <b>Decoder</b><br><b>Attention</b> | bi. self-attention + cross-attention  | 85.4 |
|                                    | uni. self-attention + cross-attention | 85.5 |
|                                    | cross-attention                       | 86.0 |
| <b>Decoder</b><br><b>Size</b>      | 2 layer, 768 dimension                | 85.8 |
|                                    | 6 layer, 768 dimension                | 84.8 |
|                                    | 4 layer, 512 dimension                | 85.8 |
|                                    | 4 layer, 1024 dimension               | 85.5 |

# ALBERT

## Lan+ 2019

<https://arxiv.org/abs/1909.11942>

- Factorized embedding parameterization
  - Use small embedding size (128) and project to Transformer hidden size (1024) using a parameter matrix



# ALBERT

<https://arxiv.org/abs/1909.11942>

- Cross-layer parameter sharing
  - $h^{\ell+1}$  parameters are shared with  $h^\ell$

| Models                                  | MNLI        | QNLI        | QQP         | RTE         | SST         | MRPC        | CoLA        | STS         |
|-----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <i>Single-task single models on dev</i> |             |             |             |             |             |             |             |             |
| BERT-large                              | 86.6        | 92.3        | 91.3        | 70.4        | 93.2        | 88.0        | 60.6        | 90.0        |
| XLNet-large                             | 89.8        | 93.9        | 91.8        | 83.8        | 95.6        | 89.2        | 63.6        | 91.8        |
| RoBERTa-large                           | 90.2        | 94.7        | <b>92.2</b> | 86.6        | 96.4        | <b>90.9</b> | 68.0        | 92.4        |
| ALBERT (1M)                             | 90.4        | 95.2        | 92.0        | 88.1        | 96.8        | 90.2        | 68.7        | 92.7        |
| ALBERT (1.5M)                           | <b>90.8</b> | <b>95.3</b> | <b>92.2</b> | <b>89.2</b> | <b>96.9</b> | <b>90.9</b> | <b>71.4</b> | <b>93.0</b> |

# ALBERT

<https://arxiv.org/abs/1909.11942>

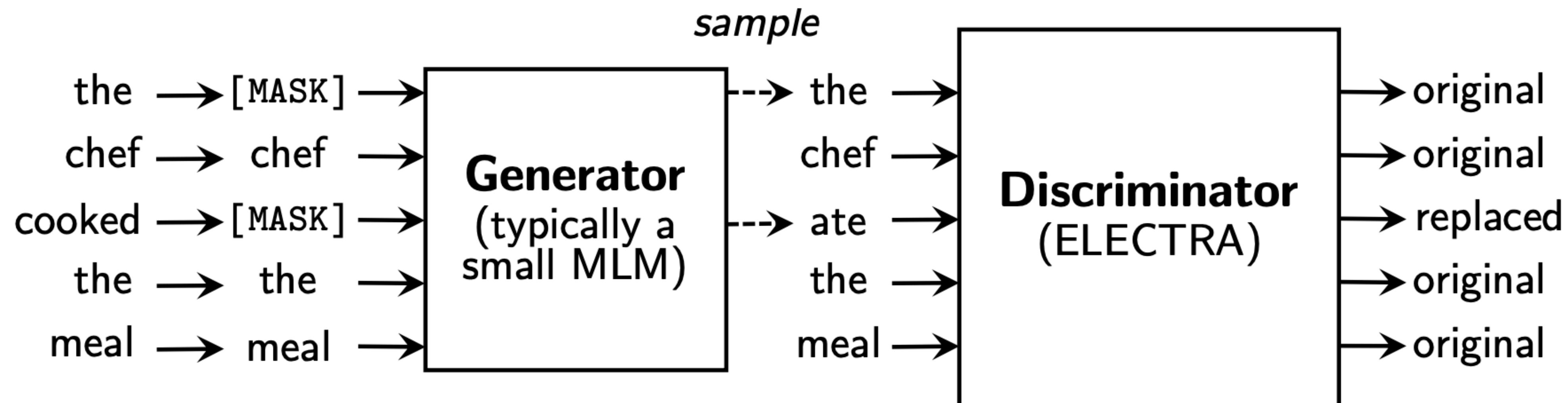
- Light on parameters; not necessarily faster than BERT

|        | Model   | Parameters | SQuAD1.1         | SQuAD2.0         | MNLI        | SST-2       | RACE        | Avg         | Speedup |
|--------|---------|------------|------------------|------------------|-------------|-------------|-------------|-------------|---------|
| BERT   | base    | 108M       | 90.4/83.2        | 80.4/77.6        | 84.5        | 92.8        | 68.2        | 82.3        | 4.7x    |
|        | large   | 334M       | 92.2/85.5        | 85.0/82.2        | 86.6        | 93.0        | 73.9        | 85.2        | 1.0     |
| ALBERT | base    | 12M        | 89.3/82.3        | 80.0/77.1        | 81.6        | 90.3        | 64.0        | 80.1        | 5.6x    |
|        | large   | 18M        | 90.6/83.9        | 82.3/79.4        | 83.5        | 91.7        | 68.5        | 82.4        | 1.7x    |
|        | xlarge  | 60M        | 92.5/86.1        | 86.1/83.1        | 86.4        | 92.4        | 74.8        | 85.5        | 0.6x    |
|        | xxlarge | 235M       | <b>94.1/88.3</b> | <b>88.1/85.1</b> | <b>88.0</b> | <b>95.2</b> | <b>82.3</b> | <b>88.7</b> | 0.3x    |

# Discriminative training

Loss is on all the training tokens vs just the masked ones, more compute efficient use of the training data

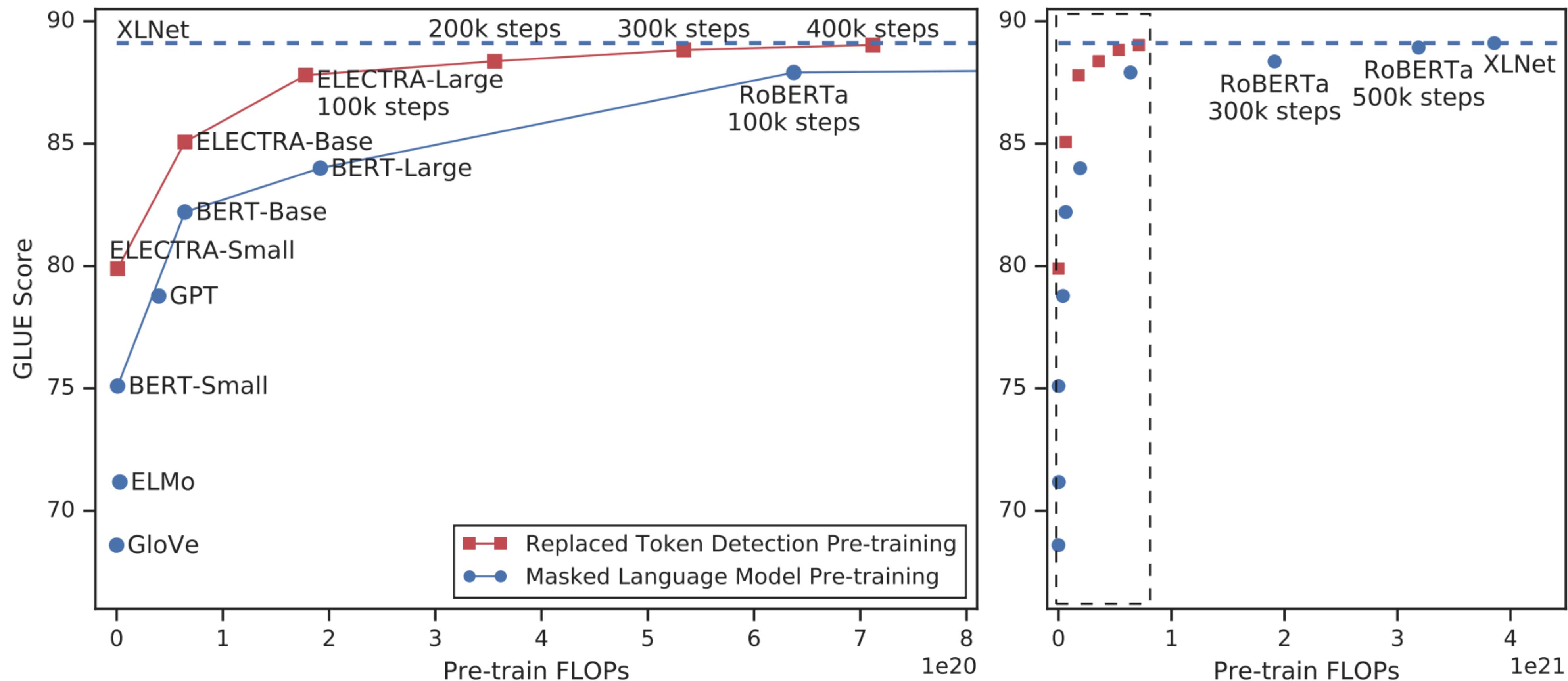
Train model to discriminate locally plausible text from real text



*ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators*

Clark et al, ICLR 2020

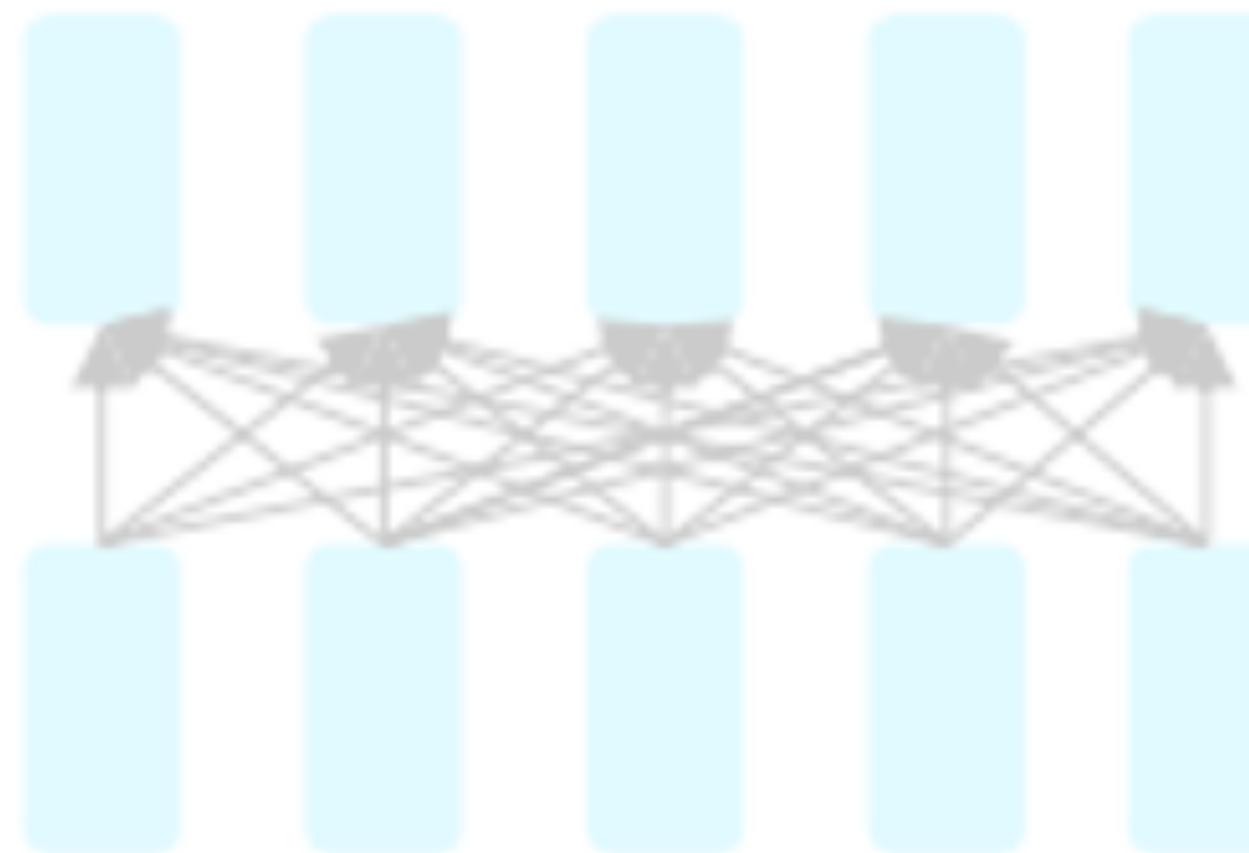
# Discriminative training



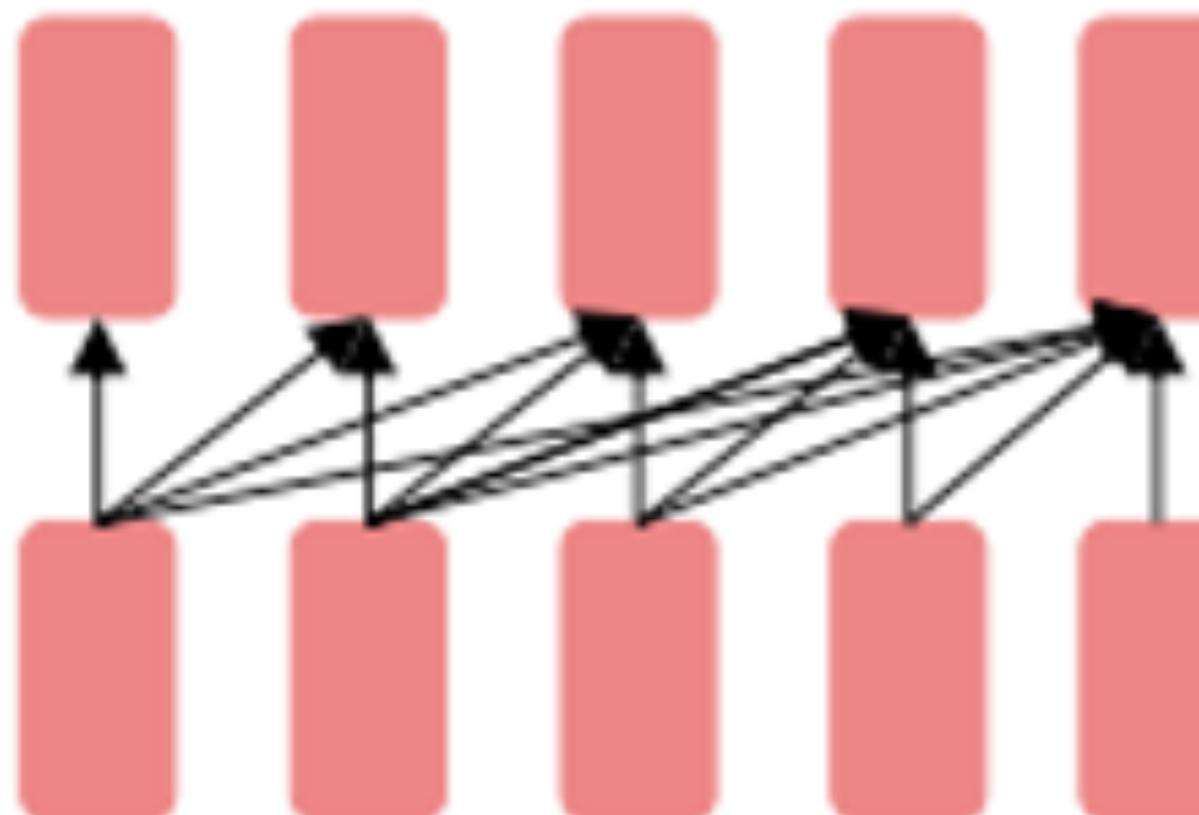
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

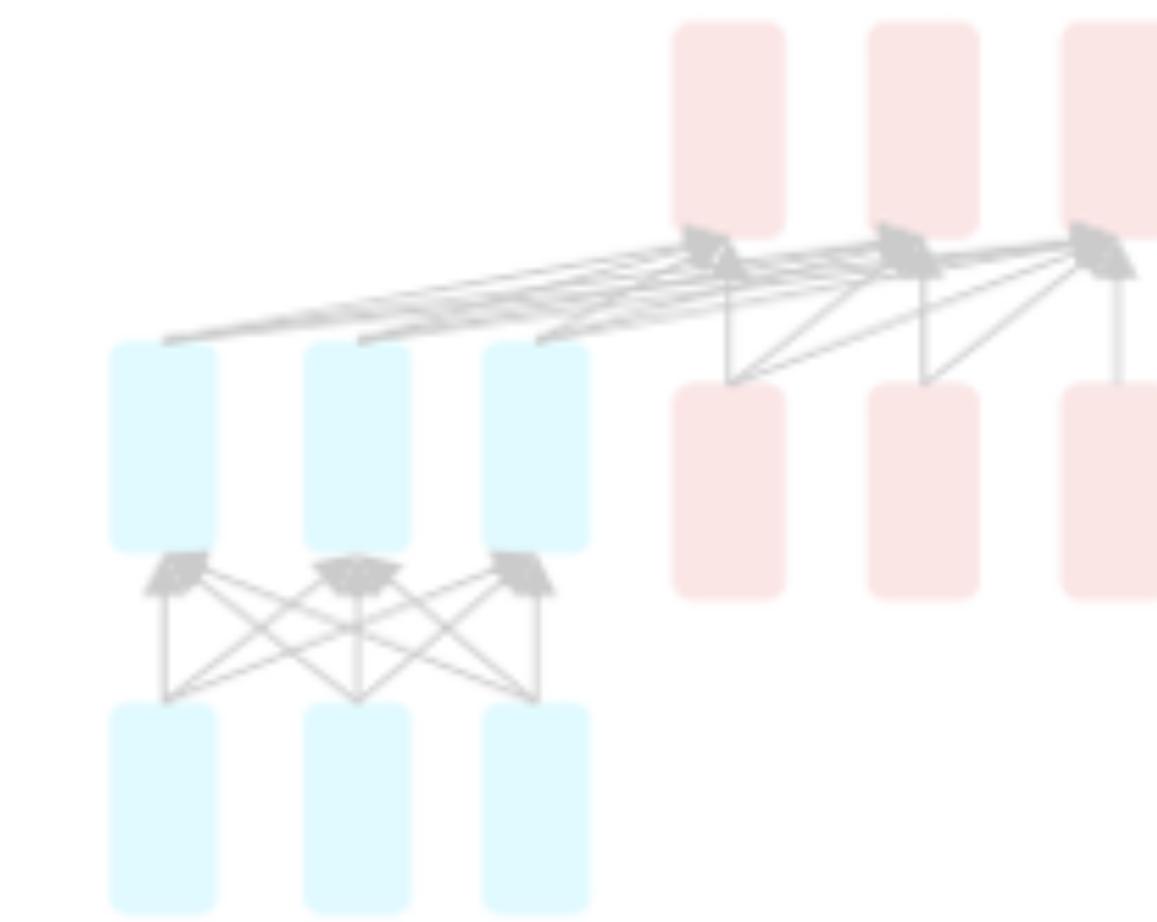
Encoder only



Decoder only



Encoder-Decoder



- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- 

- Language models
- Can't condition on future words, good for generation
- GPT, LLaMa, PaLM

- Combine benefits of both
- Original Transformer, UniLM, BART, T5

---

# Improving Language Understanding by Generative Pre-Training

---

GPT1

**Alec Radford**

OpenAI

[alec@openai.com](mailto:alec@openai.com)

**Karthik Narasimhan**

OpenAI

[karthikn@openai.com](mailto:karthikn@openai.com)

**Tim Salimans**

OpenAI

[tim@openai.com](mailto:tim@openai.com)

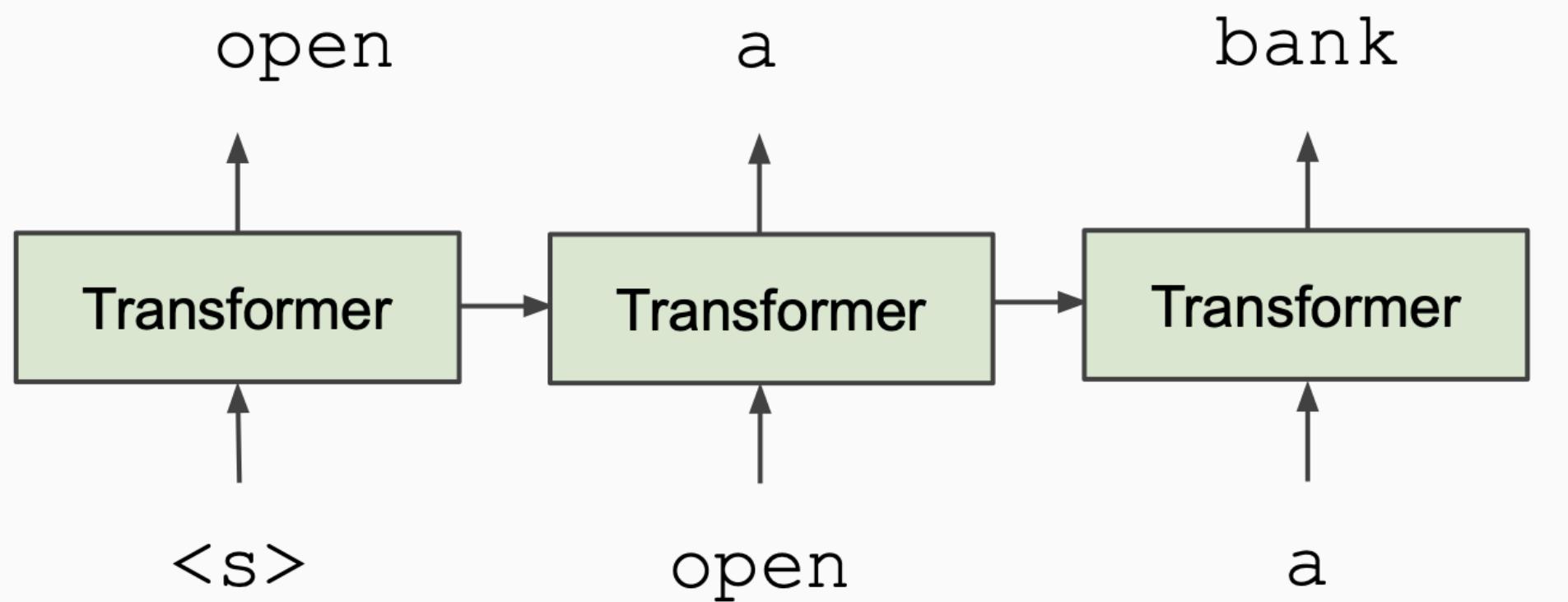
**Ilya Sutskever**

OpenAI

[ilyasu@openai.com](mailto:ilyasu@openai.com)

GPT1

## Train Deep (12-layer) Transformer LM



## Fine-tune on Classification Task

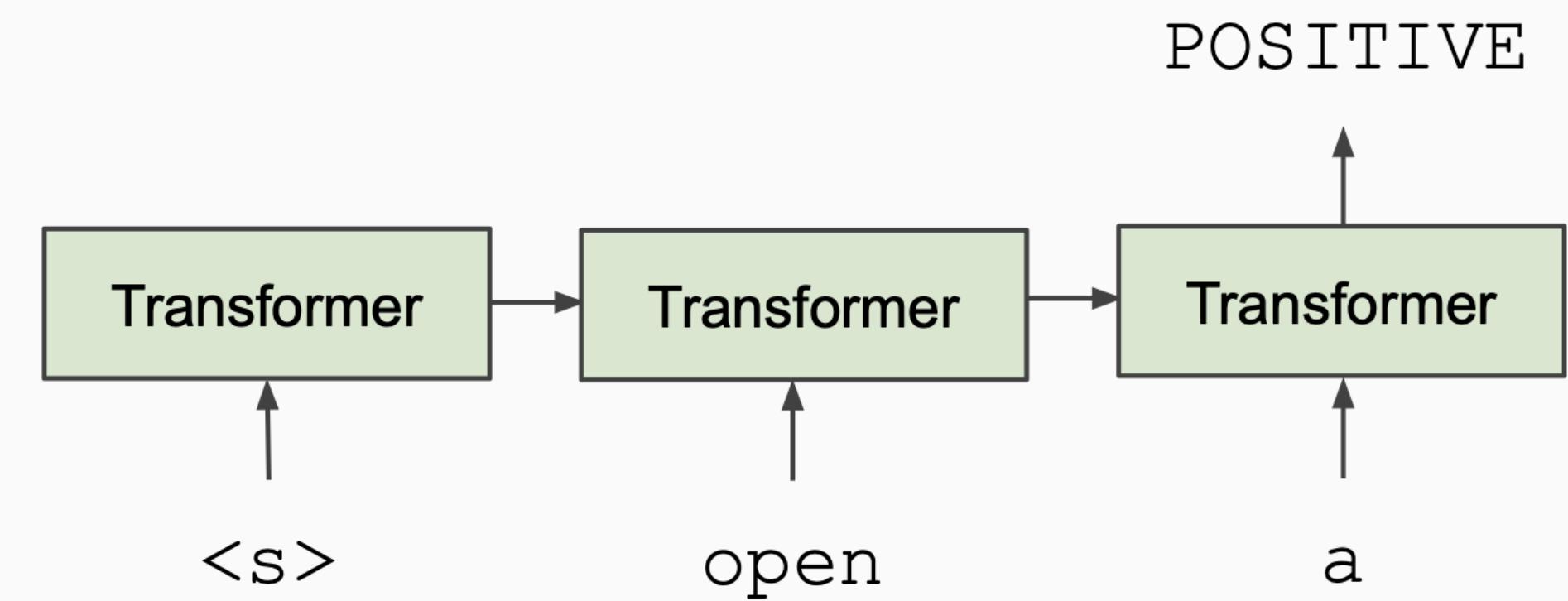


Fig from J. Devlin BERT slides

See also ULMFit: <https://arxiv.org/abs/1801.06146>

# GPT1

## Pre-training an autoregressive language model

- Start with a large amount of unlabeled data  $\mathcal{U} = \{u_1, \dots, u_n\}$
- Pre-training objective: Maximize the likelihood of predicting the next token

$$\bullet \quad L_i(\mathcal{U}) = \sum_i \log P(u_i \mid u_{i-k}, \dots, u_{i-1}; \Theta)$$

$U = (u_{-k}, \dots, u_{-1})$  is the context vector of tokens

- This is equivalent to training a Transformer decoder

$$\bullet \quad h_0 = U \boxed{W_e} + W_p$$

$n$  is the number of Transformer layers

$W_e$  is the token embedding matrix

$$\bullet \quad h_\ell = \text{transformer\_block}(h_{\ell-1}) \quad \forall \ell \in [1, n]$$

$W_p$  is the position embedding matrix

$$\bullet \quad P(u) = \text{softmax}(h_n \boxed{W_e^T})$$

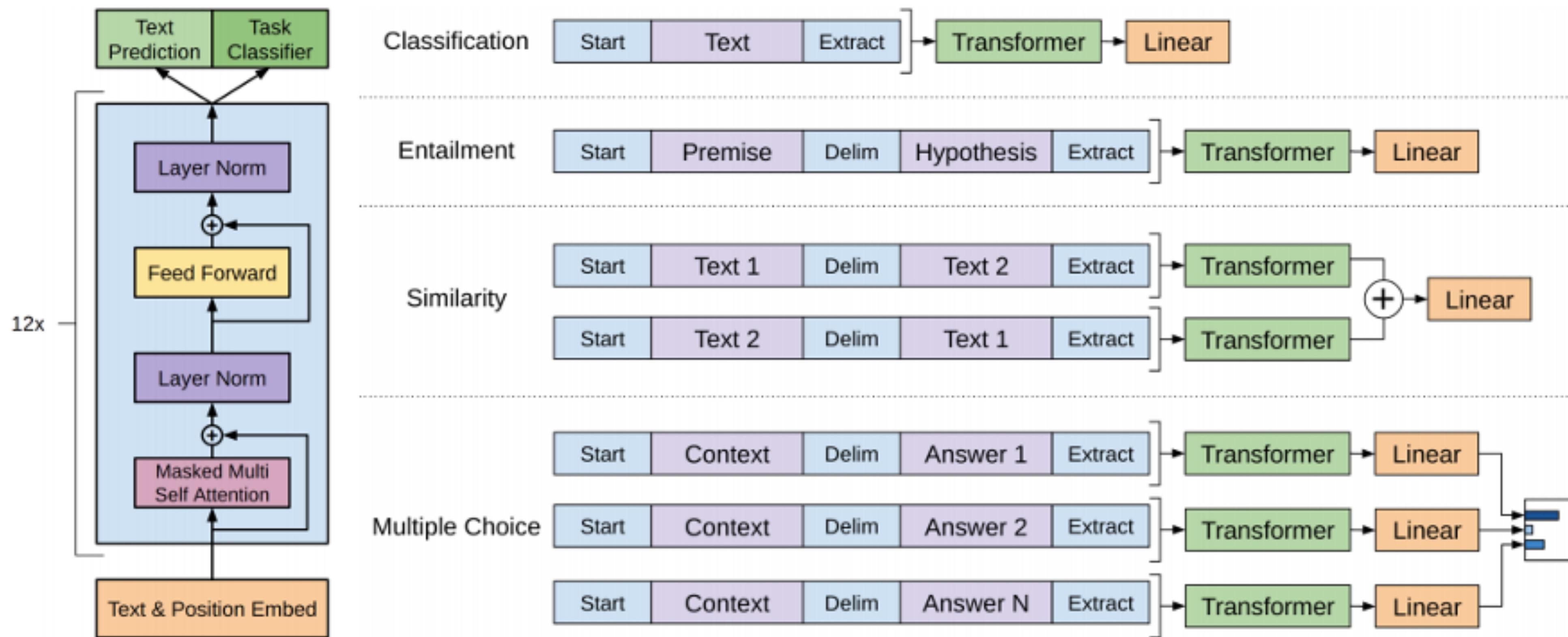
- Directionality is needed to generate a well-formed probability distribution

BooksCorpus: 7K unpublished books (1B words)

| <b>Dataset</b>  | <b>Task</b>              | <b>SOTA</b> | <b>GPT1</b> |
|-----------------|--------------------------|-------------|-------------|
| SNLI            | Textual entailment       | 89.3        | 89.9        |
| MNLI matched    | Textual entailment       | 80.6        | 82.1        |
| MNLI mismatched | Textual entailment       | 80.1        | 81.4        |
| SciTail         | Textual entailment       | 83.3        | 88.3        |
| QNLI            | Textual entailment       | 82.3        | 88.1        |
| RTE             | Textual entailment       | 61.7        | 56.0        |
| STS-B           | Semantic similarity      | 81.0        | 82.0        |
| QQP             | Semantic similarity      | 66.1        | 70.3        |
| MRPC            | Semantic similarity      | 86.0        | 82.3        |
| RACE            | Reading comprehension    | 53.3        | 59.0        |
| ROCStories      | Commonsense reasoning    | 77.6        | 86.5        |
| COPA            | Commonsense reasoning    | 71.2        | 78.6        |
| SST-2           | Sentiment analysis       | 93.2        | 91.3        |
| CoLA            | Linguistic acceptability | 35.0        | 45.4        |
| GLUE            | Multi task benchmark     | 68.9        | 72.8        |

# GPT (Generative pretrained transformer)

- Unsupervised retraining: Standard language model loss
- Supervised fine-tuning: Use simple classifier (linear layer + softmax) trained to predict correct class (use combined loss)

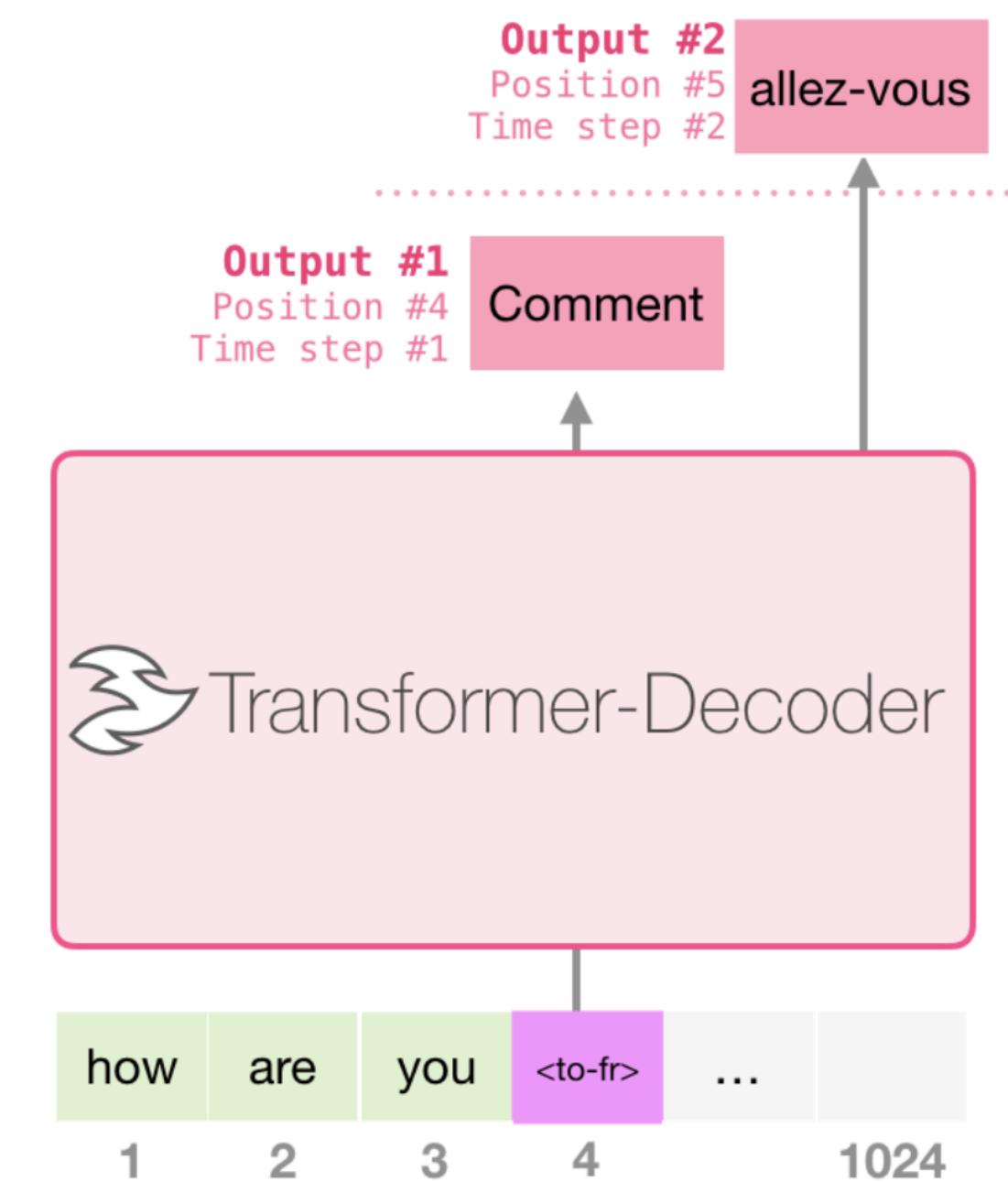


Improving language understanding by generative pre-training (Radford et al, 2018)

# GPT-2

- Express all tasks as a language modelling task
- Training improvements
  - Improved initialization / additional layer normalization
  - Increased vocabulary / context /batch size
- Machine Translation

|      |         |         |         |         |        |         |          |
|------|---------|---------|---------|---------|--------|---------|----------|
| I    | am      | a       | student | <to-fr> | je     | suis    | étudiant |
| let  | them    | eat     | cake    | <to-fr> | Qu'ils | mangent | de       |
| good | morning | <to-fr> | Bonjour |         |        |         |          |



(figure credit: [Jay Alammar](#)  
<http://jalammar.github.io/illustrated-gpt2/>)

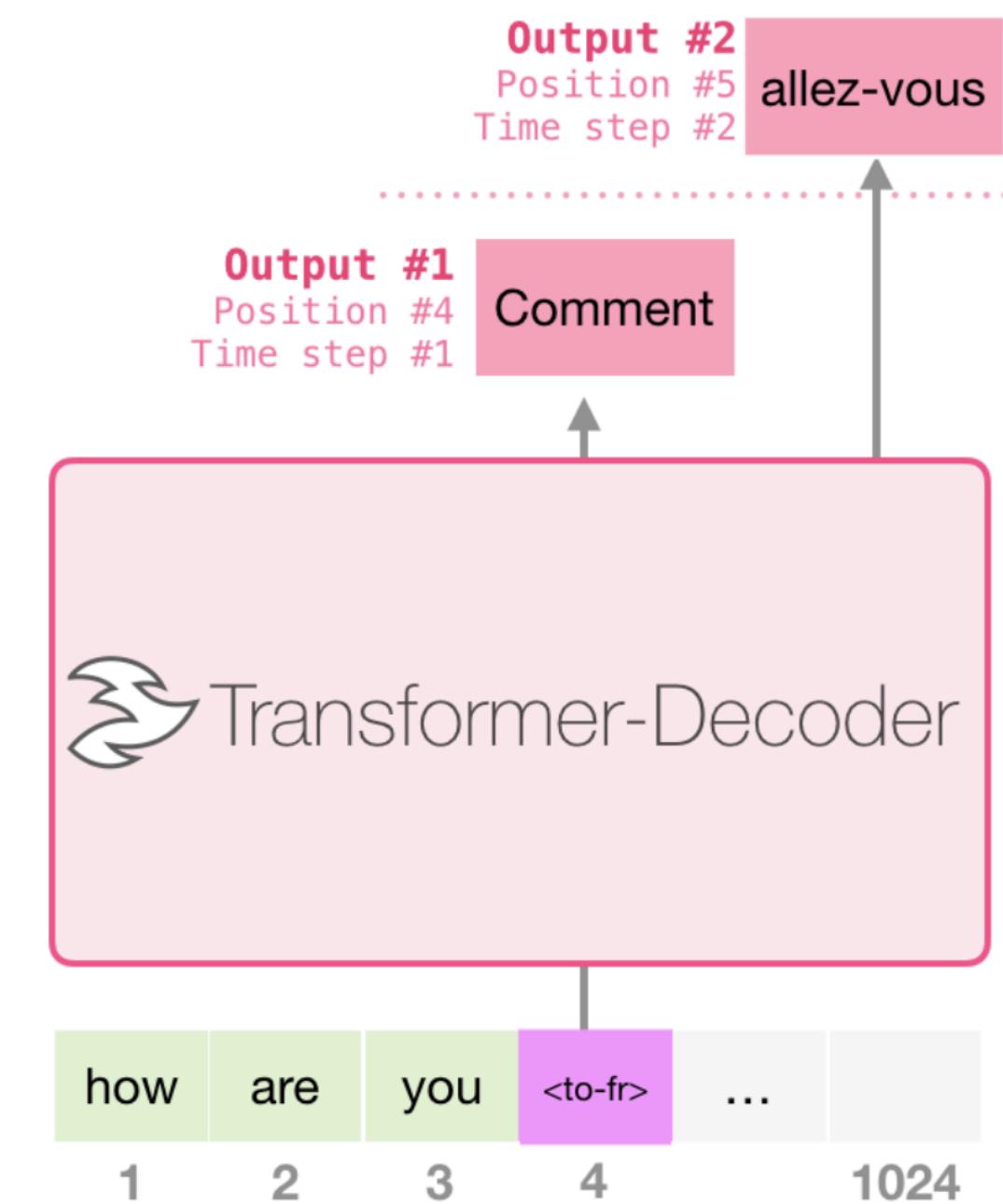
# GPT-2

How can we use decoders for different tasks?

- Use special token to indicate task

Machine Translation

|      |         |         |         |         |        |         |          |
|------|---------|---------|---------|---------|--------|---------|----------|
| I    | am      | a       | student | <to-fr> | je     | suis    | étudiant |
| let  | them    | eat     | cake    | <to-fr> | Qu'ils | mangent | de       |
| good | morning | <to-fr> | Bonjour |         |        |         |          |



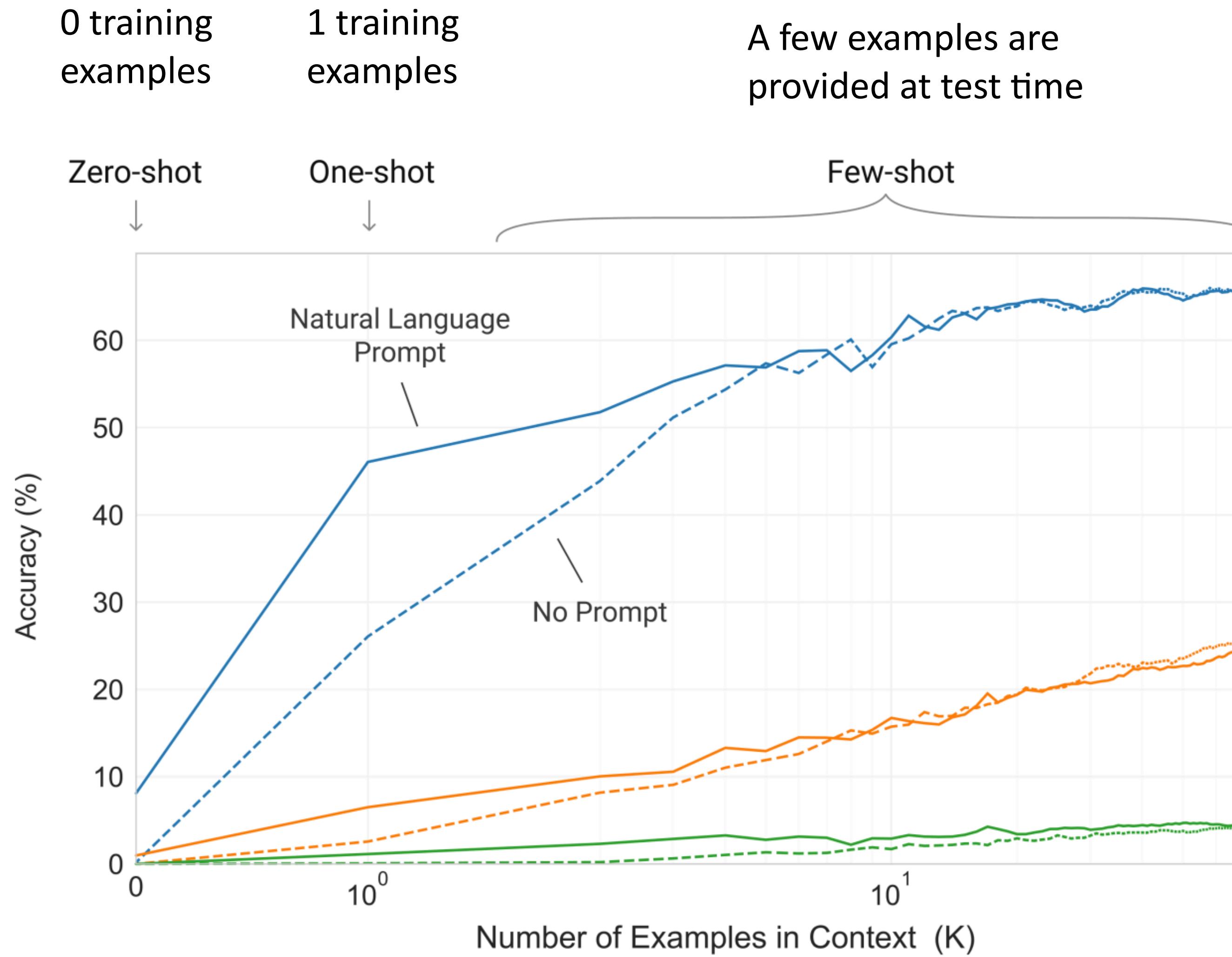
Summarization

| Article #1 tokens |             | <summarize>        | Article #1 Summary |  |
|-------------------|-------------|--------------------|--------------------|--|
| Article #2 tokens | <summarize> | Article #2 Summary | padding            |  |
| Article #3 tokens | <summarize> | Article #3 Summary |                    |  |

(figure credit: [Jay Alammar](#)

<http://jalammar.github.io/illustrated-gpt2/>

# GPT-3: Few-shot learning



## Zero-shot

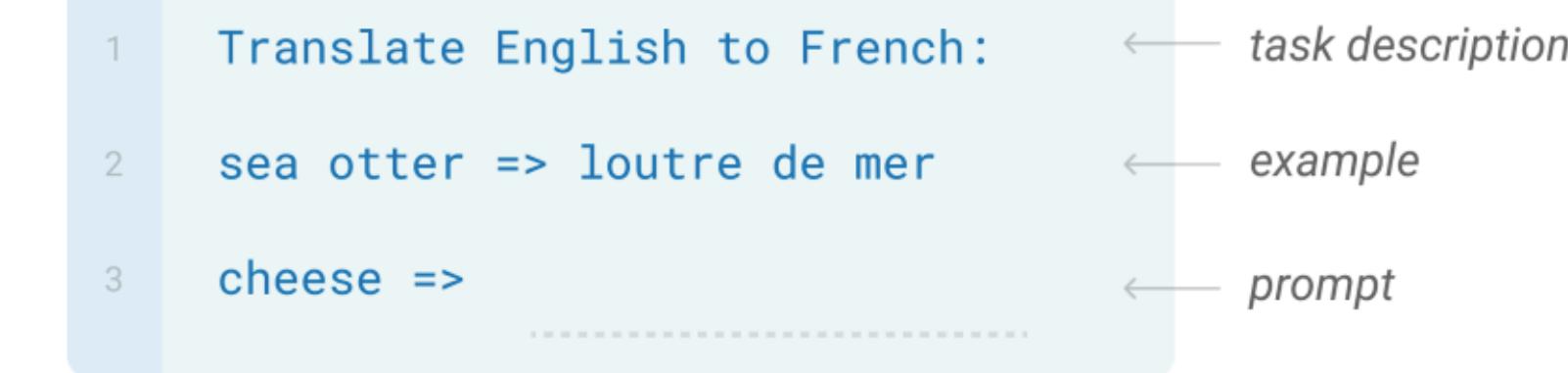
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.



## One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

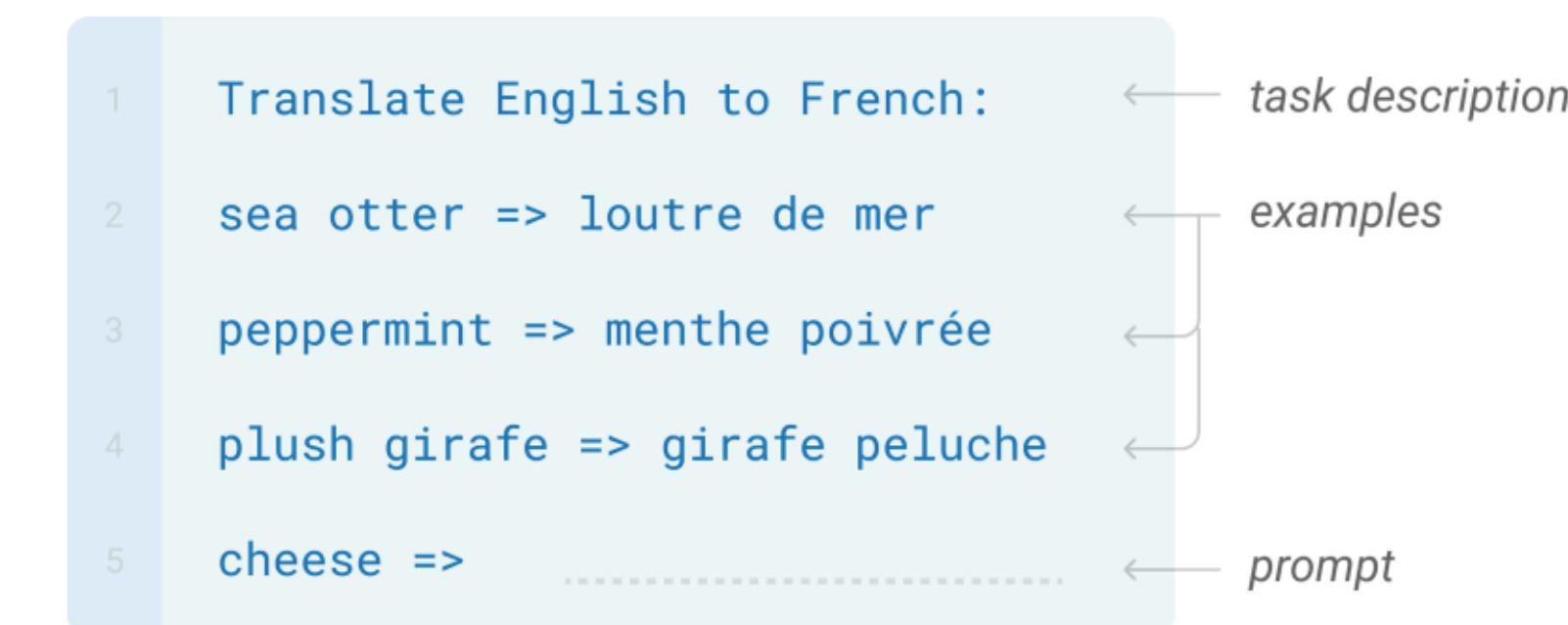
175B Params



## Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

13B Params



1.3B Params

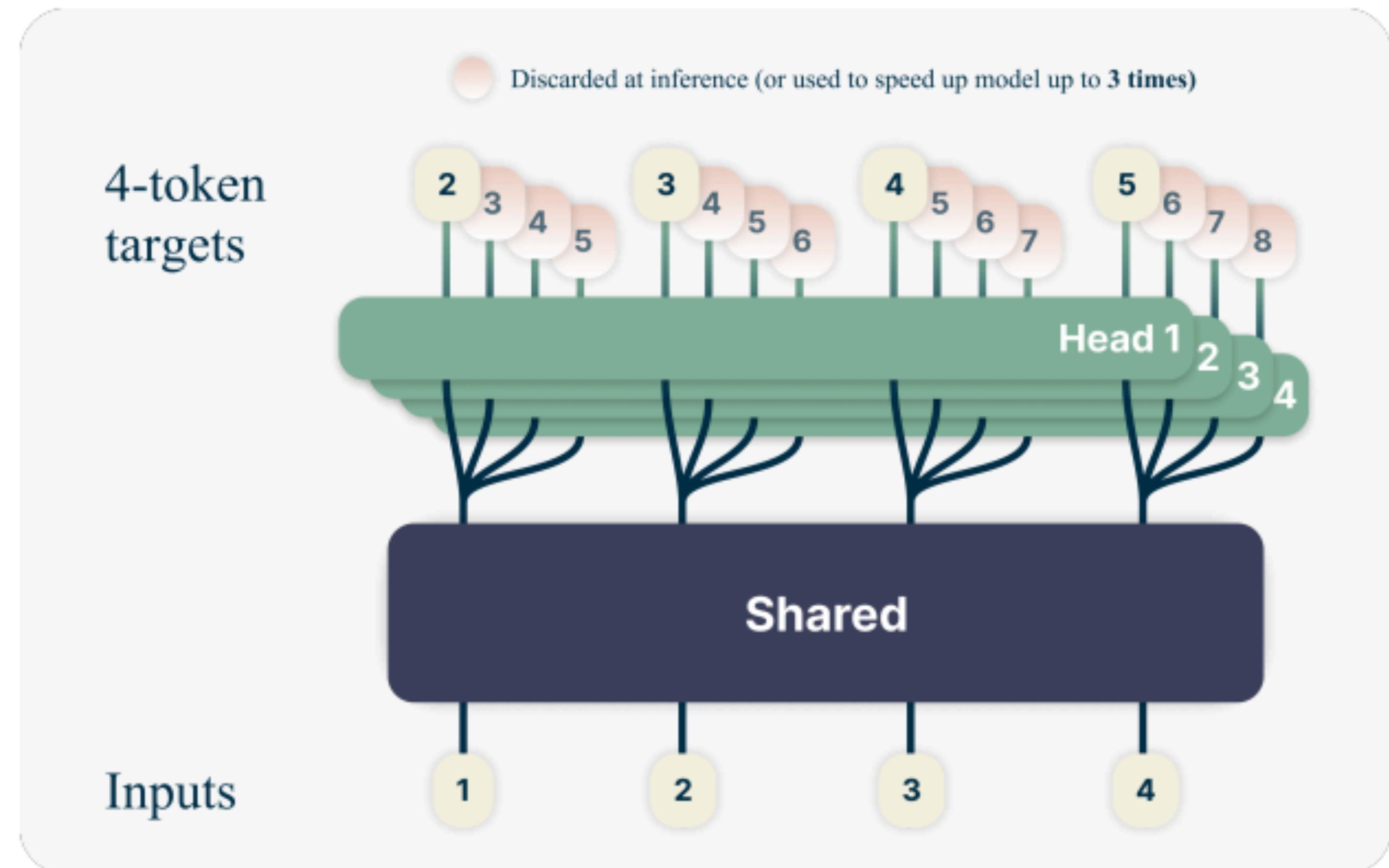
# Multi-token prediction

- Predict multiple next tokens

$$\begin{aligned} L_n &= - \sum_t \log P_\theta(x_{t+n:t+1} | z_{t:1}) \cdot P_\theta(z_{t:1} | x_{t:1}) \\ &= - \sum_t \sum_{i=1}^n \log P_\theta(x_{t+i} | z_{t:1}) \cdot P_\theta(z_{t:1} | x_{t:1}). \end{aligned}$$

- Shared trunk / unembedding matrix

$$P_\theta(x_{t+i} | x_{t:1}) = \text{softmax}(f_u(f_{h_i}(f_s(x_{t:1}))))$$



# Multi-token prediction

- Predict multiple next tokens
- Sequential prediction

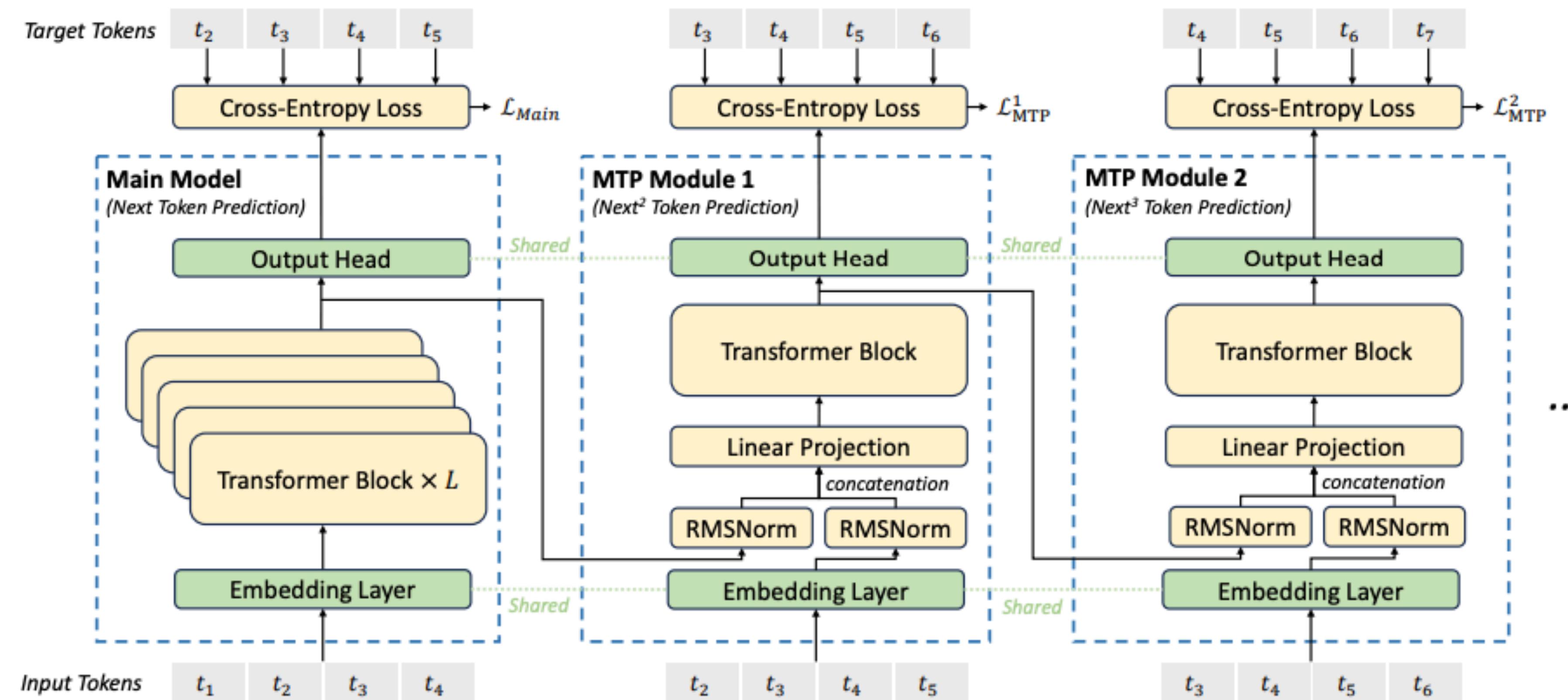
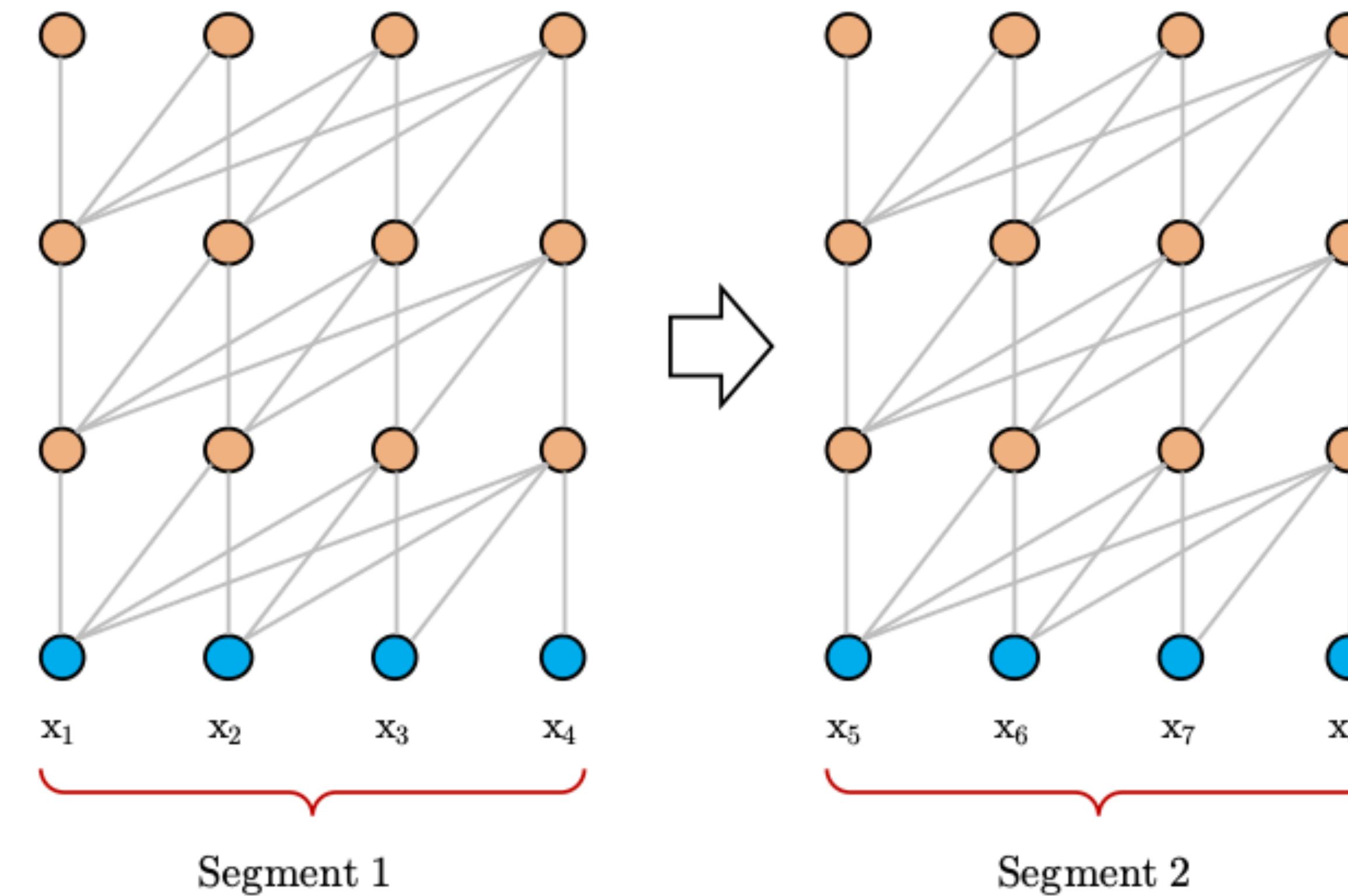


Figure 3 | Illustration of our Multi-Token Prediction (MTP) implementation. We keep the complete causal chain for the prediction of each token at each depth.

# Transformer-XL

Dai+ 2019

- Vanilla Model



(a) Train phase.

<https://arxiv.org/abs/1901.02860>

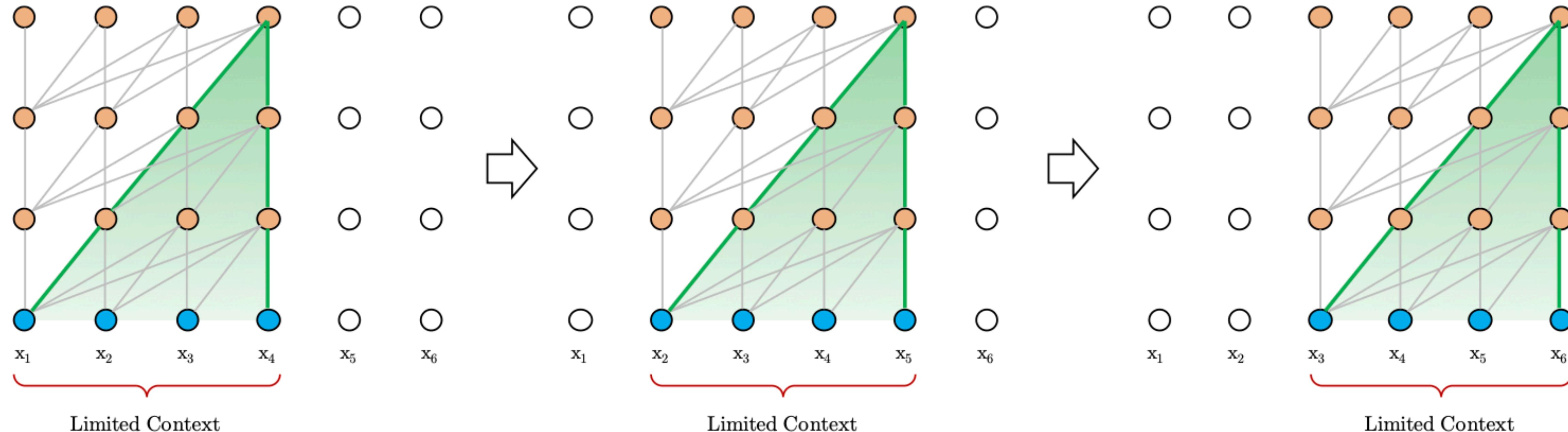
# Transformer-XL

Dai+ 2019

<https://arxiv.org/abs/1901.02860>

Is there a better way to allow for long context?

- Vanilla Model

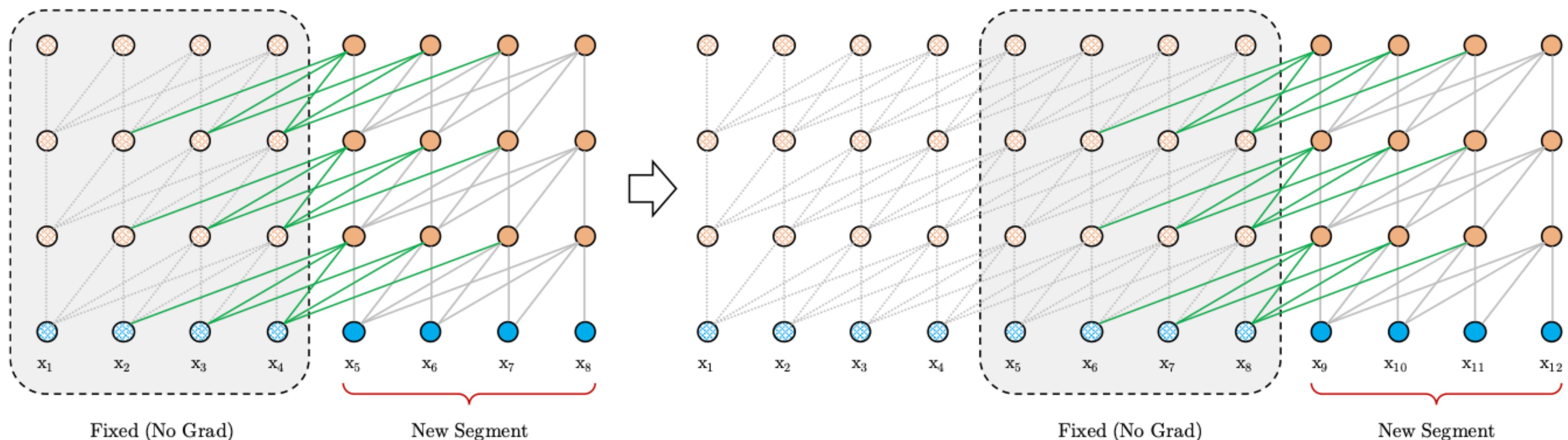


(b) Evaluation phase.

# Transformer-XL

Dai+ 2019

- Autoregressive LM (different from GPT)
- segment level recurrence (reuse states) + relative positional embeddings



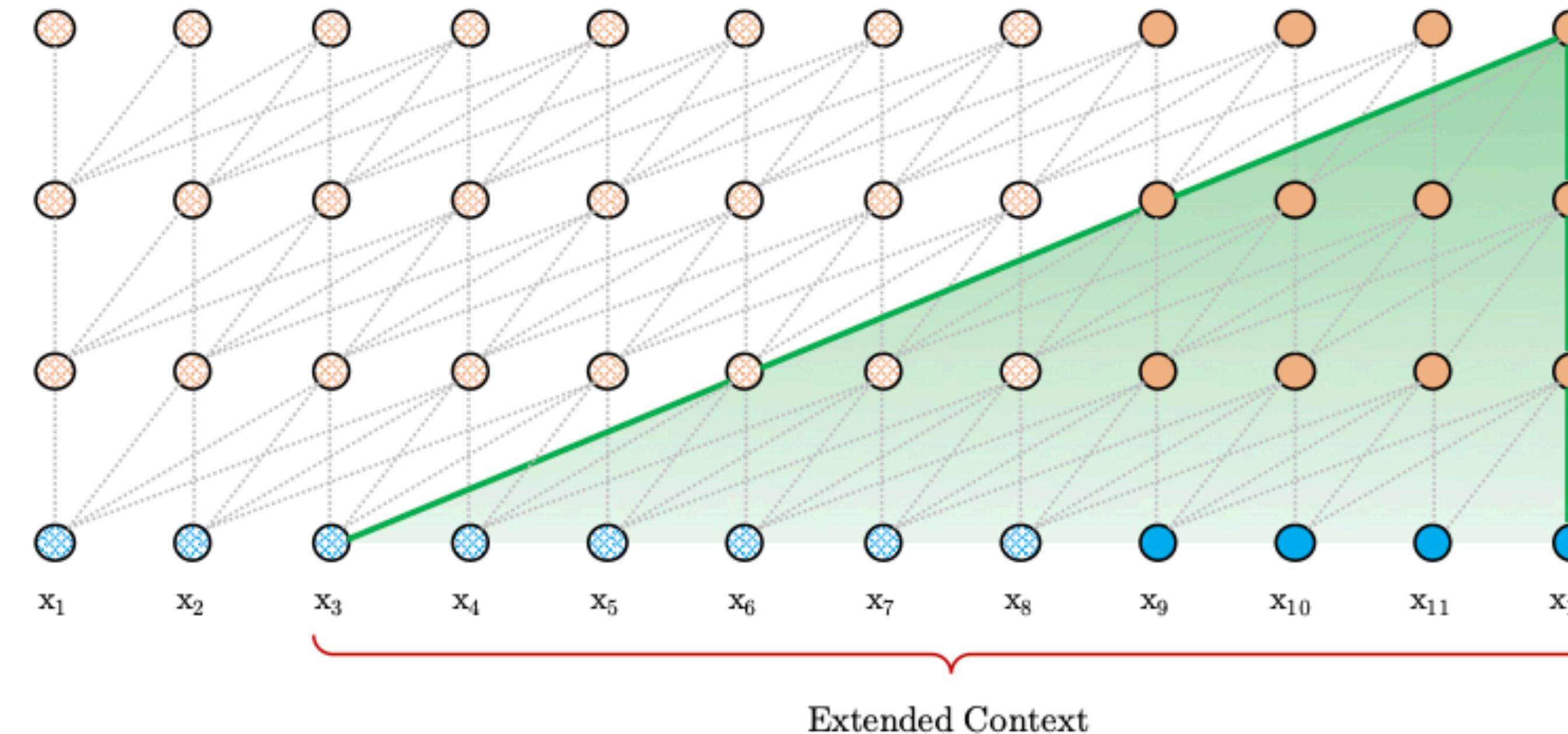
(a) Training phase.

<https://arxiv.org/abs/1901.02860>

# Transformer-XL

## Dai+ 2019

- Autoregressive LM (different from GPT)



(b) Evaluation phase.

<https://arxiv.org/abs/1901.02860>

# XLNet

<https://arxiv.org/abs/1906.08237>

Yang+ 2019

- Autoregressive model for masked language modelling
  - Uses permutations (factorization order) to provide context
  - Allows for context from both sides through permutation
  - Avoid [MASK] token that does not appear in downstream tasks

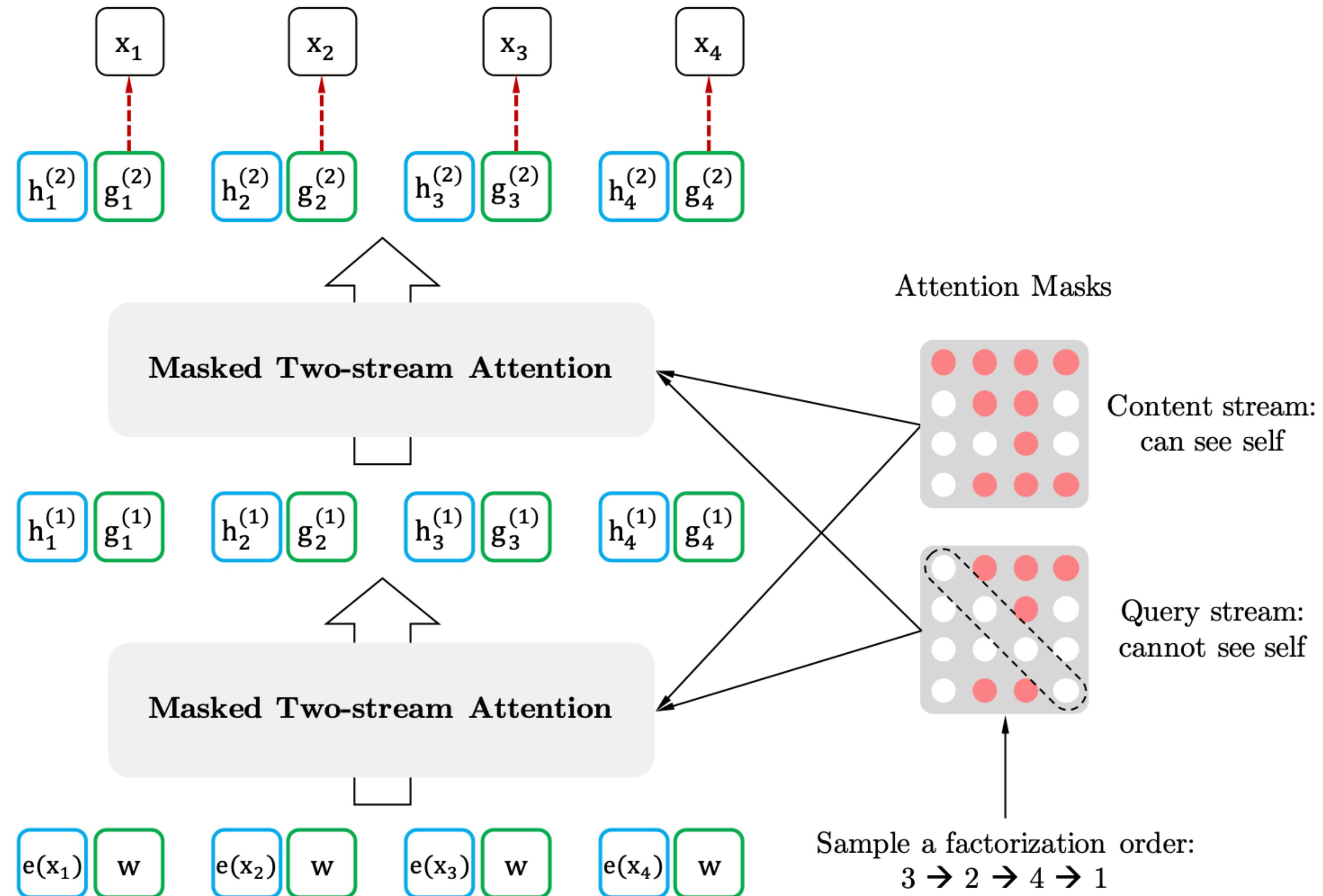
# XLNet

Yang+ 2019

<https://arxiv.org/abs/1906.08237>

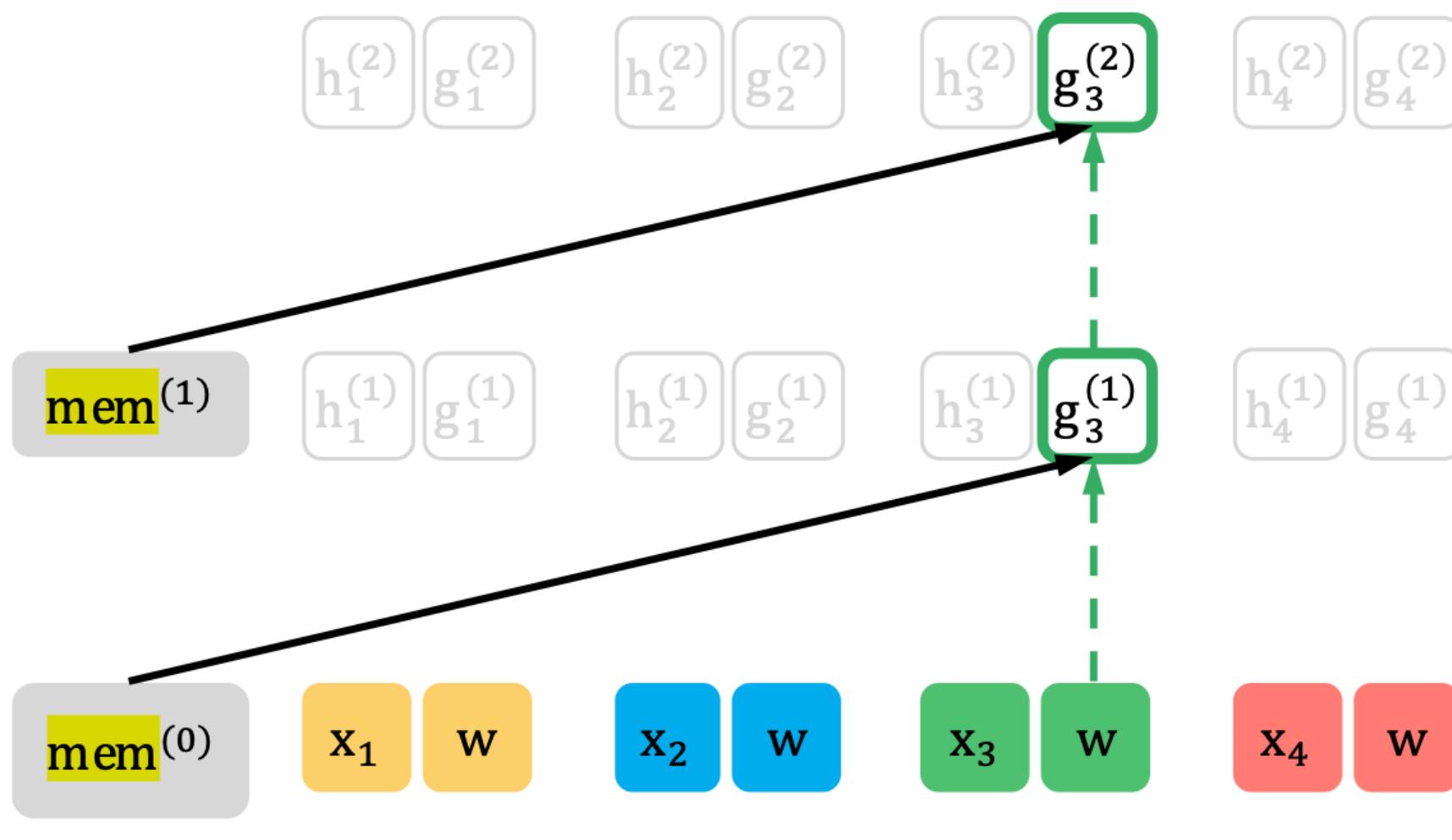
- Relative position embeddings (using auto-regressive TransformerXL)
  - Absolute attention: position 4 → 5; position 128 → 129
  - Relative attention: position  $t \rightarrow (t - 1)$
- Mask prediction over all token positions using permutation on factorization order (sample a factorization order: 3 → 2 → 1 → 4)
  - Two stream self-attention: standard and query on [MASK] token
  - Permute only factorization order, not sequence order

# XLNet

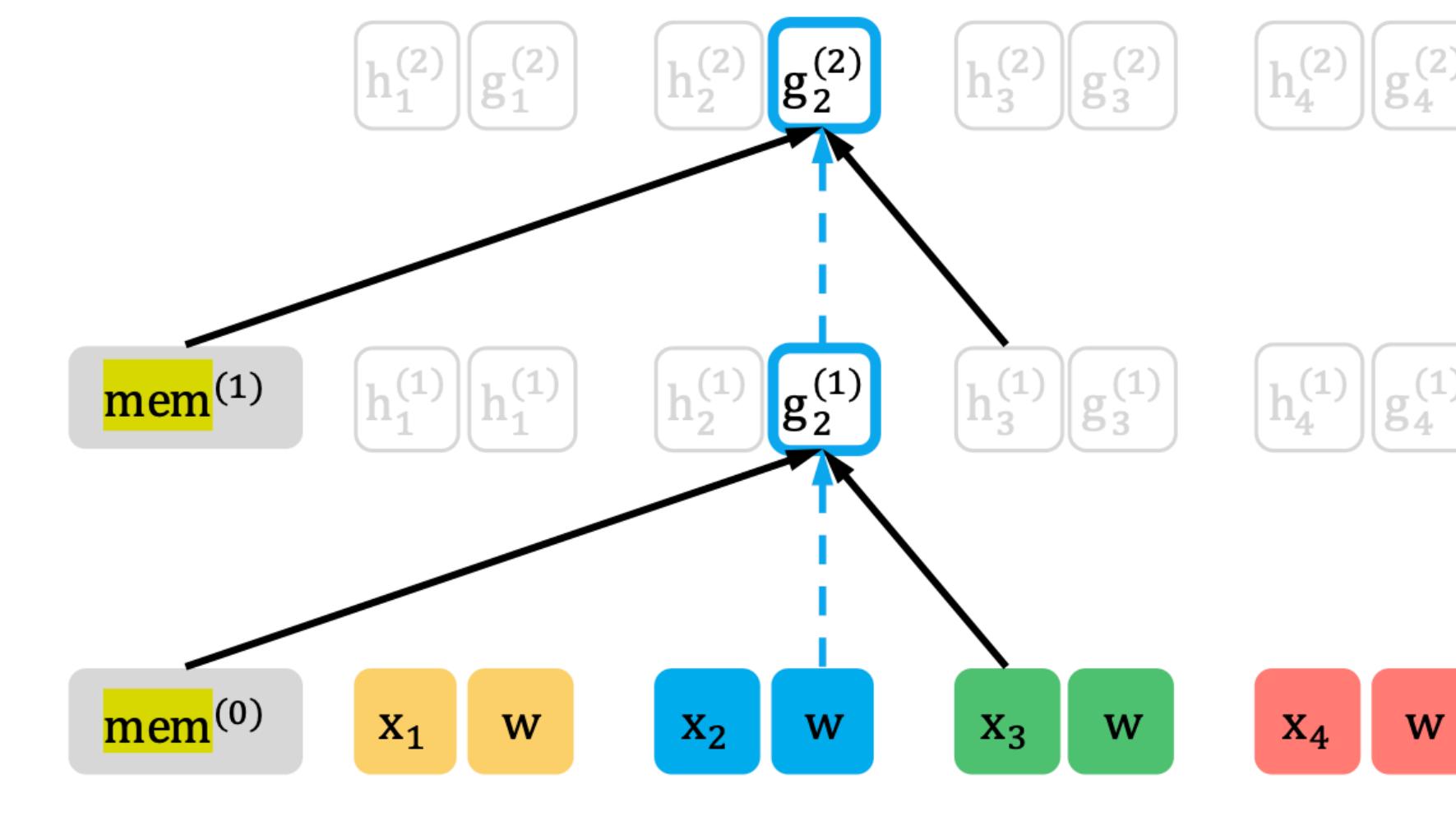


# XLNet

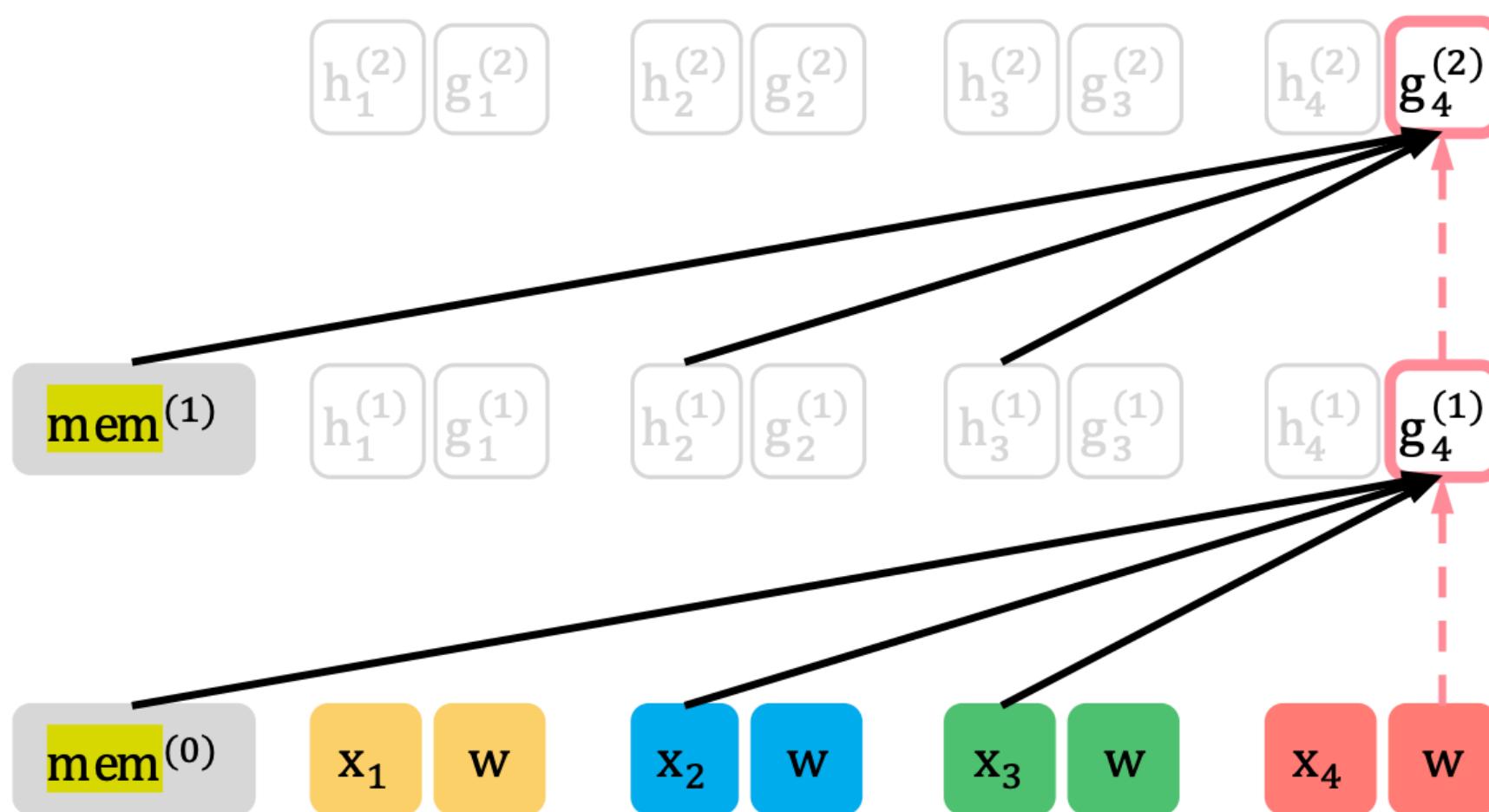
Split View of the Query Stream  
(Factorization order: 3 → 2 → 4 → 1)



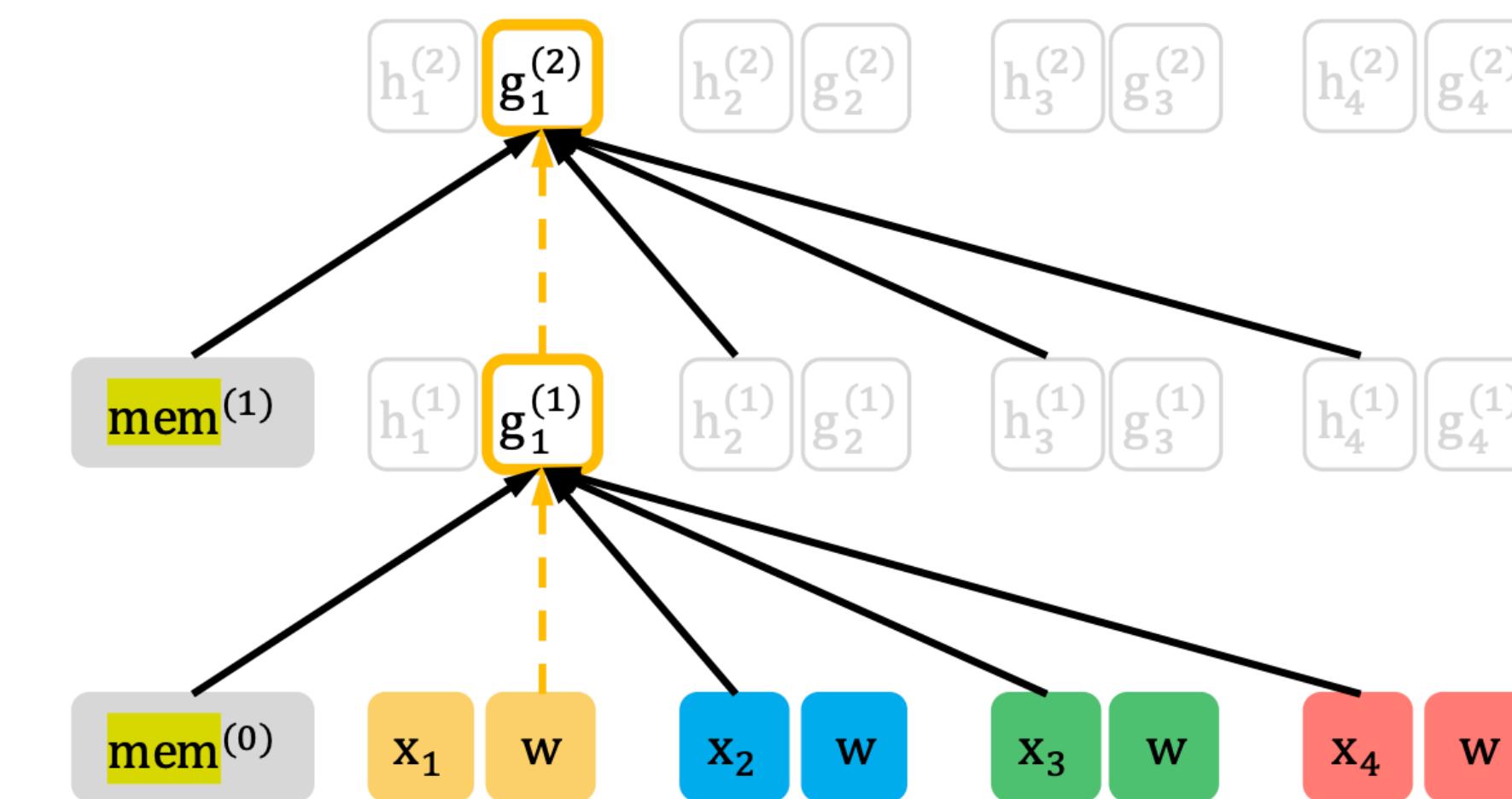
Position-3 View



Position-2 View



Position-4 View



Position-1 View

# XLNet

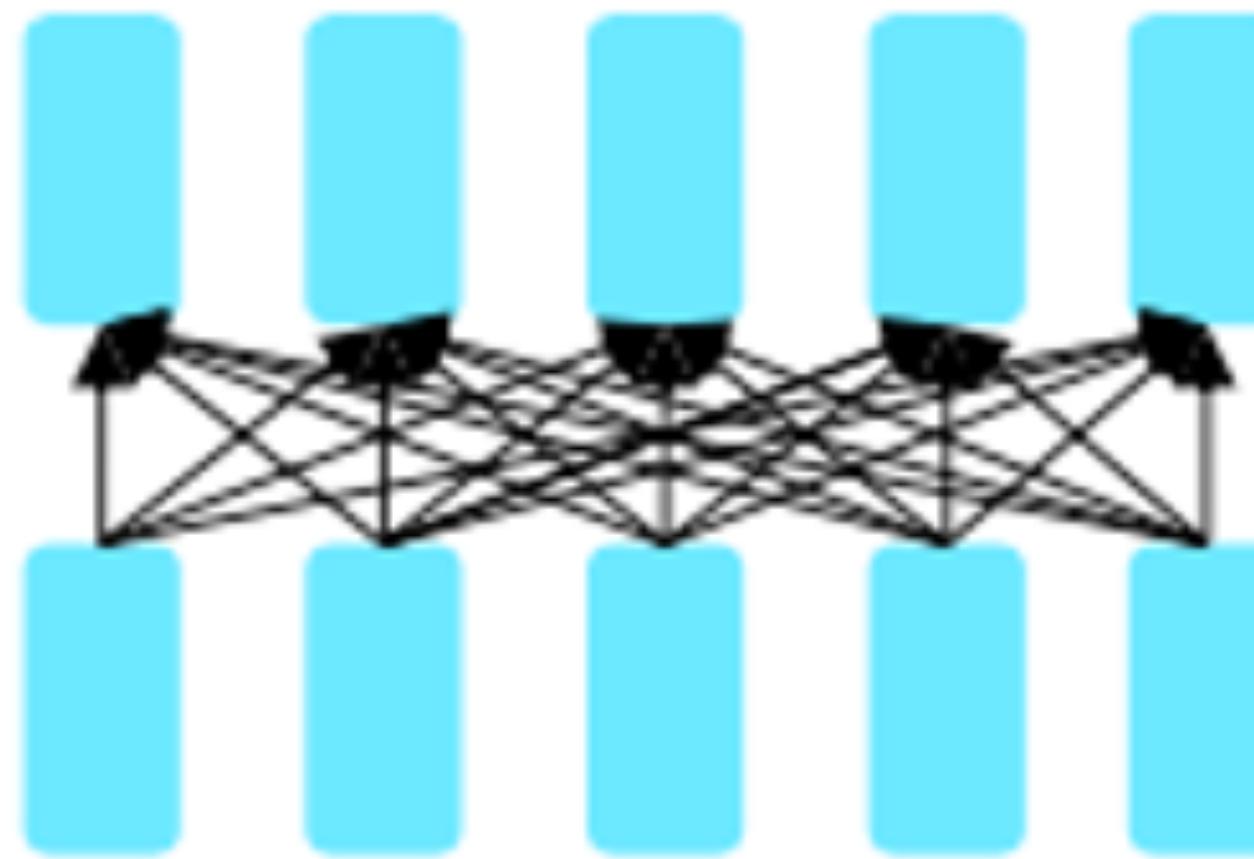
| Model                                   | MNLI             | QNLI        | QQP         | RTE         | SST-2       | MRPC        | CoLA        | STS-B       |
|-----------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <i>Single-task single models on dev</i> |                  |             |             |             |             |             |             |             |
| BERT [2]                                | 86.6/-           | 92.3        | 91.3        | 70.4        | 93.2        | 88.0        | 60.6        | 90.0        |
| RoBERTa [21]                            | 90.2/90.2        | 94.7        | 92.2        | <b>86.6</b> | 96.4        | <b>90.9</b> | 68.0        | 92.4        |
| XLNet                                   | <b>90.8/90.8</b> | <b>94.9</b> | <b>92.3</b> | 85.9        | <b>97.0</b> | 90.8        | <b>69.0</b> | <b>92.5</b> |



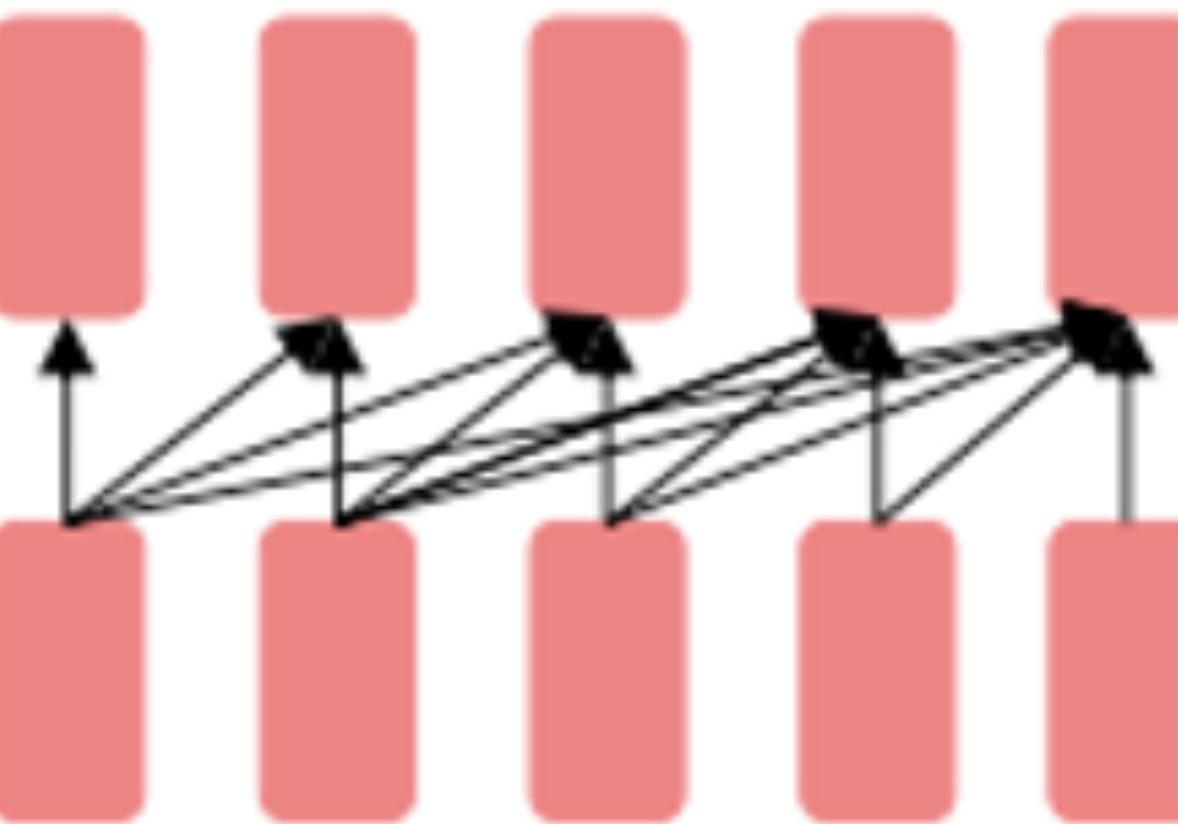
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

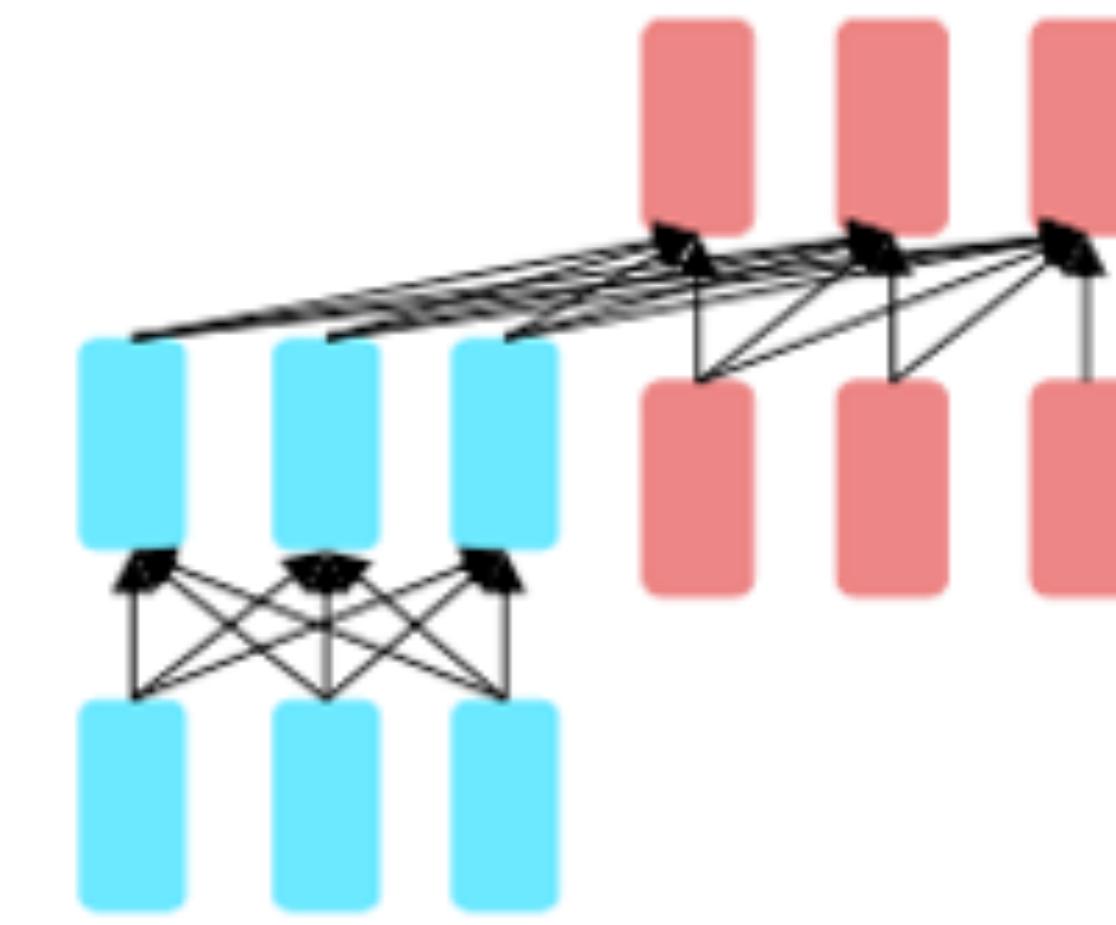
Encoder only



Decoder only



Encoder-Decoder



- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- 

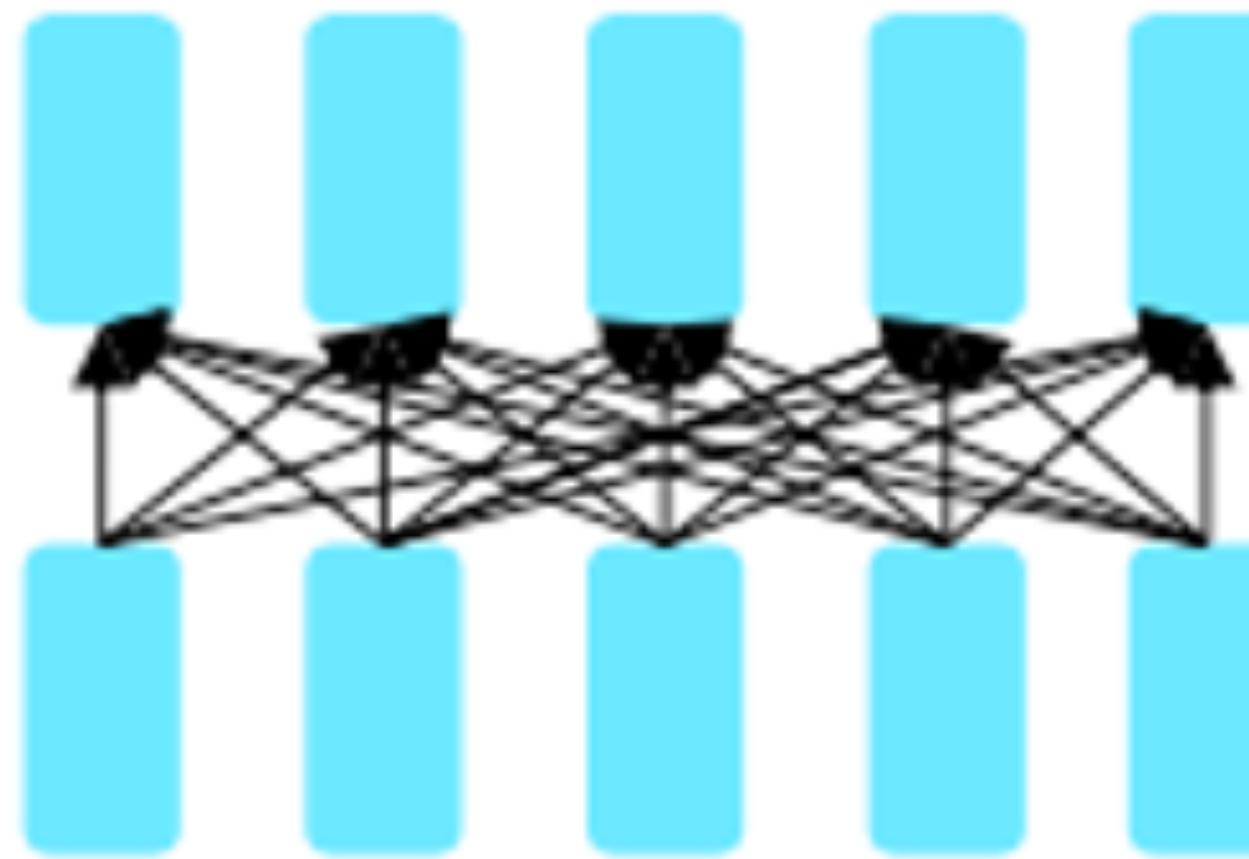
- Language models
- Can't condition on future words, good for generation
- GPT, LLaMa, PaLM

- Combine benefits of both
- Original Transformer, UniLM, BART, T5

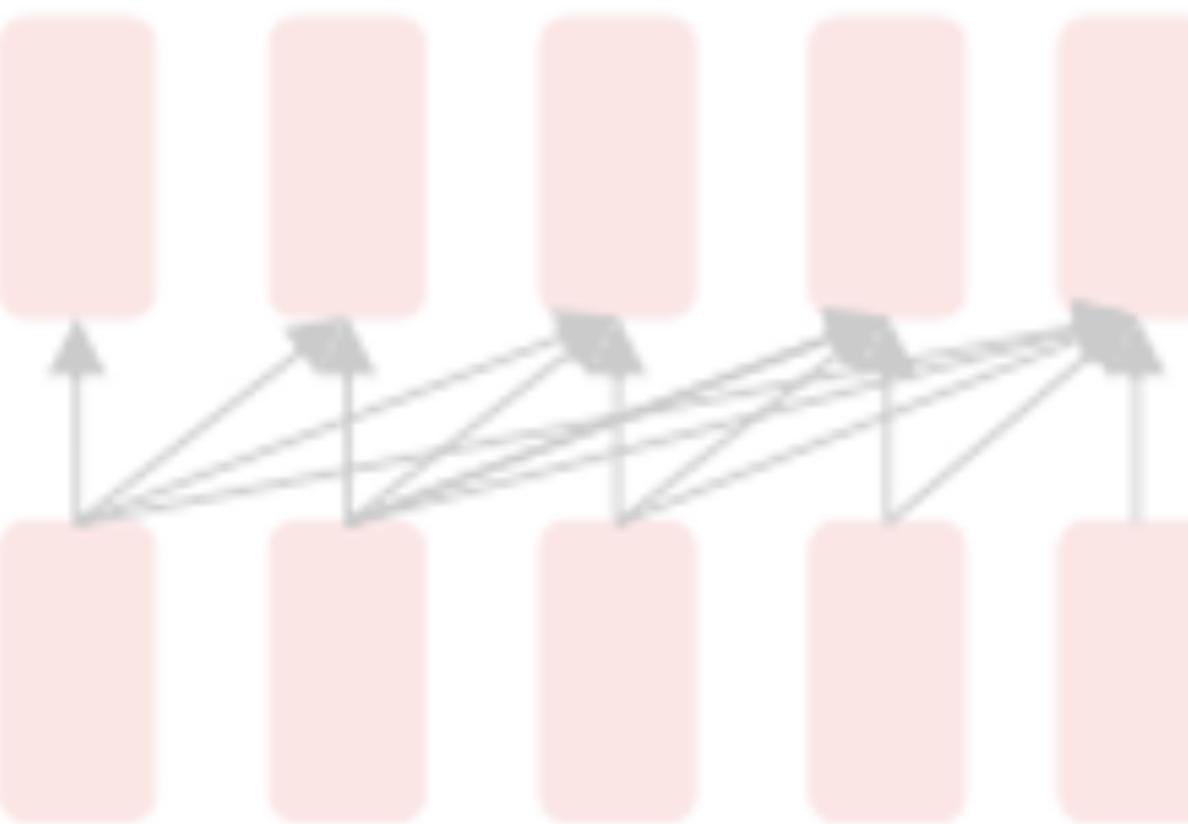
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

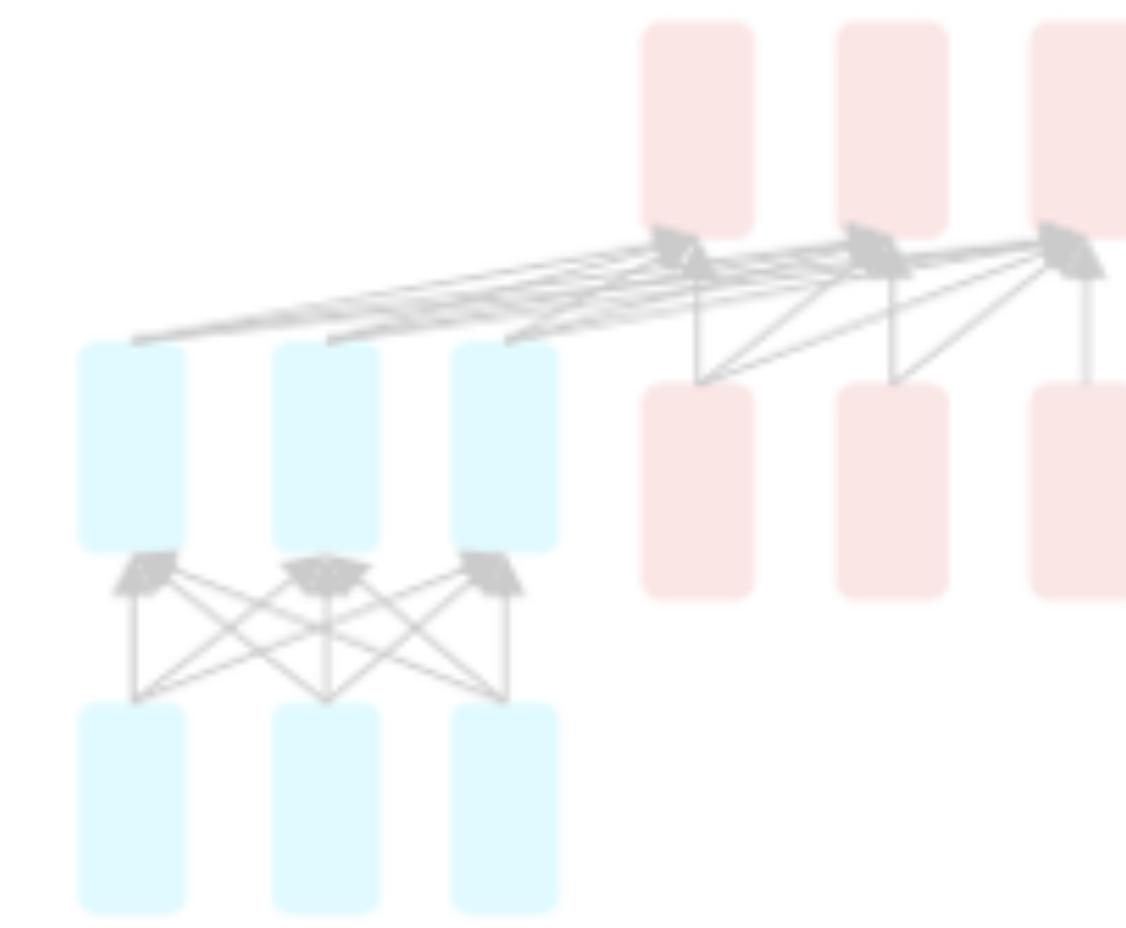
Encoder only



Decoder only



Encoder-Decoder



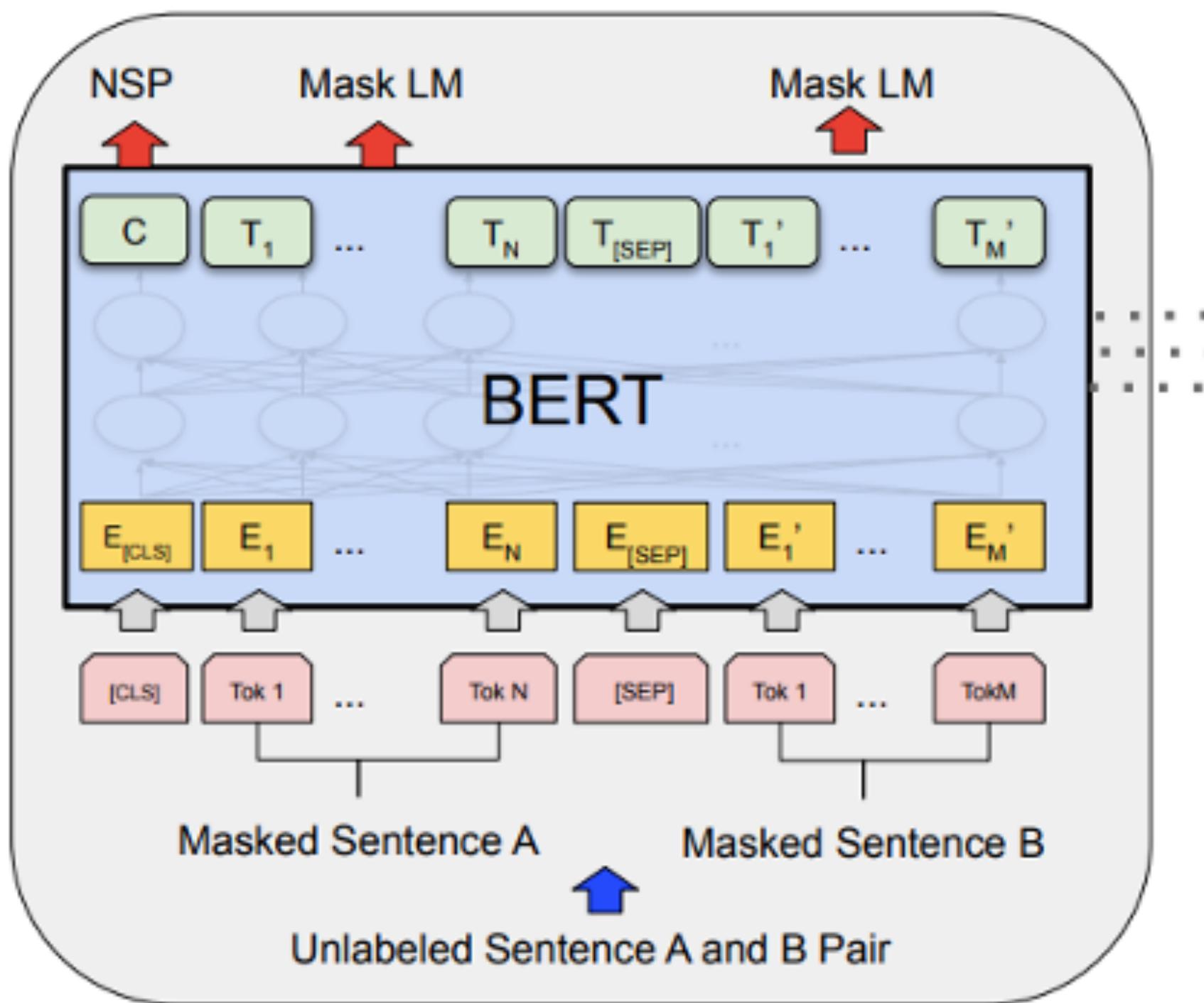
- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- 

- Language models
- Can't condition on future words, good for generation
- GPT, LLaMa, PaLM

- Combine benefits of both
- Original Transformer, UniLM, BART, T5

# Bidirectional encoder models

## BERT



## Variants

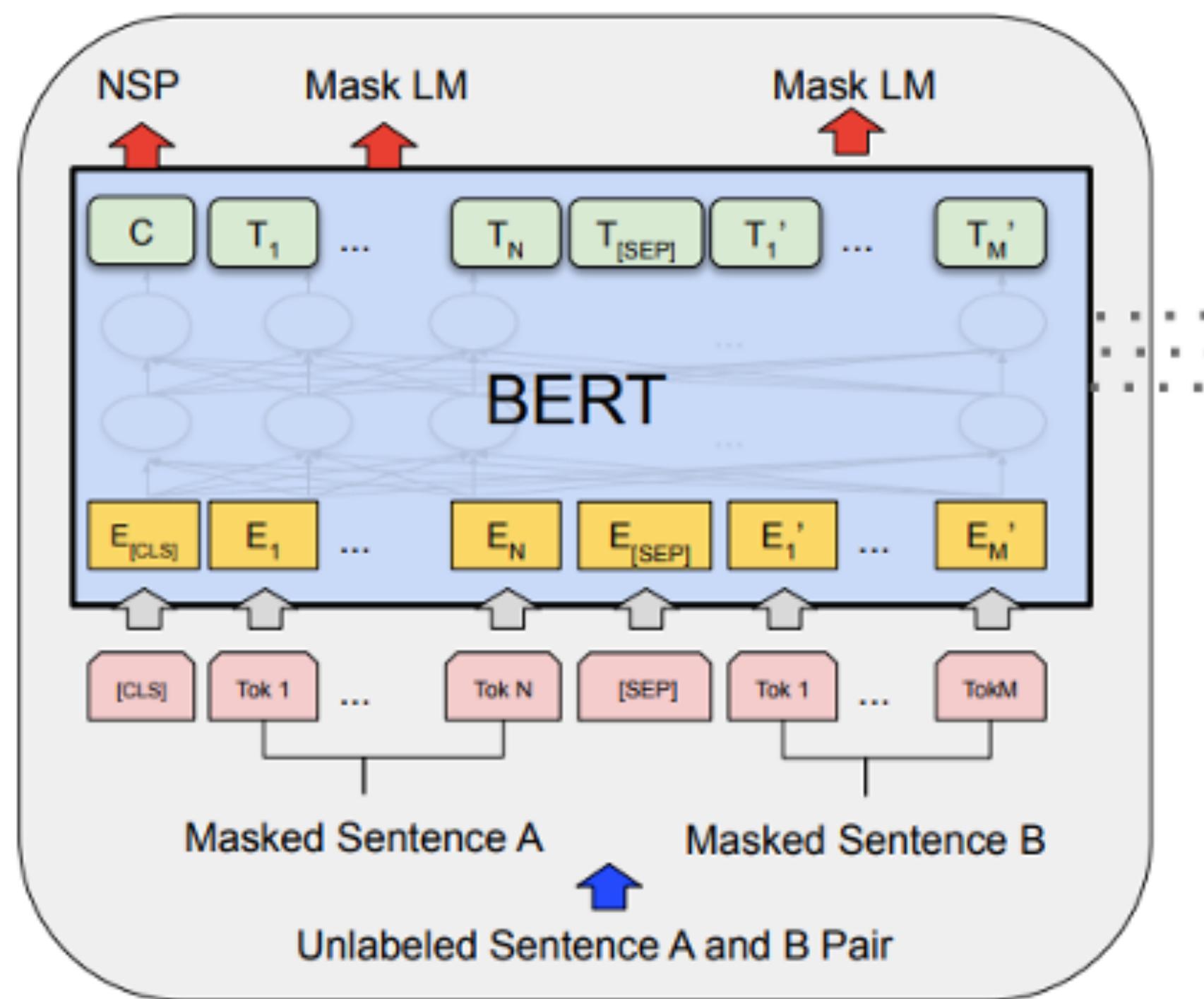
- RoBERTa - train longer, more data, larger batch size, NSP not needed,
- SpanBERT - mask spans
- BERT style training used in vision, modelling audio, DNA, etc

## Pre-training

Objectives: masked token prediction  
+ next sentence prediction

# Bidirectional encoder models

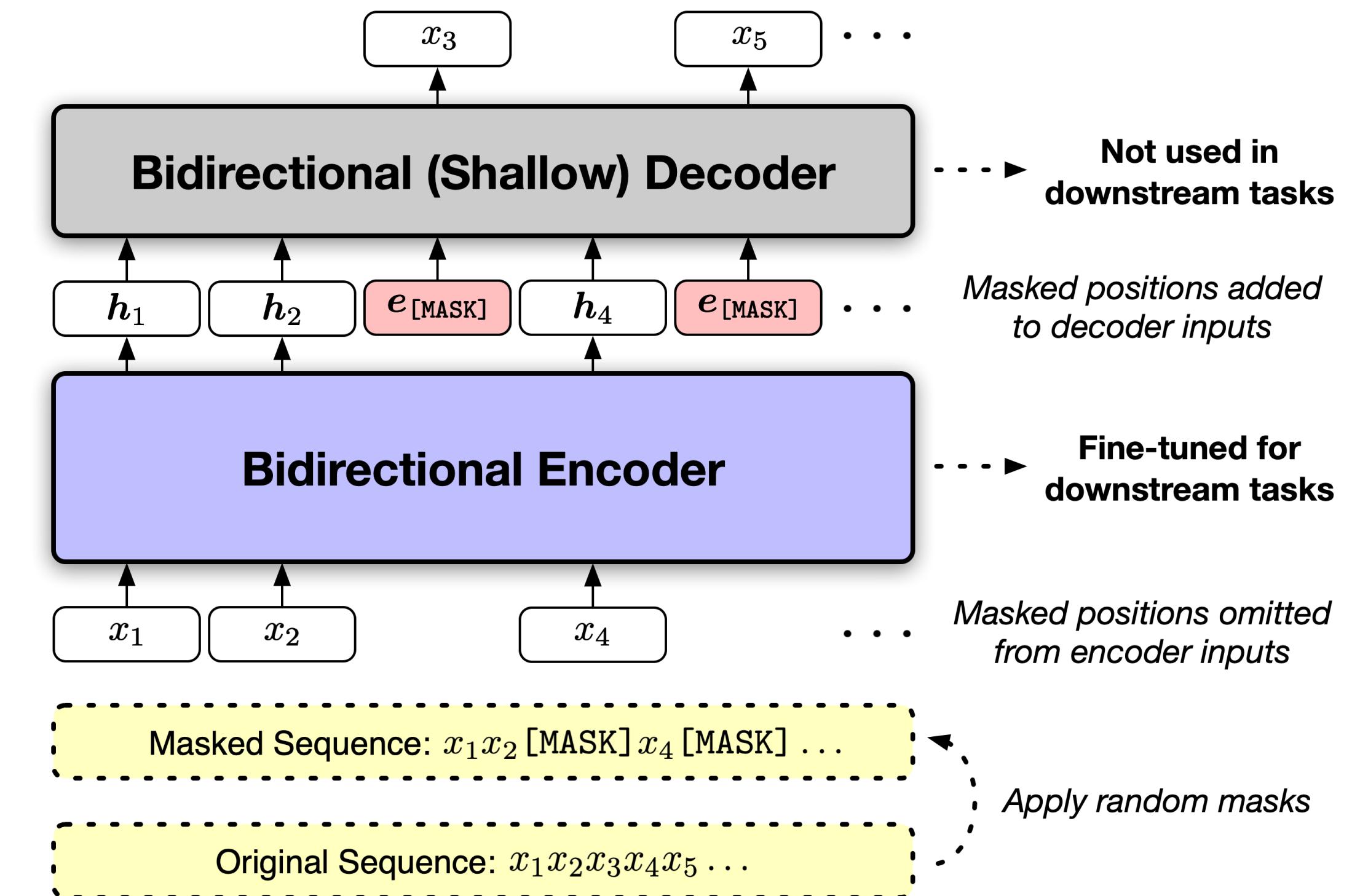
BERT



Pre-training

Objectives: masked token prediction  
+ next sentence prediction

MAE-LM

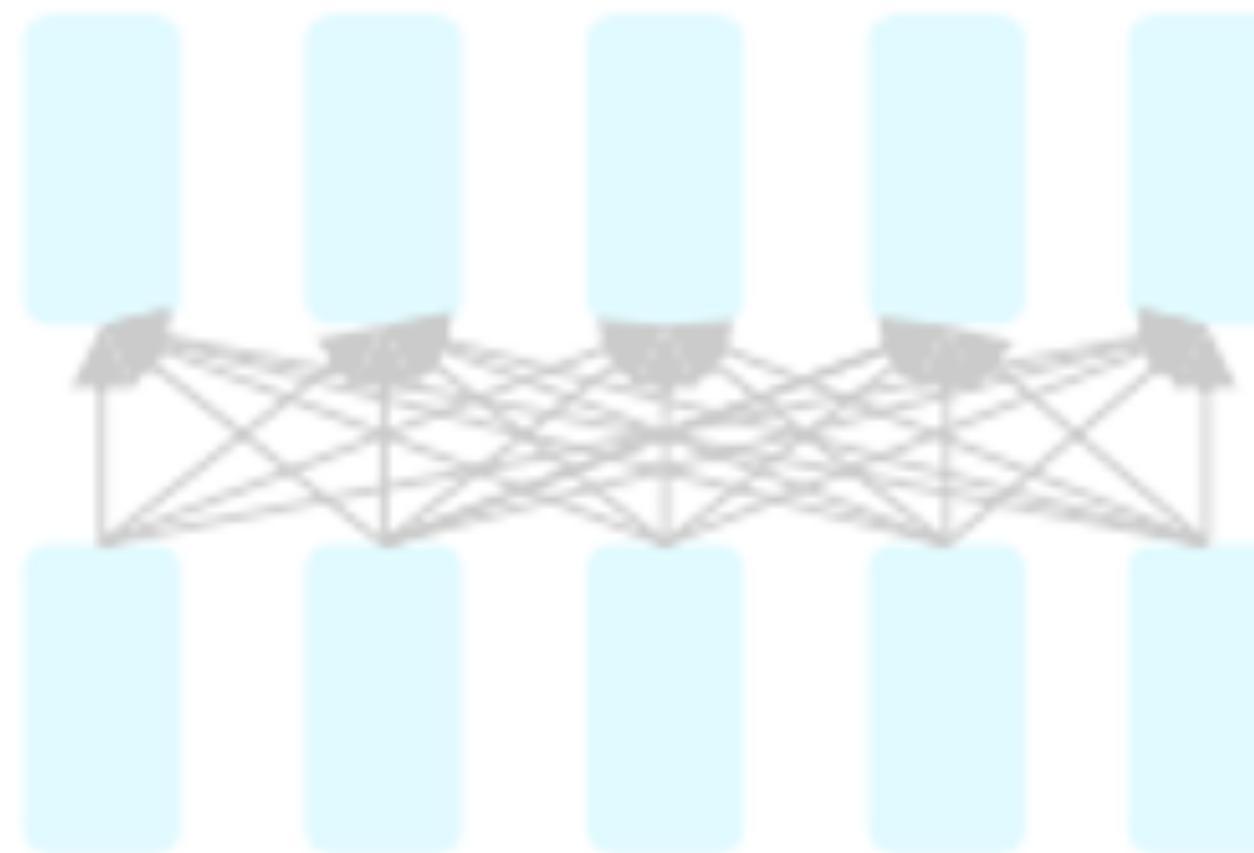


Don't pass [MASK] token to encoder

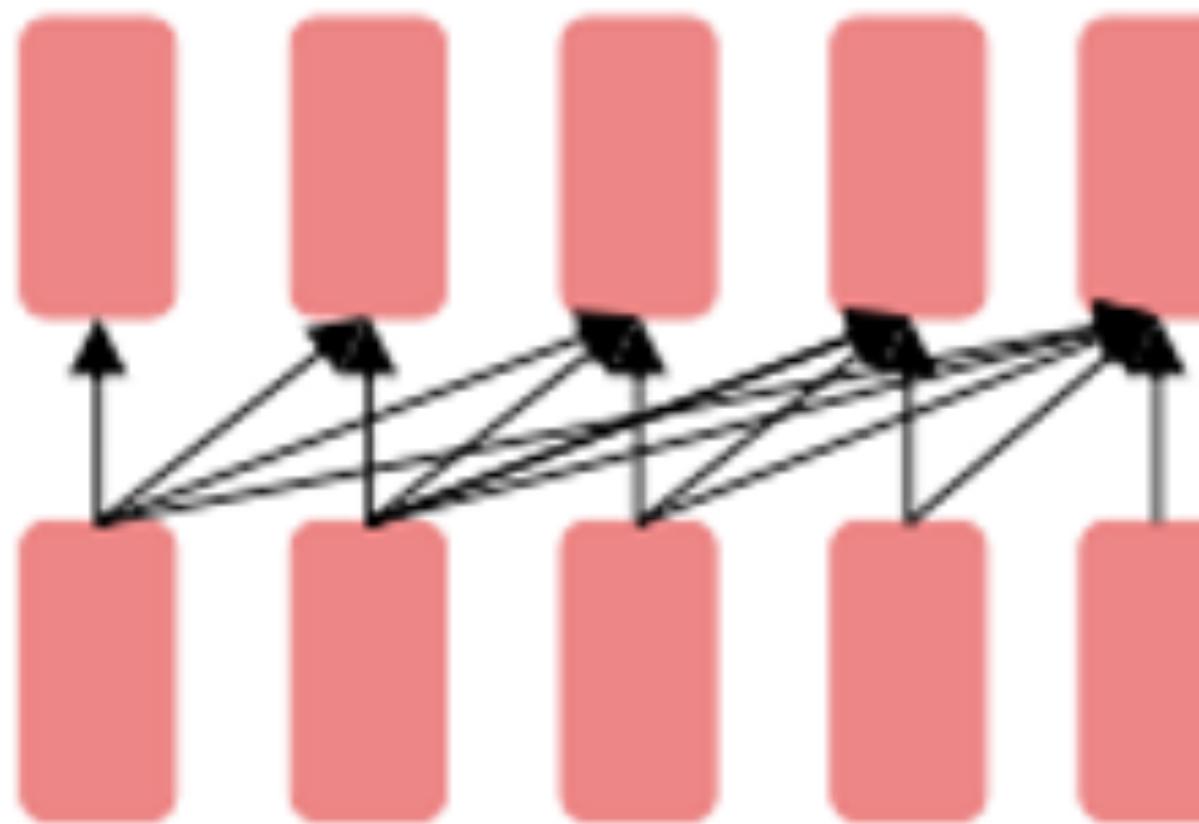
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

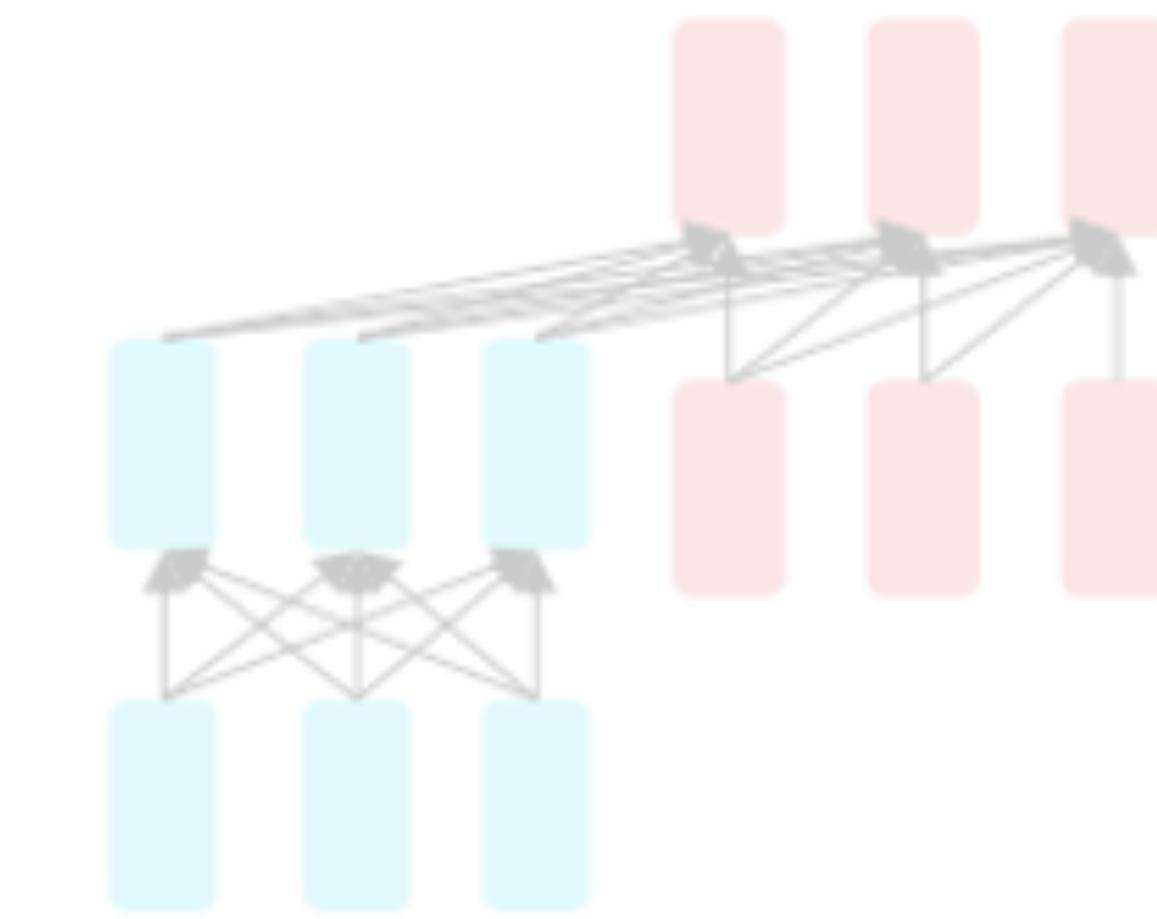
Encoder only



Decoder only



Encoder-Decoder



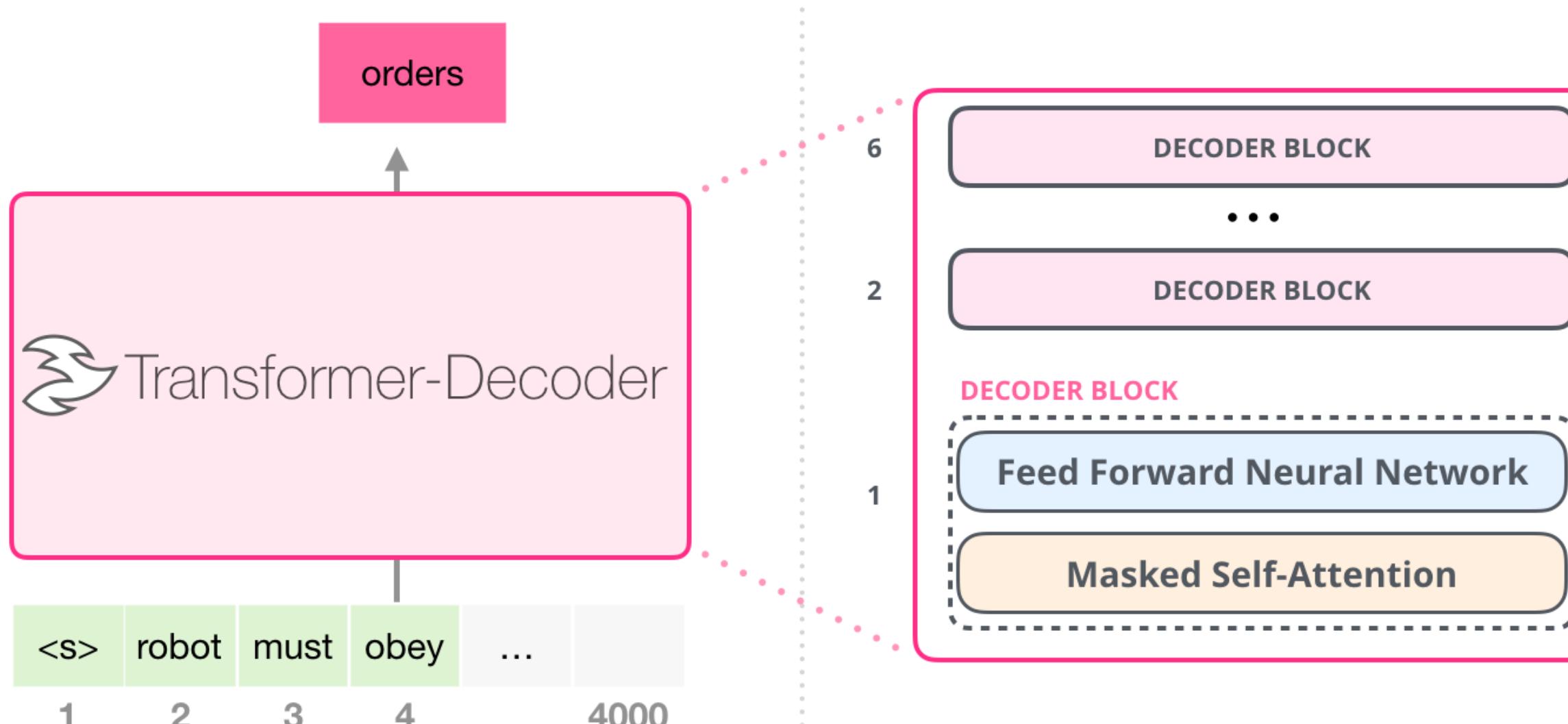
- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- 

- Language models
- Can't condition on future words, good for generation
- GPT, LLaMa, PaLM

- Combine benefits of both
- Original Transformer, UniLM, BART, T5

# Autoregressive decoder-only models

GPT



<https://jalammar.github.io/illustrated-gpt2/>

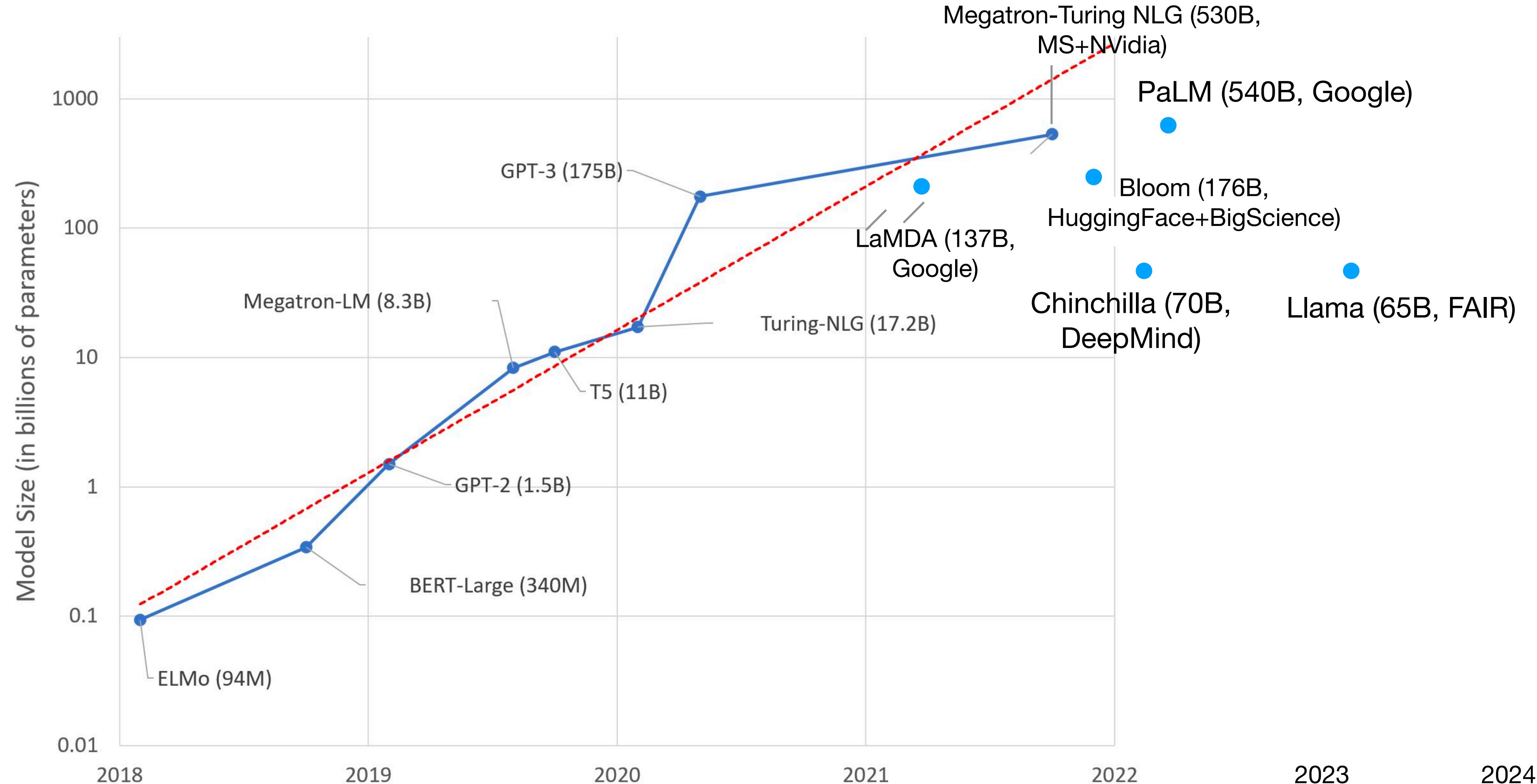
Rise of LLMs

- Multi-task training: modelling all tasks as autoregressive language modeling
- Scaling up to lots and lots and hundreds of billions of parameters
- Scaling up requires system engineering, tweaks to architecture for training stability
- Multi-lingual, multi-modal...

Objectives: next token prediction

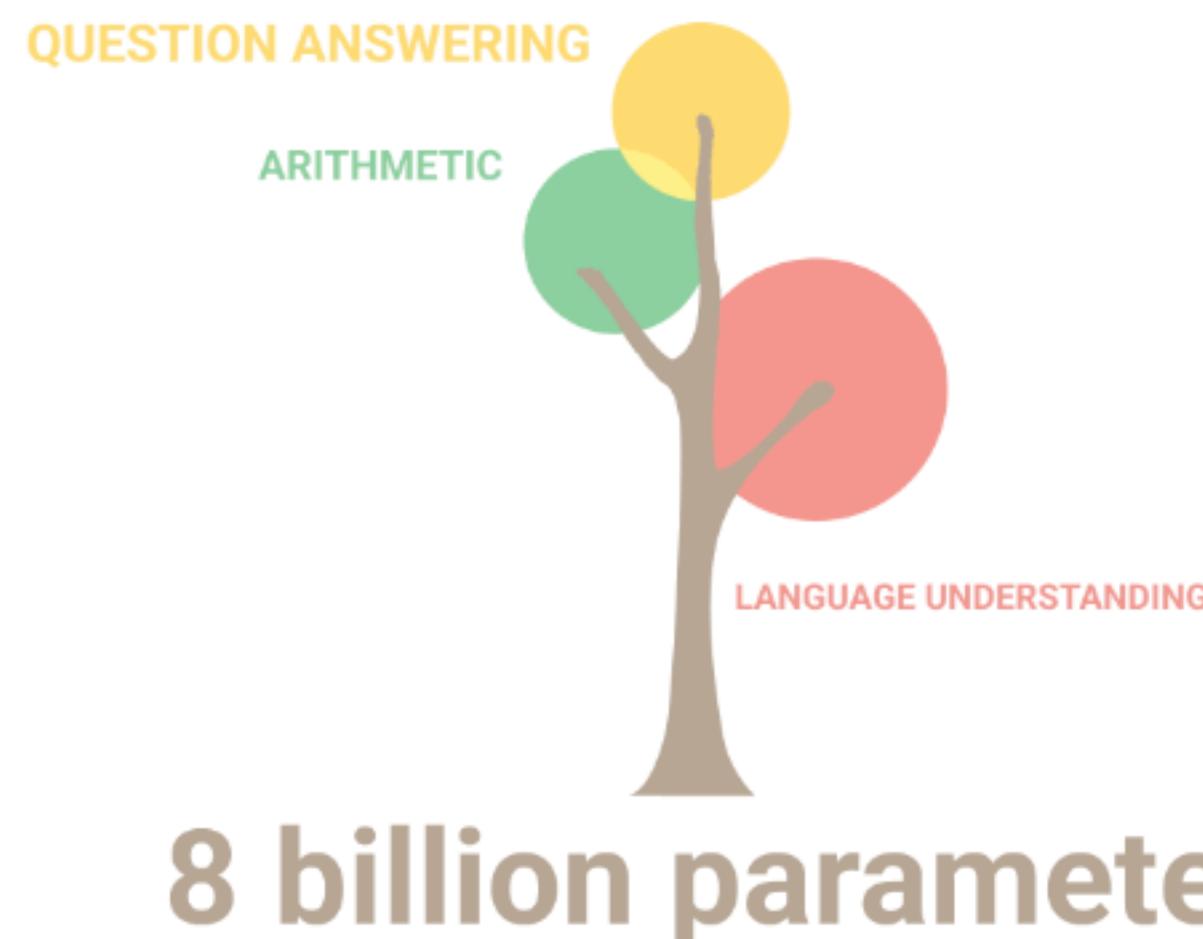
# Larger and larger language models

GPTv4 (1.7T?, OpenAI)



<https://huggingface.co/blog/large-language-models>

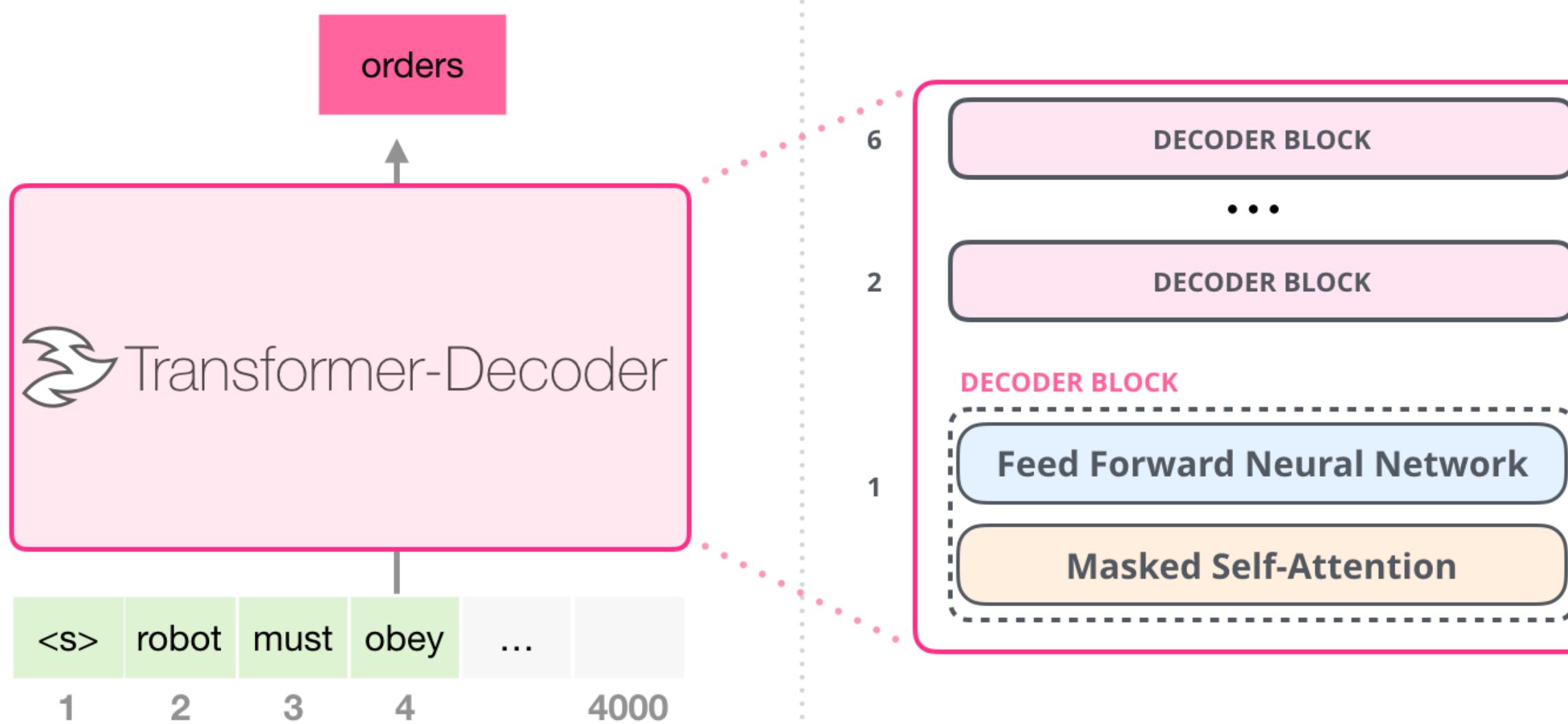
# New capabilities emerge at scale



<https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html>

# Autoregressive decoder-only models

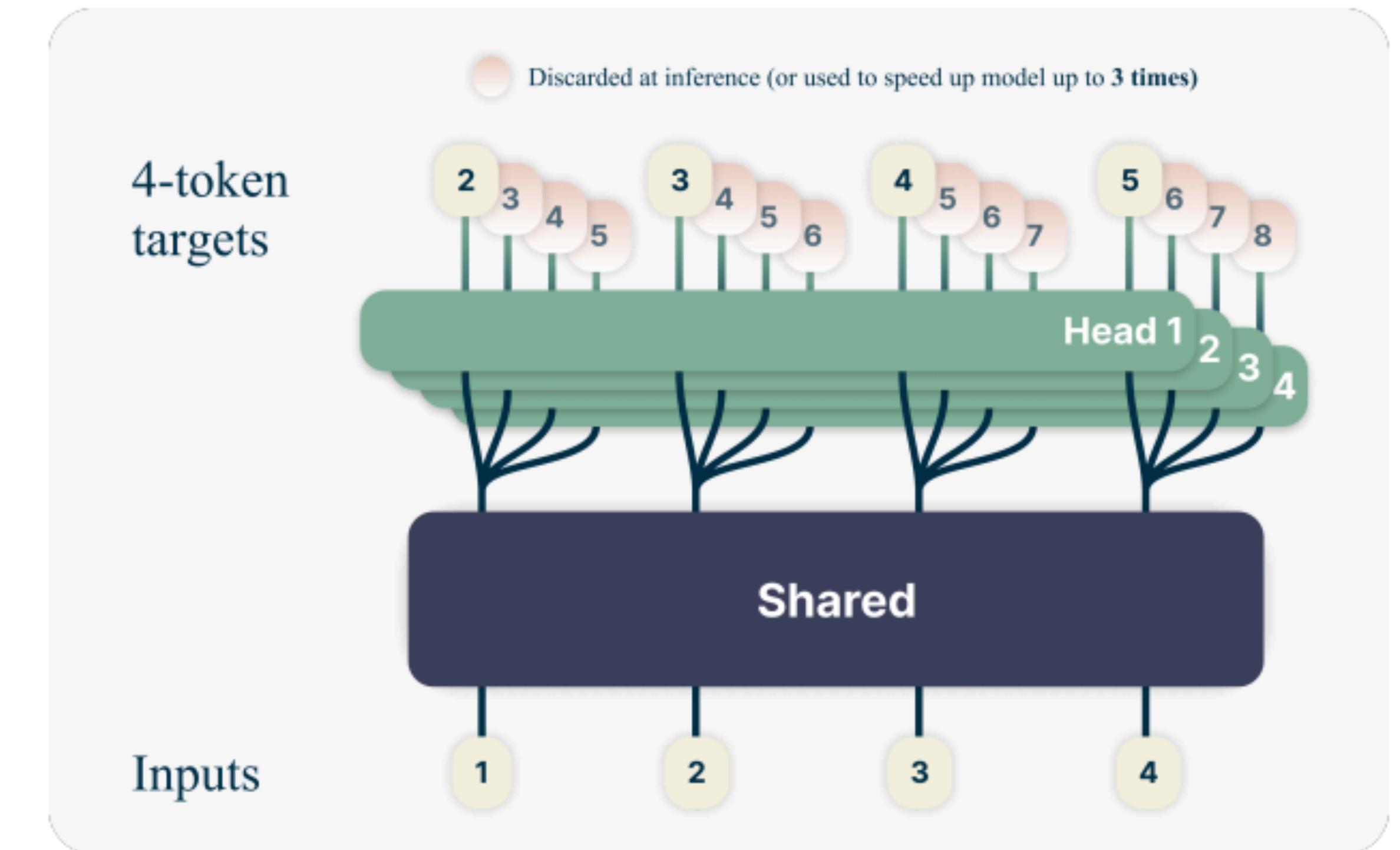
GPT



<https://jalammar.github.io/illustrated-gpt2/>

Objectives: next token prediction

Advances

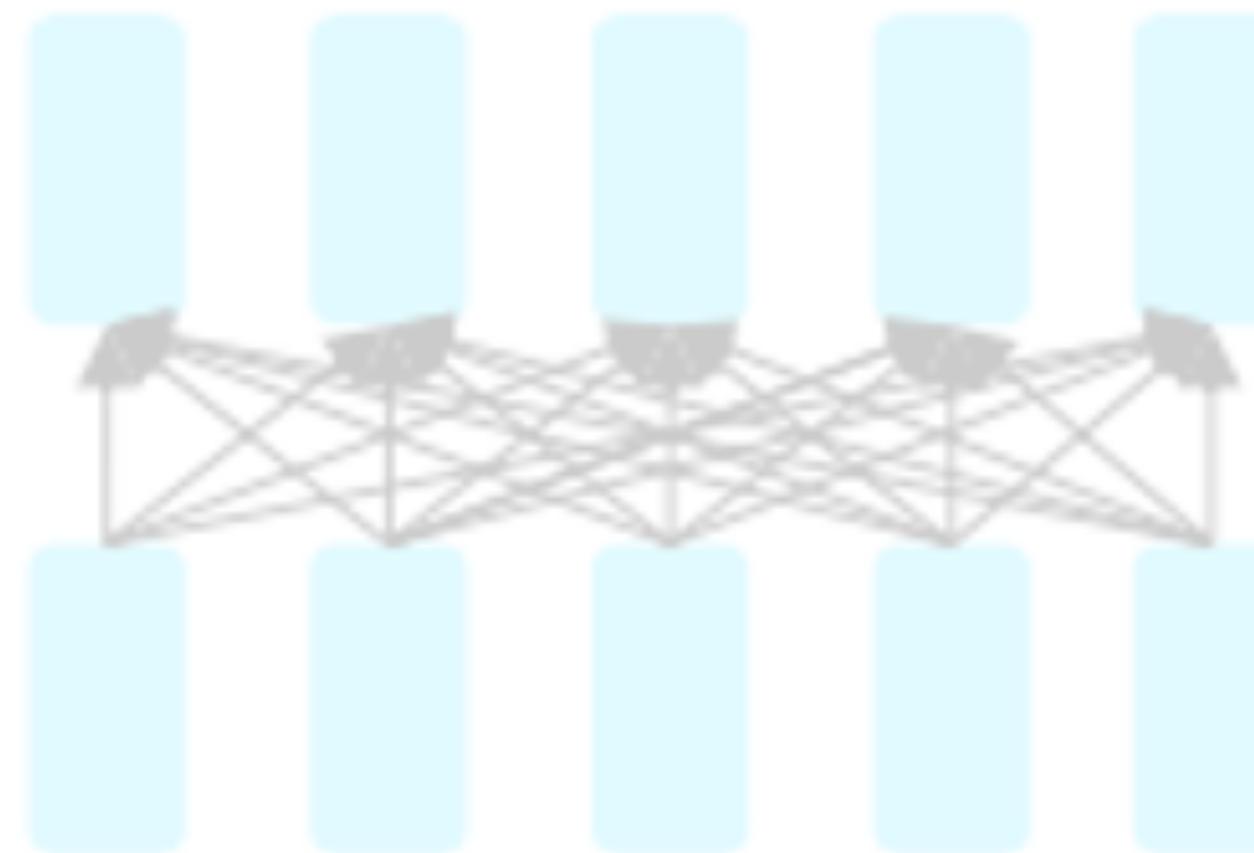


Objectives: multi token prediction

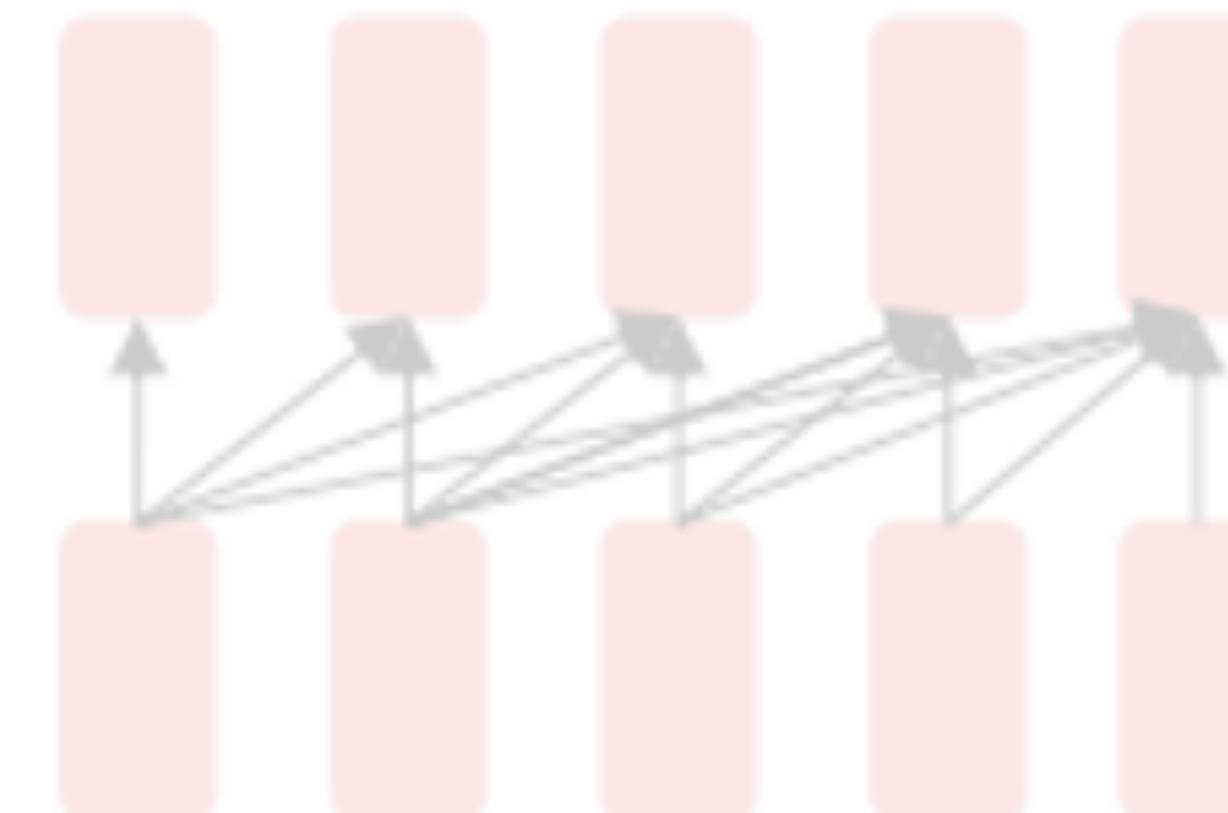
# Transformers for pretraining

- Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.
- Trained on large text corpus with self-supervised objectives and then transferred.

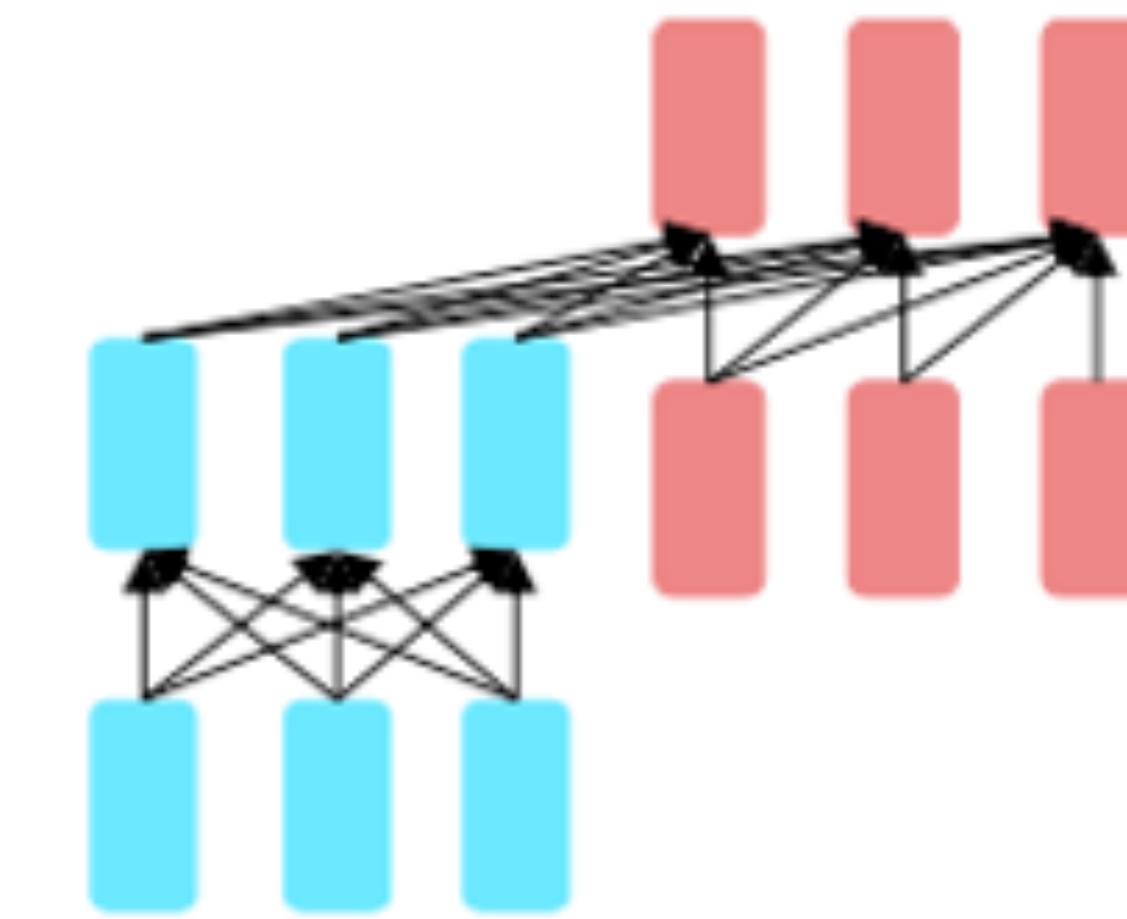
Encoder only



Decoder only



Encoder-Decoder



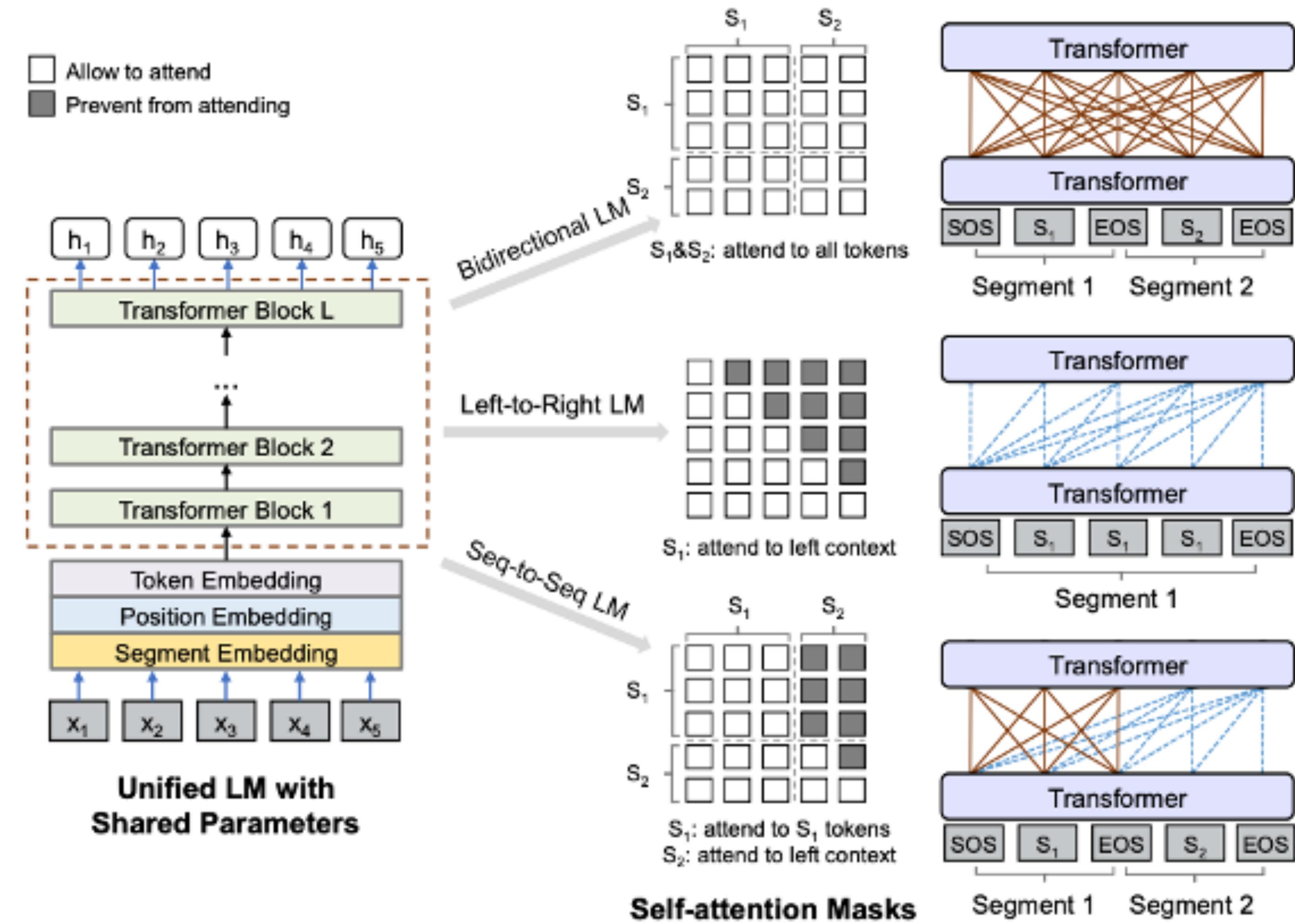
- Masked language models
- Bidirectional context
- BERT + variants (e.g. RoBERTa)
- 

- Language models
- Can't condition on future words, good for generation
- GPT, LLaMa, PaLM

- Combine benefits of both
- Original Transformer, UniLM, BART, T5

# Encoder-Decoder pretraining

- Combine advantages of both encoder and decoder
- Seq2Seq LM with masking
- Next sentence prediction

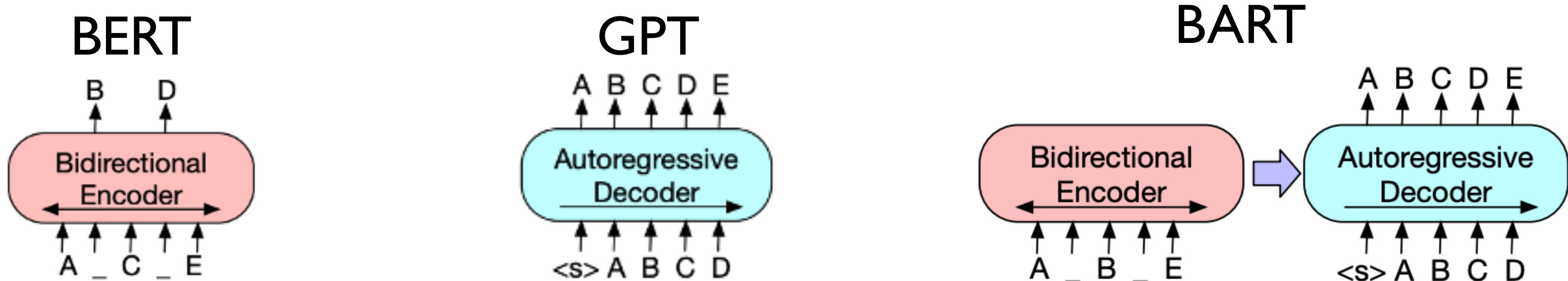


# UniLM v1

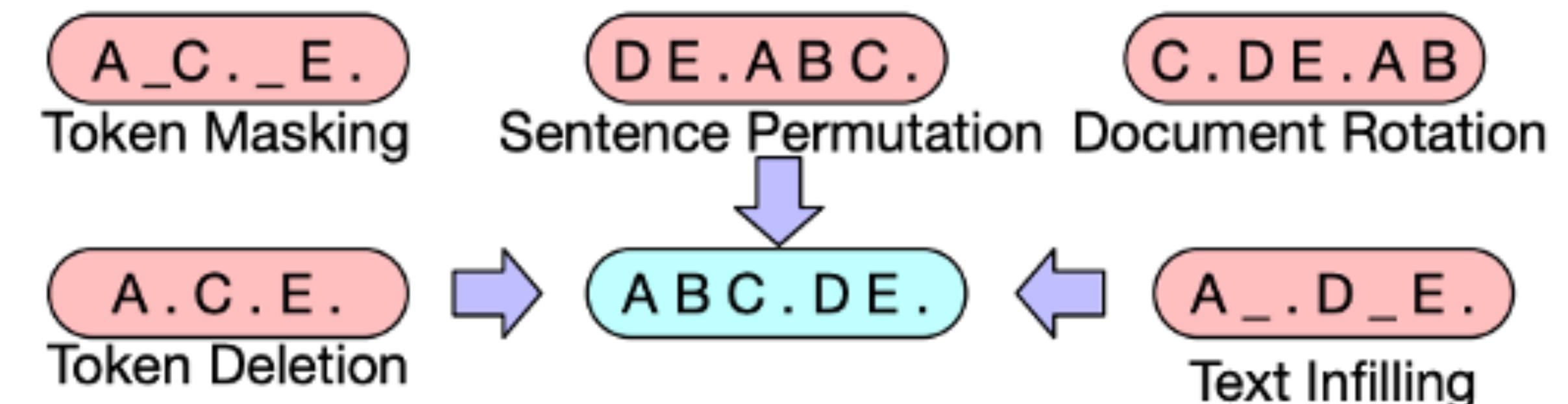
- Combine benefits of BERT (encoder) and GPT (decoder)

| <b>Model</b>          | CoLA        | SST-2       | MRPC        | STS-B       | QQP         | MNLI-m/mm        | QNLI        | RTE         | WNLI | AX   | <b>Score</b> |
|-----------------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|-------------|------|------|--------------|
|                       | MCC         | Acc         | F1          | S Corr      | F1          | Acc              | Acc         | Acc         | Acc  | Acc  |              |
| GPT                   | 45.4        | 91.3        | 82.3        | 80.0        | 70.3        | 82.1/81.4        | 87.4        | 56.0        | 53.4 | 29.8 | 72.8         |
| BERT <sub>LARGE</sub> | 60.5        | <b>94.9</b> | 89.3        | 86.5        | <b>72.1</b> | <b>86.7/85.9</b> | <b>92.7</b> | 70.1        | 65.1 | 39.6 | 80.5         |
| UNILM                 | <b>61.1</b> | 94.5        | <b>90.0</b> | <b>87.7</b> | 71.7        | <b>87.0/85.9</b> | <b>92.7</b> | <b>70.9</b> | 65.1 | 38.4 | <b>80.8</b>  |

# BART: Denoising seq2seq training

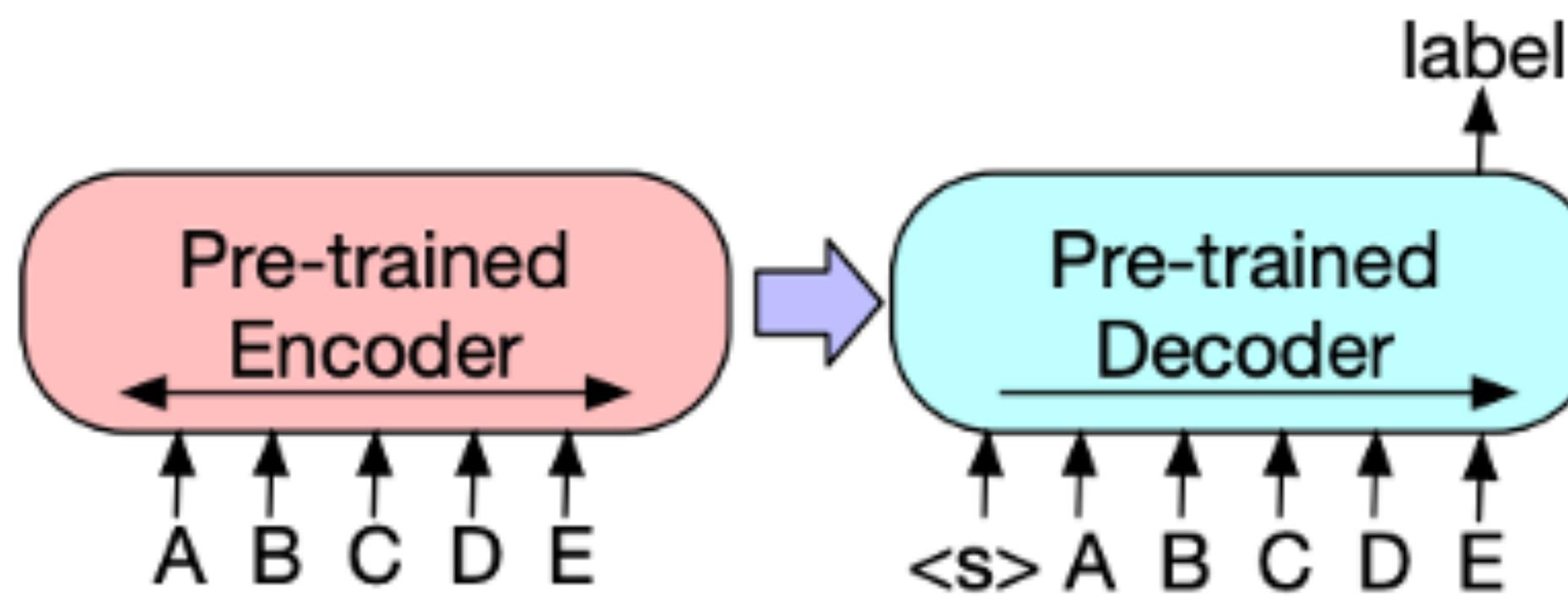


- Combine benefits of BERT (encoder) and GPT (decoder)
- More flexibility in noise generation

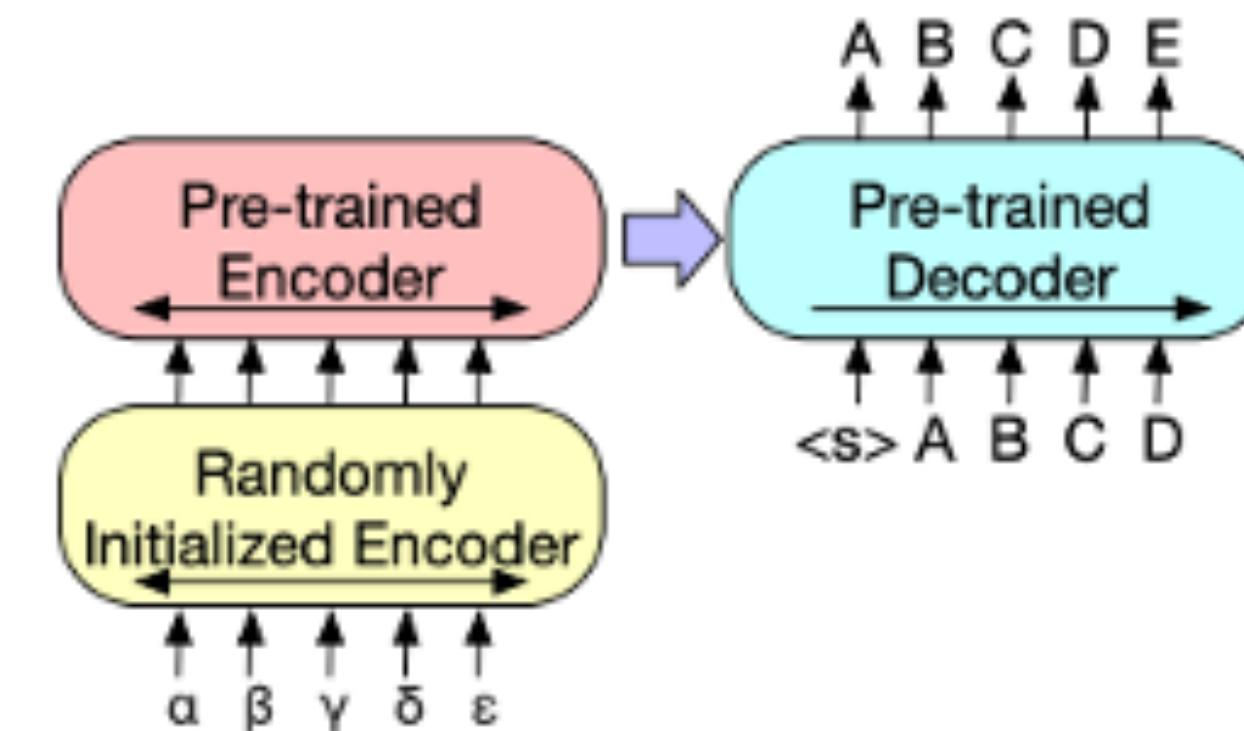


# BART: Denoising seq2seq training

## Classification



## Machine Translation

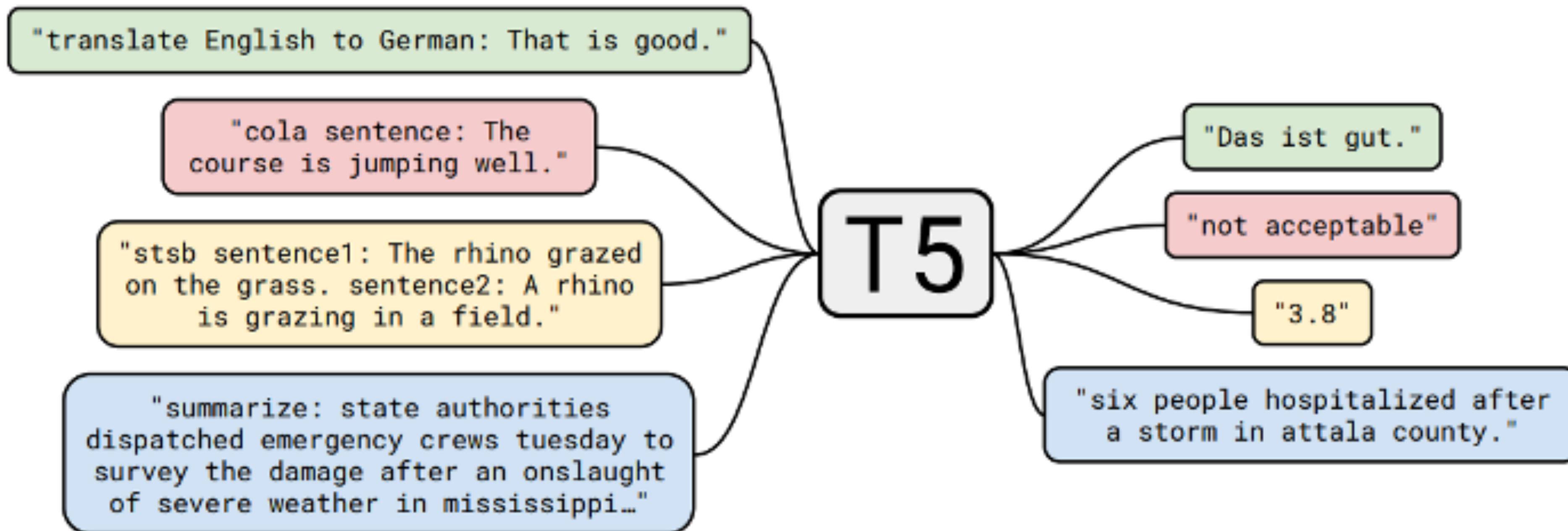


|         | SQuAD 1.1<br>EM/F1 | SQuAD 2.0<br>EM/F1 | MNLI<br>m/mm     | SST<br>Acc  | QQP<br>Acc  | QNLI<br>Acc | STS-B<br>Acc | RTE<br>Acc  | MRPC<br>Acc | CoLA<br>Mcc |
|---------|--------------------|--------------------|------------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|
| BERT    | 84.1/90.9          | 79.0/81.8          | 86.6/-           | 93.2        | 91.3        | 92.3        | 90.0         | 70.4        | 88.0        | 60.6        |
| UniLM   | -/-                | 80.5/83.4          | 87.0/85.9        | 94.5        | -           | 92.7        | -            | 70.9        | -           | 61.1        |
| XLNet   | <b>89.0/94.5</b>   | 86.1/88.8          | 89.8/-           | 95.6        | 91.8        | 93.9        | 91.8         | 83.8        | 89.2        | 63.6        |
| RoBERTa | <b>88.9/94.6</b>   | <b>86.5/89.4</b>   | <b>90.2/90.2</b> | 96.4        | 92.2        | 94.7        | <b>92.4</b>  | 86.6        | <b>90.9</b> | <b>68.0</b> |
| BART    | <b>88.8/94.6</b>   | 86.1/89.2          | 89.9/90.1        | <b>96.6</b> | <b>92.5</b> | <b>94.9</b> | 91.2         | <b>87.0</b> | 90.4        | 62.8        |

# T5: Text to Text Transfer Transformer

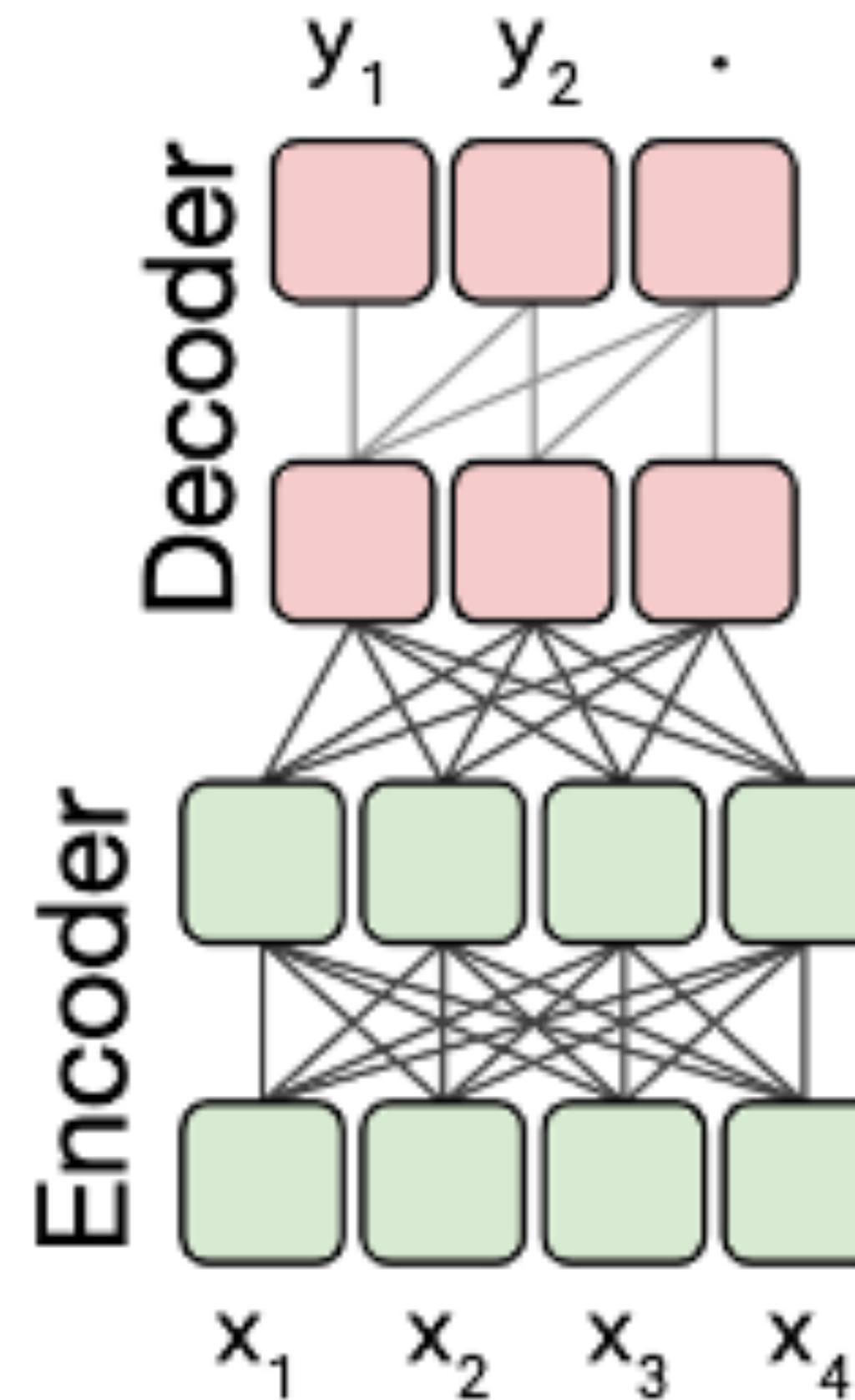
<https://arxiv.org/abs/1910.10683>

- Treat all NLP problems as encoding text and generating text
- Trained on cleaned up version of Common Crawl



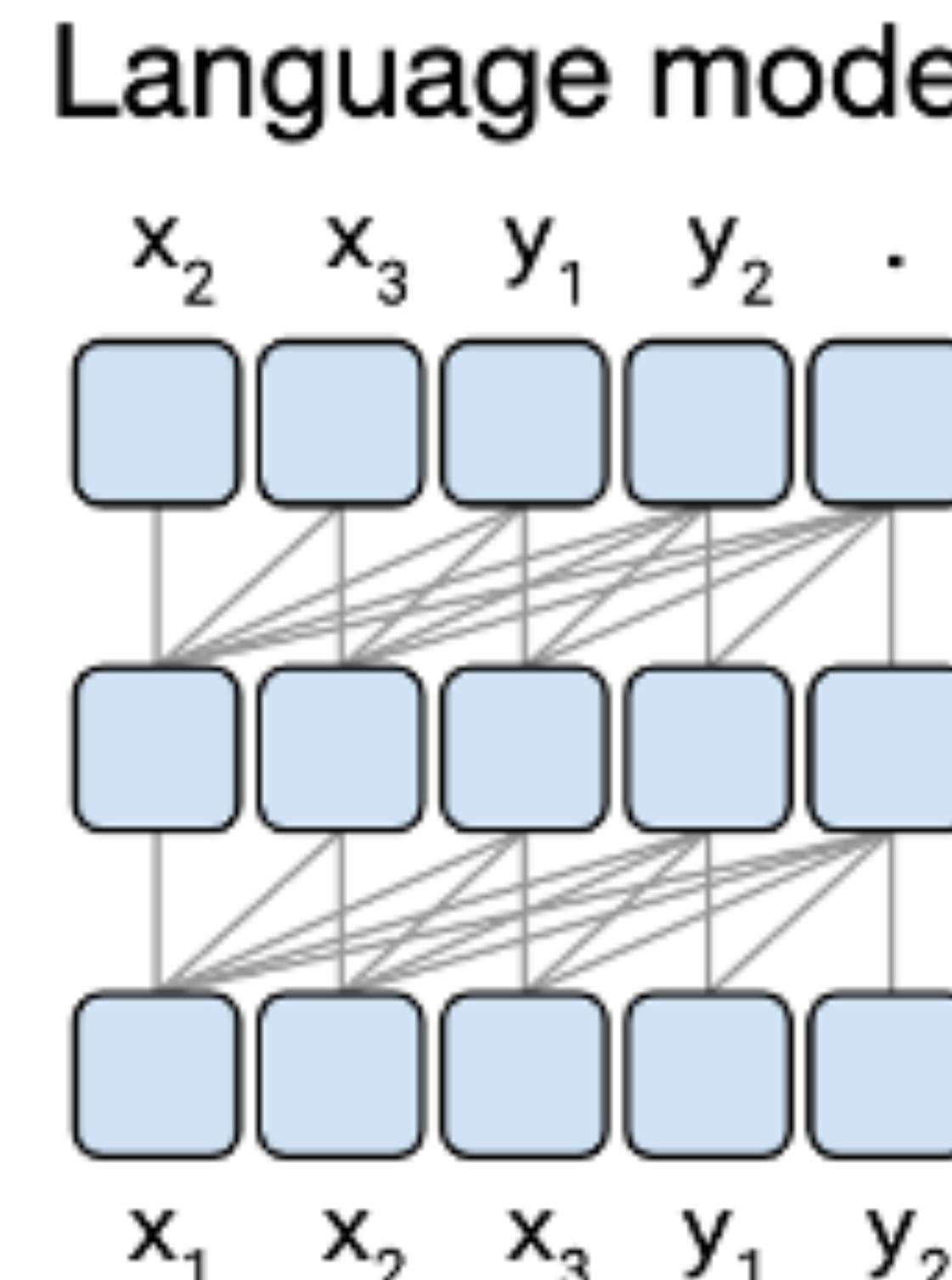
# T5: Text to Text Transfer Transformer

Normally: Separate parameters  
for encoder/decoder



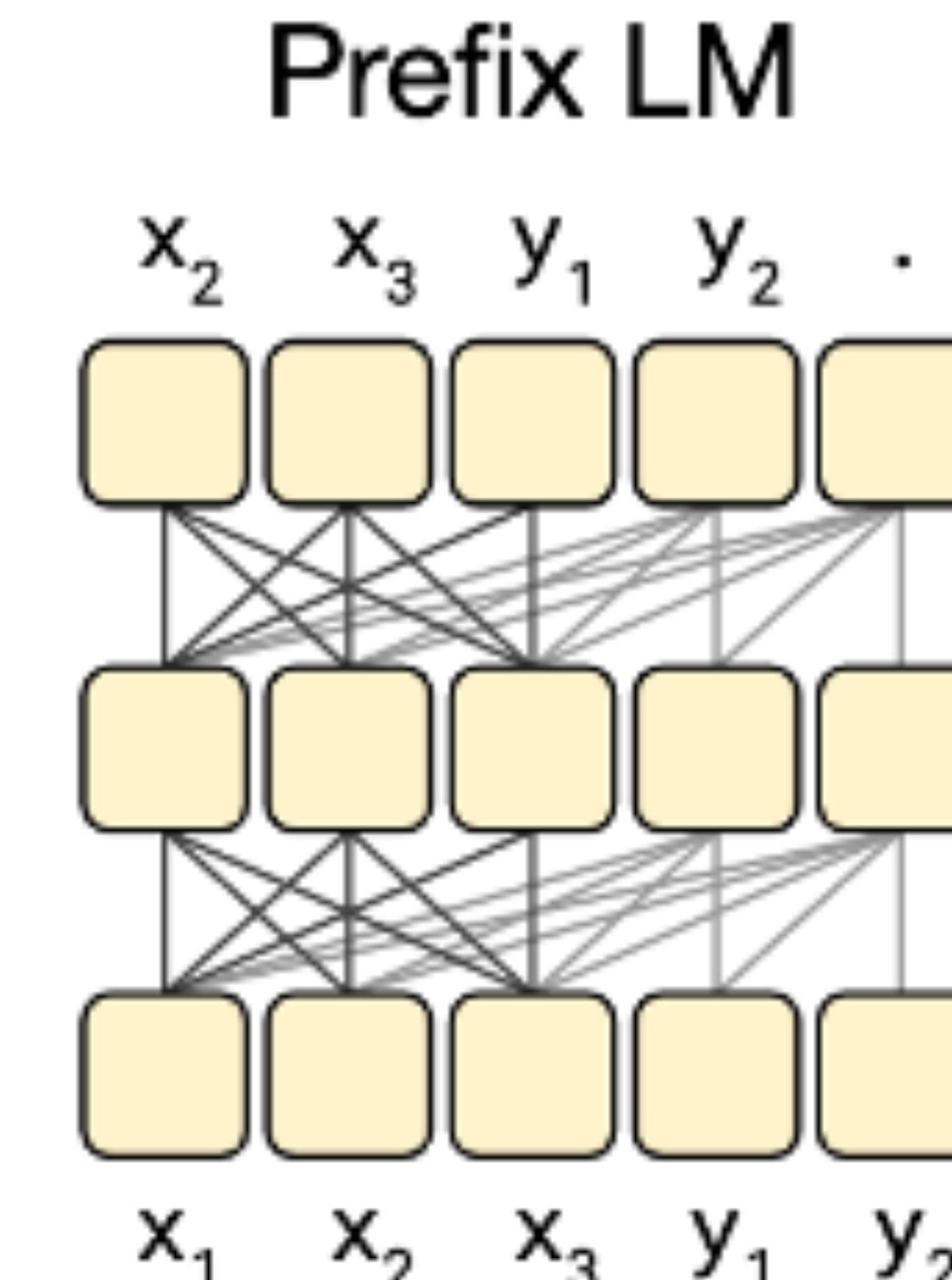
Can force sharing of parameters  
for encoder/decoder

Causal masking only

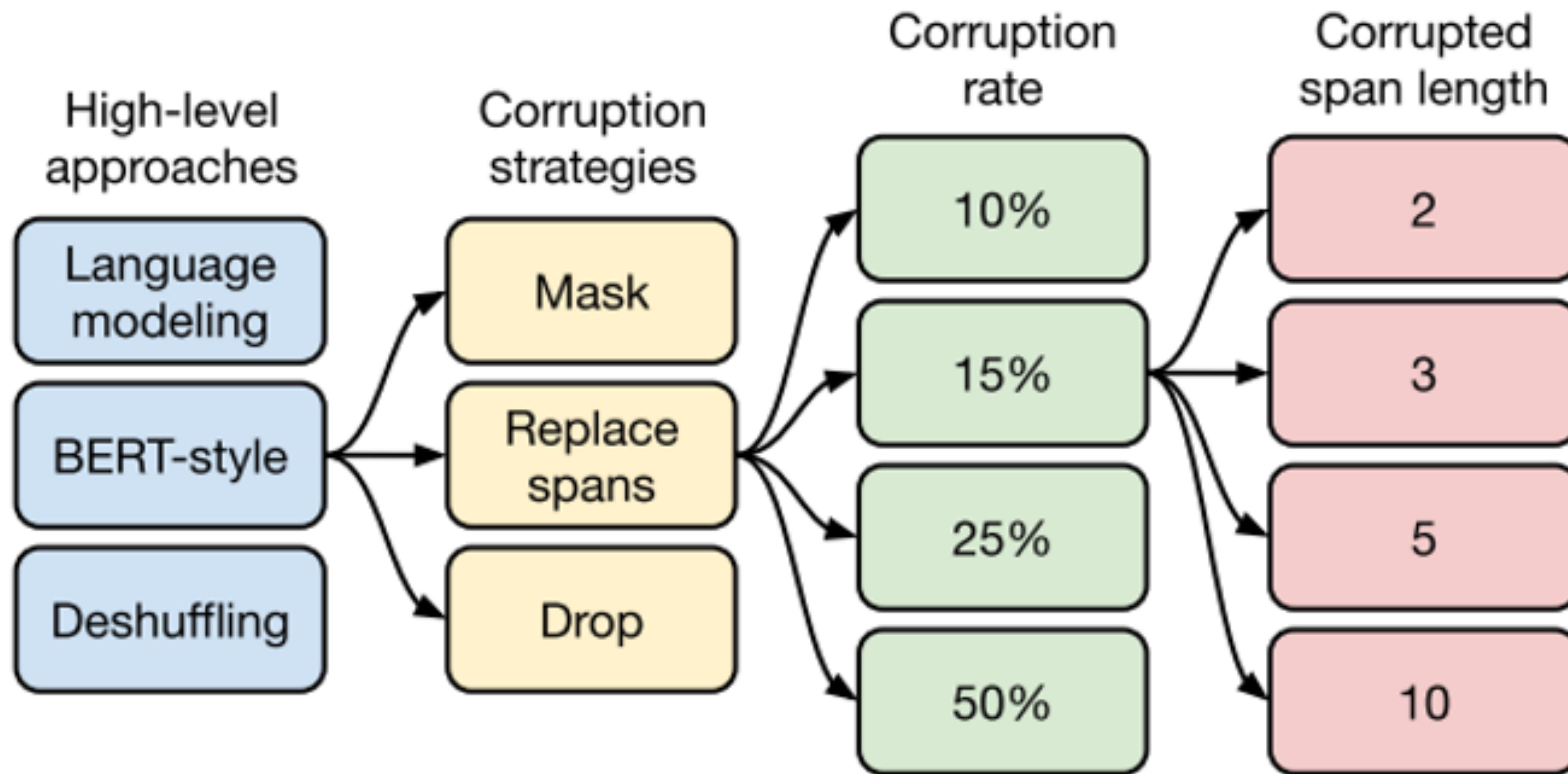


Similar performance,  
less parameters

Masking similar to  
encoder/decoder



# T5: Text to Text Transfer Transformer



# T5 (use both encoder and decoder)

Span corruption works best

Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!

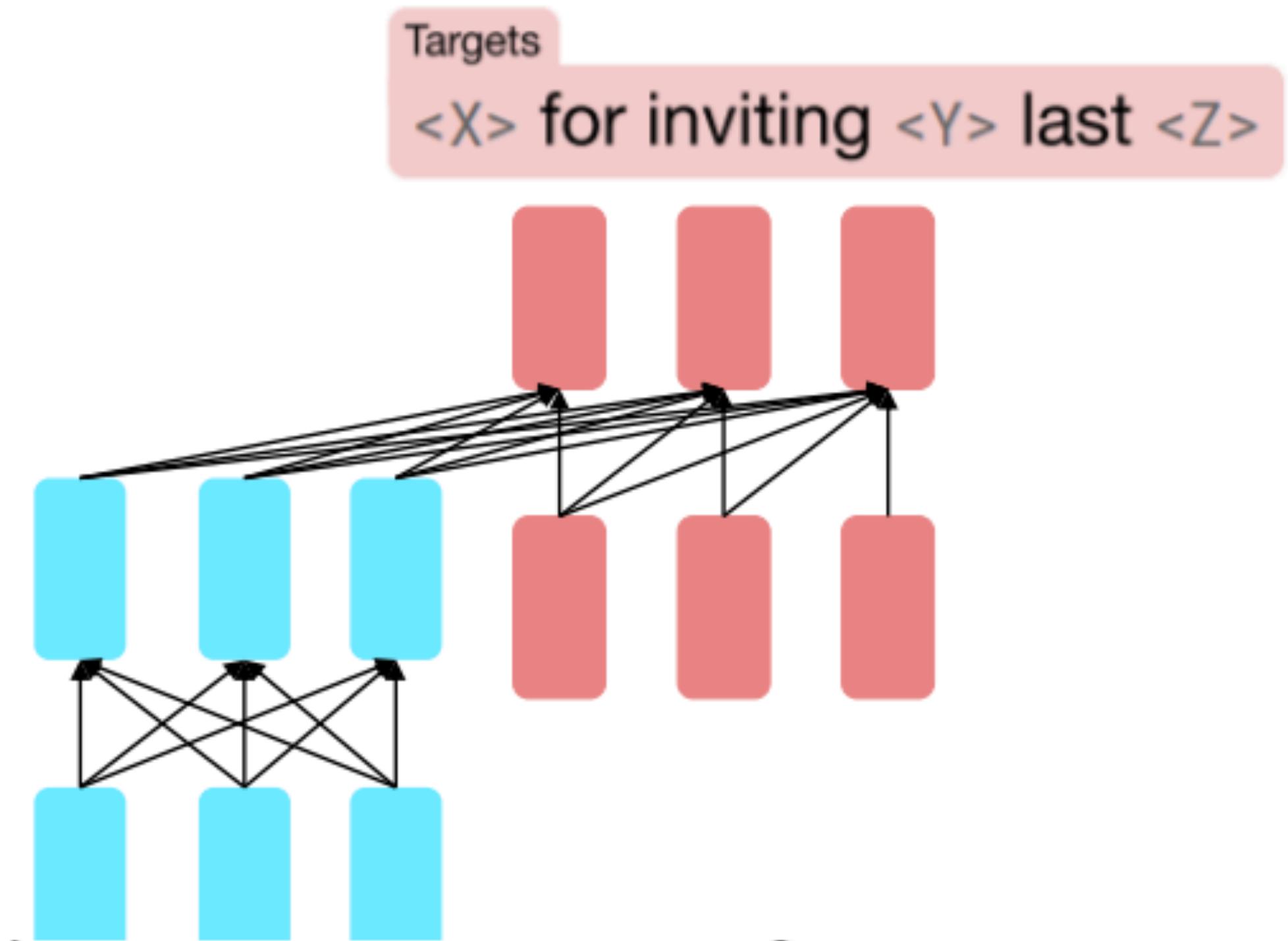
Original text

Thank you ~~for inviting~~ me to your party ~~last~~ week.

This is implemented in text preprocessing: it's still an objective that looks like **language modeling** at the decoder side.

Inputs

Thank you <X> me to your party <Y> week.



# T5: Text to Text Transfer Transformer

## Different corruption type

|                   | Objective                        | GLUE         | CNNDM        | SQuAD        | SGLUE        | EnDe         | EnFr         | EnRo         |
|-------------------|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Predict all       | BERT-style (Devlin et al., 2018) | 82.96        | 19.17        | <b>80.65</b> | 69.85        | 26.78        | <b>40.03</b> | 27.41        |
| Predict corrupted | MASS-style (Song et al., 2019)   | 82.32        | 19.16        | 80.10        | 69.28        | 26.79        | <b>39.89</b> | 27.55        |
|                   | ★ Replace corrupted spans        | 83.28        | <b>19.24</b> | <b>80.88</b> | <b>71.36</b> | <b>26.98</b> | 39.82        | <b>27.65</b> |
|                   | Drop corrupted tokens            | <b>84.44</b> | <b>19.31</b> | <b>80.52</b> | 68.67        | <b>27.07</b> | 39.76        | <b>27.82</b> |

## Different corruption rate

|   | Corruption rate | GLUE         | CNNDM        | SQuAD        | SGLUE        | EnDe         | EnFr         | EnRo         |
|---|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|   | 10%             | <b>82.82</b> | 19.00        | <b>80.38</b> | 69.55        | <b>26.87</b> | 39.28        | <b>27.44</b> |
| ★ | 15%             | <b>83.28</b> | 19.24        | <b>80.88</b> | <b>71.36</b> | <b>26.98</b> | <b>39.82</b> | <b>27.65</b> |
|   | 25%             | <b>83.00</b> | <b>19.54</b> | <b>80.96</b> | 70.48        | <b>27.04</b> | <b>39.83</b> | <b>27.47</b> |
|   | 50%             | 81.27        | 19.32        | 79.80        | 70.33        | <b>27.01</b> | <b>39.90</b> | <b>27.49</b> |

# T5 (use both encoder and decoder)

[Raffel et al., 2018](#) found encoder-decoders to work better than decoders for their tasks, and span corruption (denoising) to work better than language modeling.

| Architecture      | Objective         | Params | Cost  | GLUE         | CNNDM        | SQuAD        | SGLUE        | EnDe         | EnFr         | EnRo         |
|-------------------|-------------------|--------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| ★ Encoder-decoder | Denoising         | $2P$   | $M$   | <b>83.28</b> | <b>19.24</b> | <b>80.88</b> | <b>71.36</b> | <b>26.98</b> | <b>39.82</b> | <b>27.65</b> |
|                   | Enc-dec, shared   | $P$    | $M$   | 82.81        | 18.78        | <b>80.63</b> | <b>70.73</b> | 26.72        | 39.03        | <b>27.46</b> |
|                   | Enc-dec, 6 layers | $P$    | $M/2$ | 80.88        | 18.97        | 77.59        | 68.42        | 26.38        | 38.40        | 26.95        |
|                   | Language model    | $P$    | $M$   | 74.70        | 17.93        | 61.14        | 55.02        | 25.09        | 35.28        | 25.86        |
|                   | Prefix LM         | $P$    | $M$   | 81.82        | 18.61        | 78.94        | 68.11        | 26.43        | 37.98        | 27.39        |
| Encoder-decoder   | LM                | $2P$   | $M$   | 79.56        | 18.59        | 76.02        | 64.29        | 26.27        | 39.17        | 26.86        |
|                   | Enc-dec, shared   | $P$    | $M$   | 79.60        | 18.13        | 76.35        | 63.50        | 26.62        | 39.17        | 27.05        |
|                   | Enc-dec, 6 layers | $P$    | $M/2$ | 78.67        | 18.26        | 75.32        | 64.06        | 26.13        | 38.42        | 26.89        |
|                   | Language model    | $P$    | $M$   | 73.78        | 17.54        | 53.81        | 56.51        | 25.23        | 34.31        | 25.38        |
|                   | Prefix LM         | $P$    | $M$   | 79.68        | 17.84        | 76.87        | 64.86        | 26.28        | 37.51        | 26.76        |

# T5 summary

Raffel+ 2019

<https://arxiv.org/abs/1910.10683>

- Ablation study on many aspects of pre-training and fine-tuning
  - Model size (bigger is better; 11B parameters)
  - Amount of training data (more is better)
  - Domain / cleanliness of training data [-ve]
  - Pre-training objective (e.g. span length of masked text) [-ve]
  - Ensemble models [-ve]
  - Fine-tuning recipe (e.g. only allow top k layers to fine-tune) [-ve]
  - Multi-task training [-ve]

# Using pre-trained LLMs

# Using LLMs for tasks

- So your language model can complete a sentence, but you may want to do different things
  - Classify whether an email is SPAM or NOT SPAM
  - Answer a question: when was Albert Einstein born?
  - Extract information from text
- If I give it a piece of text, how do I tell it whether I want to translate it French, summarize it, or make it into a poem?

# Using LLMs for tasks

Develop specialized model for your task (with LM as part)

- Hookup appropriate inputs/outputs
- Fine-tuning parameters (include some LM parameters) for task

Try to use the LM network as it is (no extra network training)

- Zero-shot / few-shot prompting (in-context learning)

Try to have smaller LM to allow running on various devices

- Model distillation and pruning

# Different ways to fine-tune or align your model

## Fine-tuning

- Full fine-tuning
- **Parameter efficient fine-tuning (PEFT)**

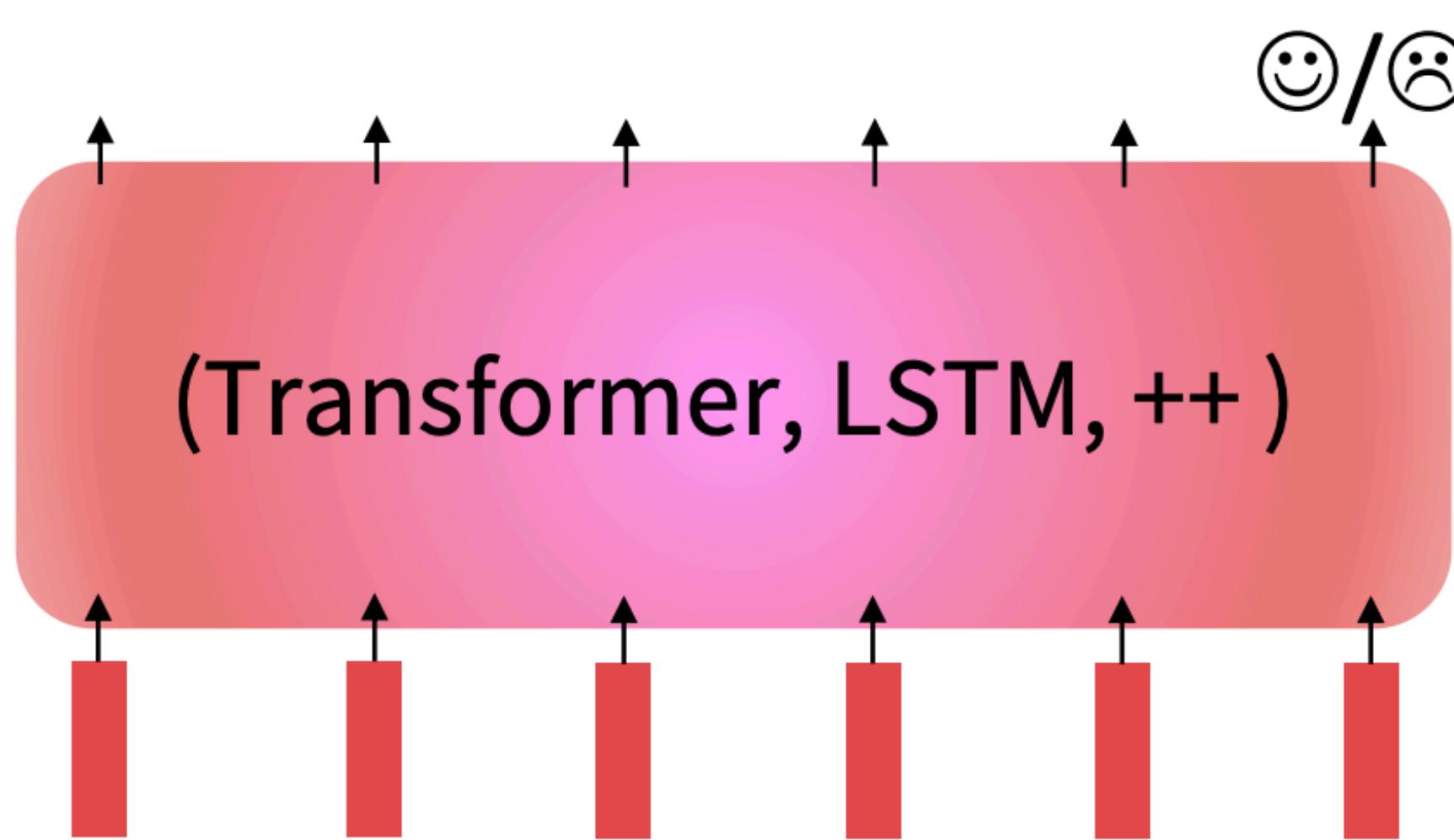
## Aligning to instructions / human values:

- Instruction tuning (fine-tune with instructions)
- Reinforcement learning with human feedback (train with modified objective that incorporates human preferences)

# Full finetuning vs parameter efficient fine-tuning

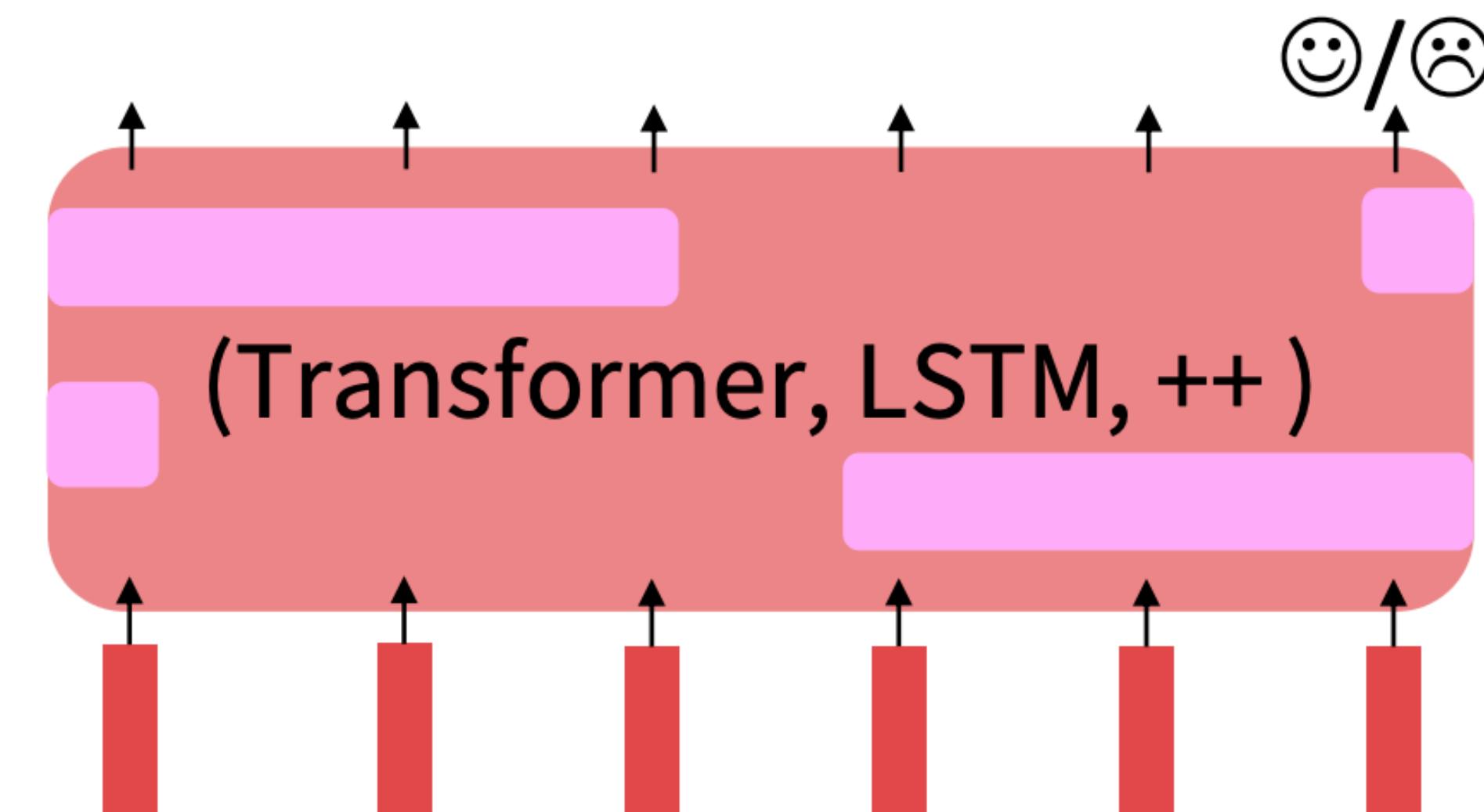
- Finetuning every parameter in a pretrained model works well, but is memory-intensive.
- **Lightweight** finetuning methods adapt pretrained models in a constrained way.
- Leads to **less overfitting** and/or **more efficient finetuning and inference**.

**Full Finetuning**  
Adapt all parameters



*... the movie was ...*

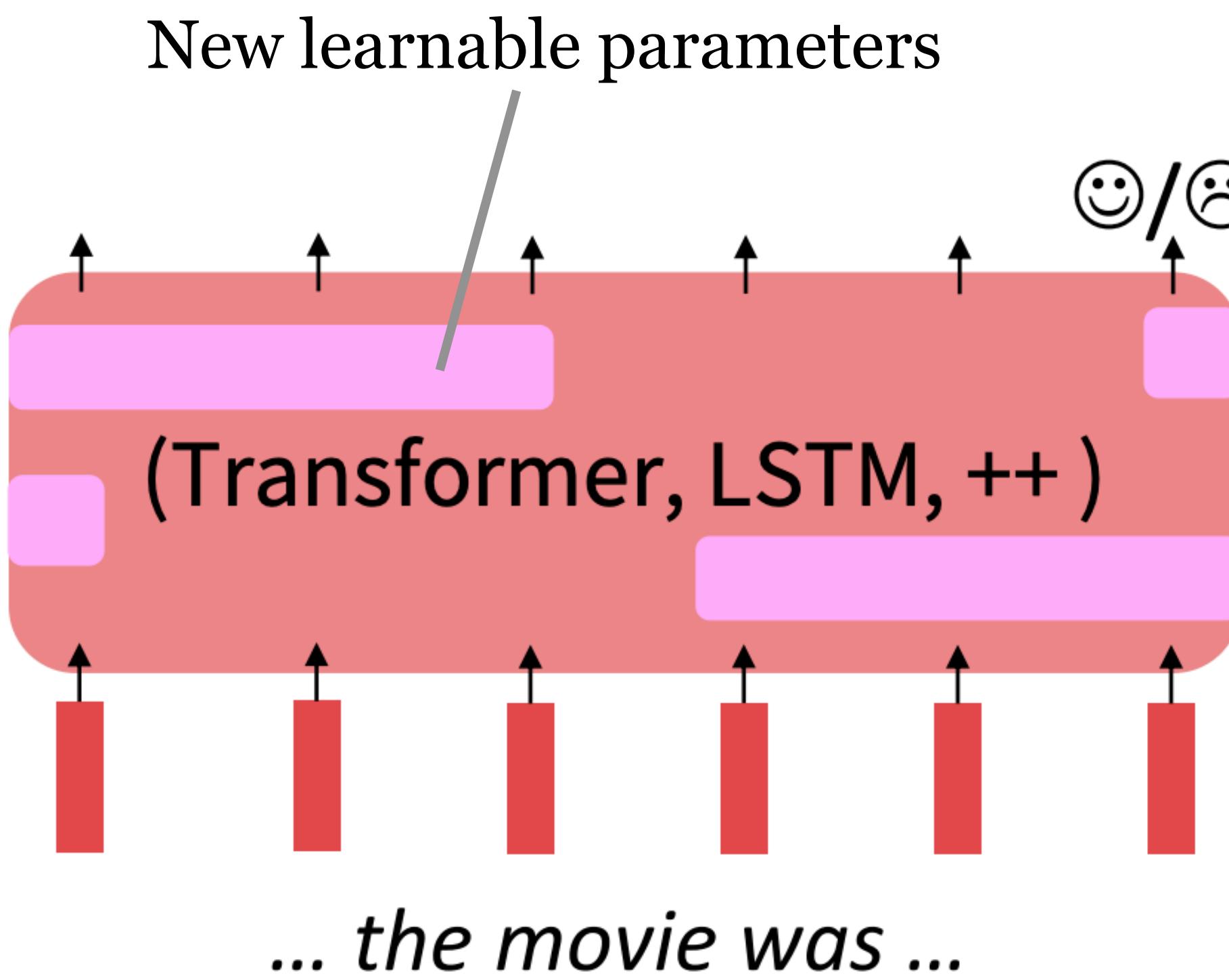
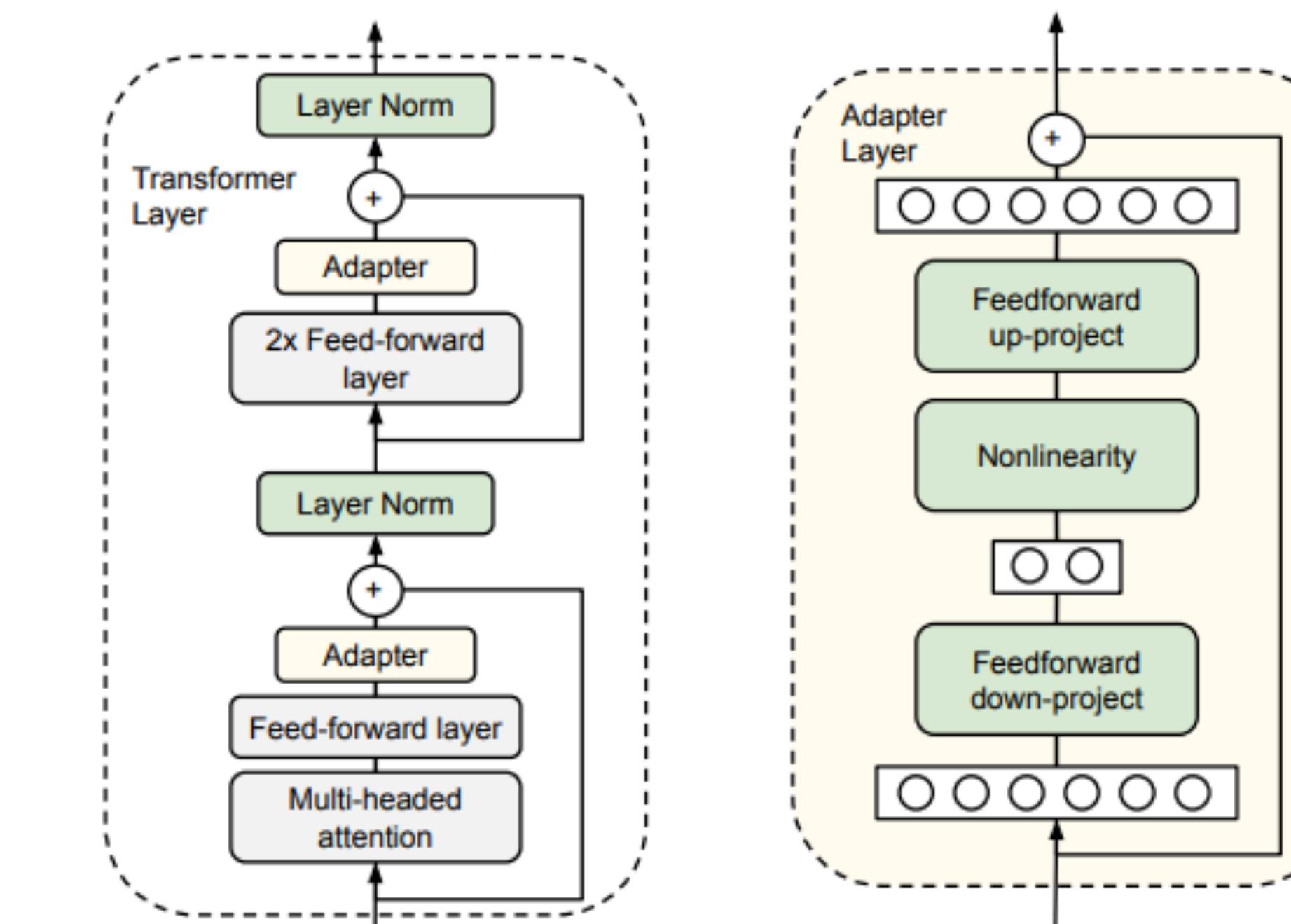
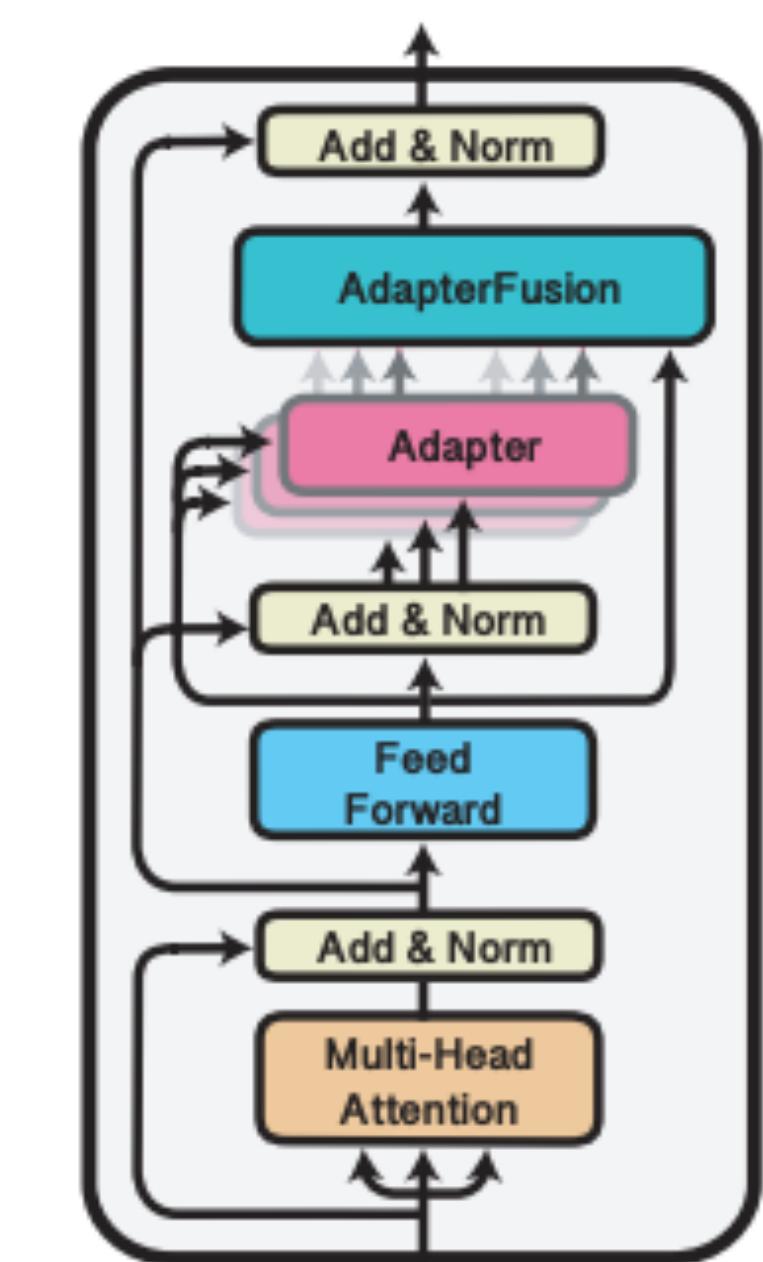
**Lightweight Finetuning**  
Train a few existing or new parameters



*... the movie was ...*

# Parameter-Efficient Finetuning: Adapters

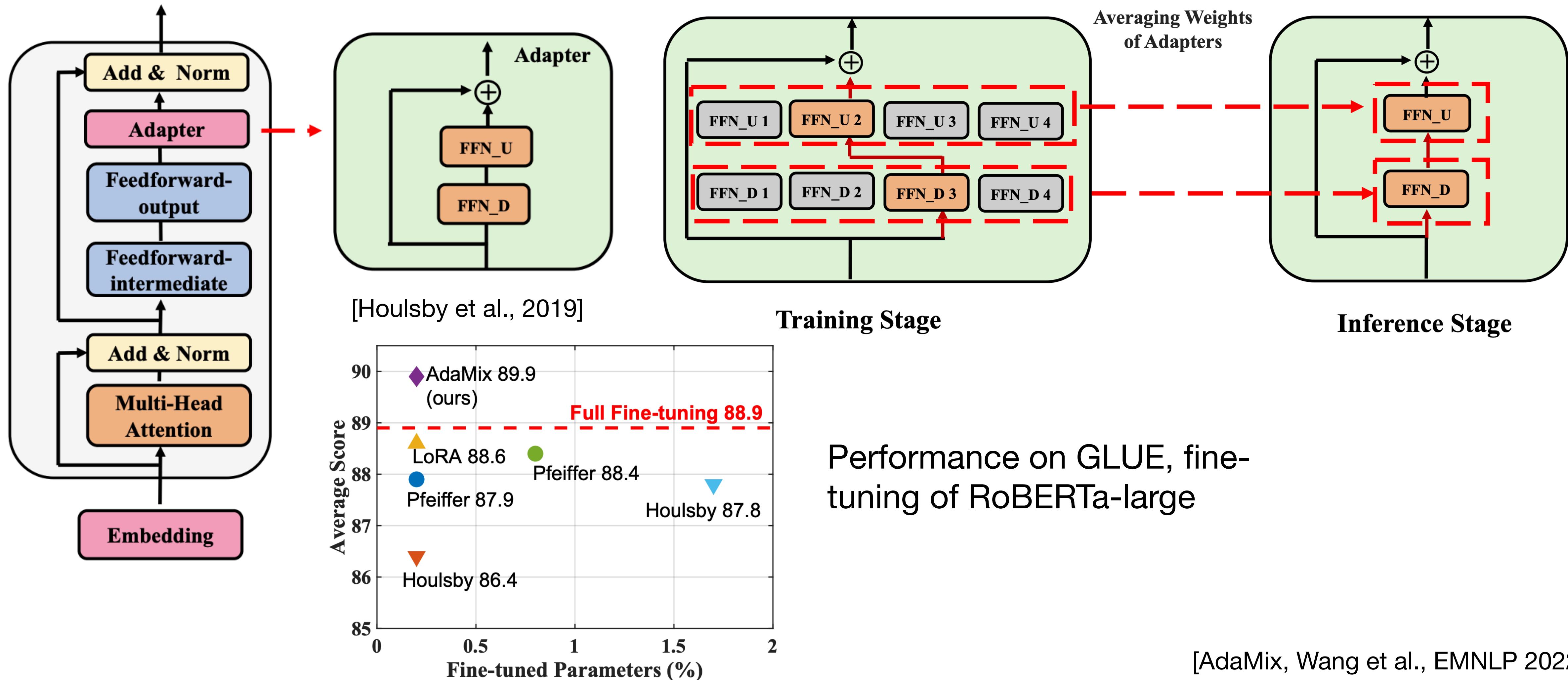
- Add lightweight network with new learnable parameters
- Only these parameters are fine-tuned, rest are frozen



<https://github.com/adapter-hub/adapter-transformers>

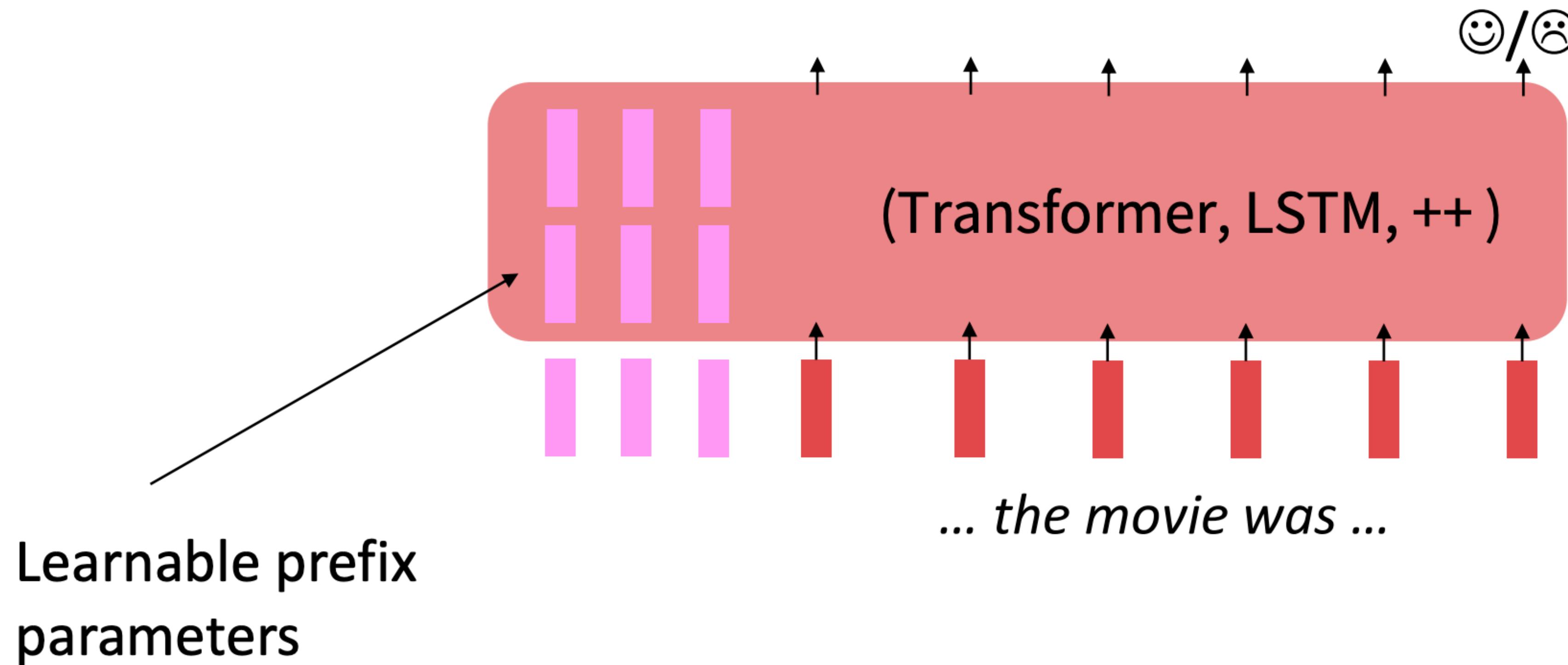
# Parameter-Efficient Finetuning: Adapters

- **Mixture of adapters** - stochastically selected during training
- Average weights of adapters during inference



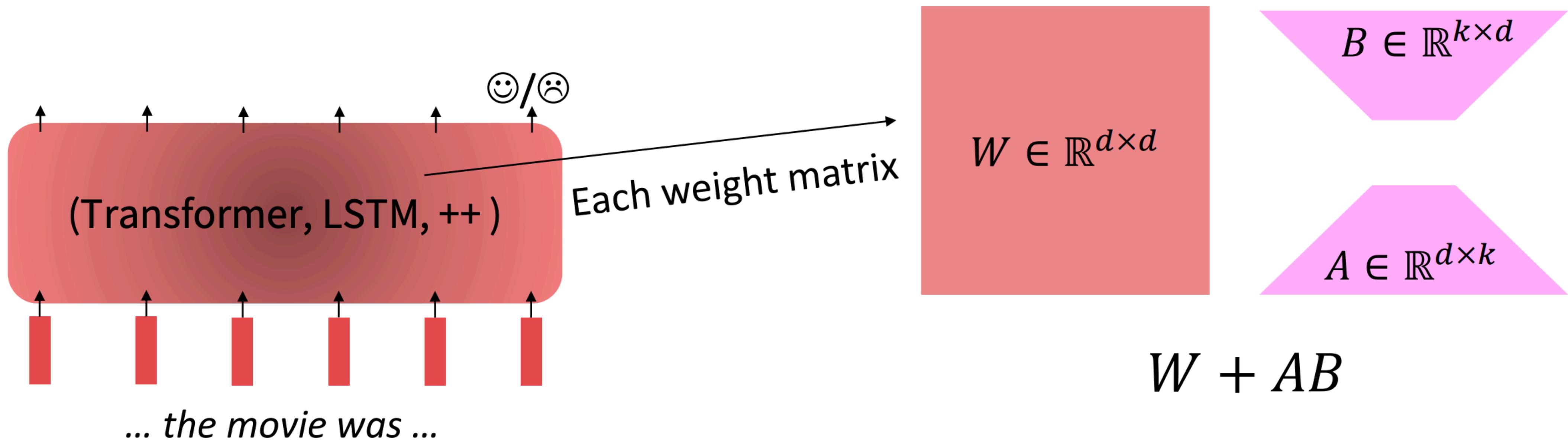
# Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

- Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.
- The prefix is processed by the model just like real words would be.
- Advantage: each element of a batch at inference could run a different tuned model.



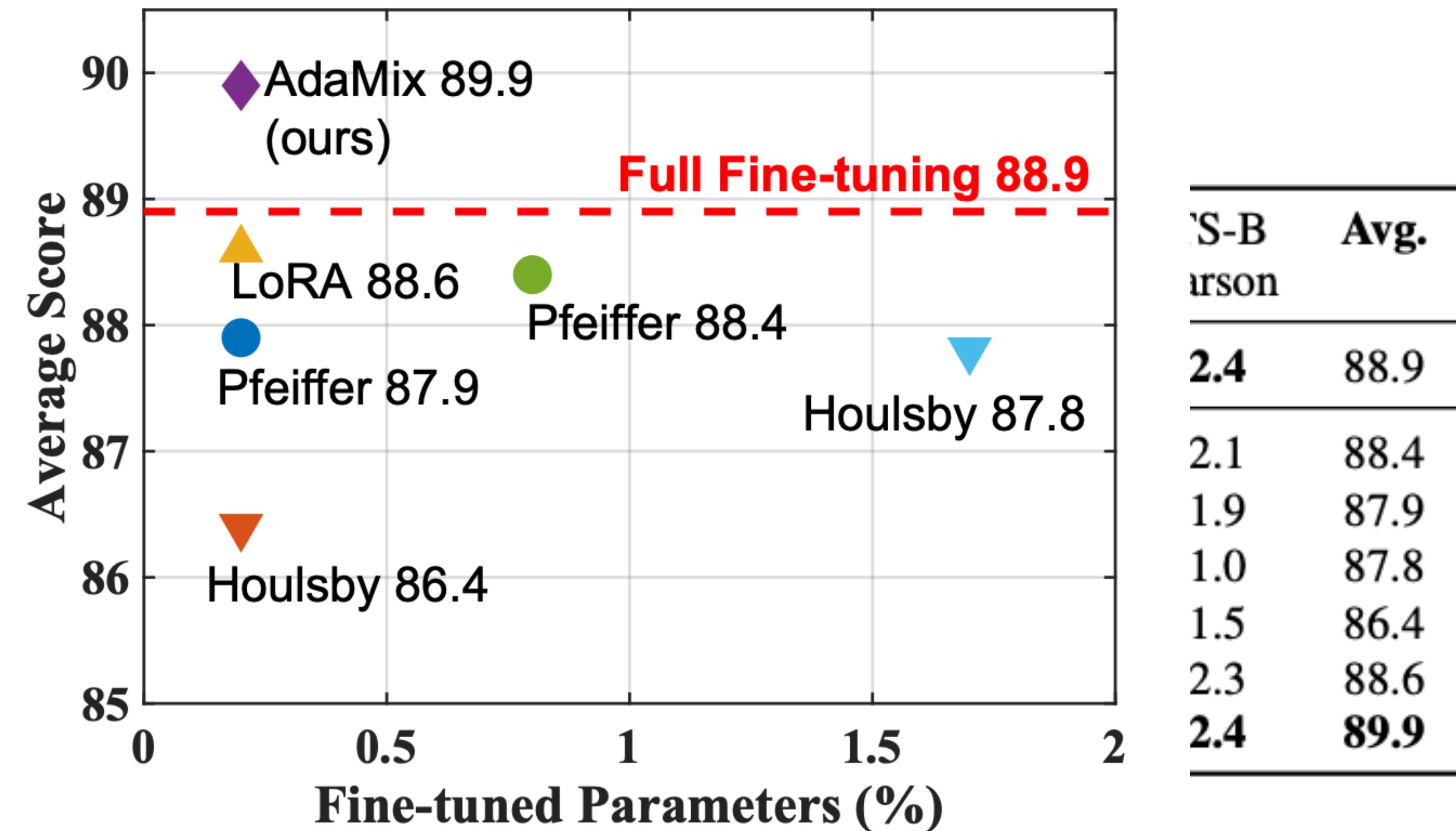
# Parameter-Efficient Finetuning: Low-Rank Adaptation

- Low-Rank Adaptation learns a low-rank “diff” between the pretrained and finetuned weight matrices.
- Easier to learn than prefix-tuning



# Parameter-Efficient Finetuning: Low-Rank Adaptation

| Model                         | #Param. | M  | A  |
|-------------------------------|---------|----|----|
| Full Fine-tuning <sup>†</sup> | 355.0M  | 90 | 90 |
| Pfeiffer Adapter <sup>†</sup> | 3.0M    | 90 | 90 |
| Pfeiffer Adapter <sup>†</sup> | 0.8M    | 90 | 90 |
| Houlsby Adapter <sup>†</sup>  | 6.0M    | 89 | 89 |
| Houlsby Adapter <sup>†</sup>  | 0.8M    | 90 | 90 |
| LoRA <sup>†</sup>             | 0.8M    | 90 | 90 |
| AdaMix Adapter                | 0.8M    | 90 | 90 |



Good performance by tuning just a fraction of the weights

# Going toward smaller powerful LMs

- Knowledge Distillation
  - DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. Sanh et al. NeurIPS Workshop 2019
  - TinyBERT: Distilling BERT for Natural Language Understanding. Jiao et al. Findings of ACL 2020
- Quantization
  - Q8BERT: Quantized 8bit BERT, Zafrir et al, NeurIPS Workshop 2019
- Model Pruning
  - Compressing BERT: Studying the effects of weight pruning on transfer learning. Gordon et al. Workshop of ACL 2020.

