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Pretraining and fine-tuning
Supervised fine-tuning 
• Annotated data specific (usually 

small) 
• Initialize with pre-trained model

Pretraining 
• Big pile of unlabeled text data! 
• Lots of resources to train!

Helps to build 
• Useful representations of language 

• Provide good initial parameters for downstream tasks 

• Probability distributions that can be sampled from

Useful for 
• Task / domain specific fine-

tuning 
• Instruction fine-tuning



Brief History of Pre-training
1960 to 2015

• Singular Value Decomposition (1960s): 


• Take matrix  of word co-occurrence counts 


• Use SVD to map  truncate to  initial singular values 


• Use truncated  use as word embeddings.


• Word2Vec/GloVe (2010):


• Continuous Bag of Words (CBOW) - context words predict target word


• Skip-gram - target word predicts each context word

M ∈ |V | × |V |

M = USVT |V | × k

U



https://arxiv.org/abs/1511.01432 Nov 2015Fig from J. Devlin BERT slides

https://arxiv.org/abs/1511.01432


https://arxiv.org/abs/1802.05365Fig from J. Devlin BERT slides

ELMO

https://arxiv.org/abs/1802.05365


GPT1

Fig from J. Devlin BERT slides See also ULMFit: https://arxiv.org/abs/1801.06146

https://arxiv.org/abs/1801.06146


GPT models 

GPT 
• Improving language understanding by generative pre-training [Radford et al, 2018]
• Large language model with transformers with supervised fine-tuning 

• different model for each task
• Trained on BooksCorpus (800M words), 117M parameters (12 layers)
GPT-2
• Language Models are Unsupervised Multitask Learner [Radford et al, 2019]
• Model all tasks as sequence completion with special tokens indicating task
• Trained on WebText (40B words), 1.5B parameters (48 layers)
• No fine-tuning, demonstrated few-shot learning
GPT-3
• Language Models are Few-Shot Learners [Brown et al, 2020]
• Trained on Web+Books+Wikipedia (300B words), 175B parameters (96 layers) 
• Demonstrated zero-shot and few-shot prompting abilities
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http://www.apple.com
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf


GPT models (after GPT-3)

InstructGPT and GPT-3.5 [2022] 
• Align responses to human feedback 
• Instruction fine-tuning 
• Reinforcement learning from human feedback
• Used in initial ChatGPT

GPT-4 [March 2023]
• Multimodal with images and text (GPT-4V) 
• Larger, better model (estimated 1.7 trillion parameters) 
• Turbo [Nov 2023] - longer context (128K) 

GPT-4o (omni) [May 2024]
• Multimodal with audio, images and text (GPT-4V) 
• Real-time processing and generation 

o1 [September 2024], o3 [mini - January 2025] - Reasoning 
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• Supervised fine-tuning on human 
conversations


• Data where human will pretend to 
be user or AI assistant

• Human rank generated output

• Use reinforcement learning to 

improve generation

https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2303.08774.pdf
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://en.wikipedia.org/wiki/OpenAI_o3


Pre-training

LM training on large, large 

amount of data

Fine-tuning

Supervised fine-tuning for 

instructions

Preference 
optimization

Align to human 

preferences

Post-training

Model 
compression


Reduce size of model for 
efficient deployment

Task specific 

fine-tuning


Custom domains, 
improved performance on 

specialized tasks

Prompting

Generate responses

Use to build LLM agents



Training recipe for LLMs

Pre-training

LM training on large, large 

amount of data

Fine-tuning

Supervised fine-tuning for 

instructions

Preference 
optimization

Align to human 

preferences

Post-training

Pre-training can be 
broken into stages 

(mid-training)



LLM performance depends on

• Model architecture


• Training strategy


• Training objective


• Training data



Pretraining language models

• Model (Neural Architecture) 
• Does it use FFN, RNN (LSTM, GRU), or Transformer? 

• Is it an encoder-based, decoder-based, or encoder-decoder model? 
• Specifics of the neural architecture (number of layers, embedding size, etc) 

• Dataset 
• What is the data that is used to pretrain the model? 

• Training objective 
• What is the training objective? 

• Other details 
• Tokenization: what tokenization is applied? 
• Implementation and training details?
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Summary of pretrained models we looked at
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Paper Model Dataset Training Objective

W2V CBOW 
[Miklov et al, 2013]

FFN Google News  
(100B words)

Masked LM  
(within window)

ELMo  
[Peters et al, 2018]

Bi-LSTM 1B Word benchmark 
(800M words)

Bidirectional LM

BERT 
[Devlin et al, 2018]

Transformer 
(encoder block)

BookCorpus + English Wikipedia 
(3.3B words)

Masked LM 
Next sentence prediction



Development of Open LLMs

Closed LLMs 
• GPT (OpenAI) 
• Claude (Anthropic) 
• Gemini (Google)
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Open weights 
• LLaMa (Meta) 
• DeepSeek 
• Mistral (Mistral AI) 
• Qwen (Alibaba) 
• Gemma (Google) 

Open weights + data 
• OLMo (AI2) 
• DCLM 
• Amber 
• BLOOM 
• Pythia

Open weights + 
partial data 
• StableLM 
• Zamba 
• Falcon



Pre-training Transformers
Representation Learning



Preliminaries



Tokenization



Word structure and subword models
• NLP used to model the vocabulary in simplistic ways based on English


• Tokenize based on spaces into a sequence of "words"


• All novel words at test time were mapped to [UNK] (unknown token)

hat
learn
laern
taaasty
Transformerify

cs224n-2023-lecture9-pretraining.pdf

word

variations

spell errors

neologisms

index embedding

hat
learn
[UNK]
[UNK]
[UNK]



Byte Pair Encoding algorithm
• Learn a vocabulary of parts of words (subwords)


• Vocabulary of subwords is produced before training a model on the training dataset 
(larger the better)


• At training and test time the vocabulary is split up into a sequence of known 
subwords


• Byte Pair Encoding (BPE) algorithm (takes max merges as input)


• Init subwords with individual characters/bytes and "end of word" token.


• Using the training data find most common adjacent subwords, merge and add to 
list of subwords


• Replace all pairs of characters with new subword token; iterate until max merges 

See bpe.ipynb https://arxiv.org/abs/1508.07909

cs224n-2023-lecture9-pretraining.pdf



Word structure and subword models
• Common words are kept as part of the vocabulary (ignore morphology)


• Rarer words are split up into subword tokens


• In the worst case, words are split up into characters (or bytes)

hat
learn
laern
taaasty
Transformerify

cs224n-2023-lecture9-pretraining.pdf

word

variations

spell errors

neologisms

index embedding

hat
learn
la## ##ern
ta## #aa #sty
Transformer## ##ify



Positional embeddings



Positional encoding

• Original transformer: fixed sinusoidal absolute embeddings


• Learned encoding 


• Absolute vs relative


• In most cases, it is the relative position between two words that matter (not 
their absolute position)


• Relative encoding can be learned [Self-Attention with Relative Position 
Representations, Shaw et al. 2018]


• Rotary embeddings (RoPE)

https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155


Learned encoding

• Advantage: Flexible, learned representations


• Disadvantage: bunch of extra parameters that need to be learned


• Disadvantage: impossible to extrapolate to longer sequences 



Learned encoding
What do position embeddings learn?
• Visualize cosine similarity between position embeddings


• GPT-2 learned embeddings are quite good: can effectively predict absolute 
position using linear regression and relative ordering using logistic regression

What Do Position Embeddings Learn? [Wang and Chen 2020]

https://arxiv.org/abs/2010.04903


Learned encoding
What do position embeddings learn?
• Visualize cosine similarity between position embeddings


• GPT-2 learned embeddings are quite good: can effectively predict absolute 
position using linear regression and relative ordering using logistic regression

What Do Position Embeddings Learn? [Wang and Chen 2020]

Absolute Relative

https://arxiv.org/abs/2010.04903


• Learnable relative embeddings


• Modify attention scores to capture relative embedding


• Simplify to just learning a bias term

Relative encoding

Self-Attention with Relative Position Representations 
[Shaw et al. 2018]

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al. 2018]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1910.10683


Attention with Linear Biases (ALiBi)

• Remove positional 
embedding altogether


• Bias query-key attention 
scores with fixed penalty that 
is proportional to the distance


• Allows for better 
extrapolation to long 
sequences at test time

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation [Press et al. 2021]

https://arxiv.org/abs/2108.12409


Attention with Linear Biases (ALiBi)

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation [Press et al. 2021]

https://arxiv.org/abs/2108.12409


Rotary encoding 

RoFormer: Enhanced Transformer with Rotary Position Embedding [Su et al. 2021]

• Design absolute embeddings so the dot product result in function of relative position


• Rotary Position Embedding (RoPE): Apply rotation to encode positional encoding (vs using 
addition).    

<latexit sha1_base64="fq9B0cRPzntgS2rD6/+Y/JnQ4XU="></latexit>

fq(xm,m) · fk(xn, n) = g(xm,xn,m→ n)

<latexit sha1_base64="nrw37DC5IwKgMpNnRnQq+TstqL4="></latexit>

f{q,k}(xm,m) = Rd
!,mW{q,k}xm

<latexit sha1_base64="GCCSSzcgtYG09yFaRII+hCFXEF4="></latexit>

Rd
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


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https://arxiv.org/abs/2104.09864


Rotary encoding 
More efficient form

RoFormer: Enhanced Transformer with Rotary Position Embedding [Su et al. 2021]

• With just element wise multiply and addition

<latexit sha1_base64="ZQZ668U89S187rClQwAYRdkkJZA="></latexit>
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<latexit sha1_base64="/M79Ho+8FLnfd+jSxtRSRy1dNUY="></latexit>

! = {ωi = 10000→2(i→1)/d, i → [1 . . . d/2]}

https://arxiv.org/abs/2104.09864


Rotary encoding 

RoFormer: Enhanced Transformer with Rotary Position Embedding [Su et al. 2021]

https://arxiv.org/abs/2104.09864


Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

32

• Language models
• Can’t condition on future 

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objectives and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt
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• Language models
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UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objectives and then transferred.
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Pre-training and fine-tuning

34
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/pdf/1810.04805.pdf 

https://arxiv.org/pdf/1810.04805.pdf


BERT

• Transformer Encoder 
• Two training objectives 

• Masked Language Modeling 
• Next Sentence Prediction

35



Masked language models (MLMs)

Mask 15% of tokens

Example: my dog is hairy, we replace the word hairy 

• 80% of time: replace word with [MASK] token 
         my dog is [MASK] 
• 10% of time: replace word with random word 
         my dog is apple 
• 10% of time: keep word unchanged to bias representation 

toward actual observed word 
         my dog is hairy

36



RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach 
Liu et al, UW and Facebook, arXiv 2019

• Train with more data and for more epochs 
• Vocabulary size of 50K subword units vs 30K for BERT 
• Larger batch size and more training data 

• No need for NSP

37
pretrain with 1024 V100 GPUs for ~1 day



RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach 
Liu et al, UW and Facebook, arXiv 2019

• Train with more data and for more epochs 
• Vocabulary size of 50K subword units vs 30K for BERT 
• Larger batch size and more training data 

• No need for NSP

38

Dynamic masking (masking changes)

Better results with careful reimplementation.

Mean over 5 random seeds.



• Mask out spans!

39

SpanBERT:  Improving Pre-training by Representing and Predicting Spans 
Joshi et al, TACL 2019

SpanBERT



MAE-LM (Masked Autoencoder LM)

• [MASK] tokens are not observed in 
downstream tasks 

• Model capacity wasted for [MASK] 
tokens 

• Only feed non-masked tokens into 
encoder, have separate decoder 
(discarded) that predicts masked tokens

40

Representation Deficiency in Masked Language Modeling [Meng et al. 2024]

https://arxiv.org/abs/2302.02060


MAE-LM (Masked Autoencoder LM)

• [MASK] tokens are not observed in 
downstream tasks 

• Model capacity wasted for [MASK] 
tokens 

• Only feed non-masked tokens into 
encoder, have separate decoder 
(discarded) that predicts masked tokens
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Representation Deficiency in Masked Language Modeling [Meng et al. 2024]

https://arxiv.org/abs/2302.02060


ALBERT
Lan+ 2019

• Factorized embedding parameterization


• Use small embedding size (128) and project to Transformer hidden size 
(1024) using a parameter matrix

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942


ALBERT
• Cross-layer parameter sharing


•  parameters are shared with hℓ+1 hℓ

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942


ALBERT
• Light on parameters; not necessarily faster than BERT

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942


Discriminative training

Train model to discriminate locally plausible text from real text

45

Loss is on all the training tokens vs just the masked ones, more compute efficient use of the training data 

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators 
Clark et al, ICLR 2020



46

Discriminative training

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators 
Clark et al, ICLR 2020



Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

47

• Language models
• Can’t condition on future 

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objectives and then transferred.



https://openai.com/research/language-unsupervised Jun 2018

GPT1

https://openai.com/research/language-unsupervised


GPT1

Fig from J. Devlin BERT slides See also ULMFit: https://arxiv.org/abs/1801.06146

https://arxiv.org/abs/1801.06146


GPT1
Pre-training an autoregressive language model
• Start with a large amount of unlabeled data 


• Pre-training objective: Maximize the likelihood of predicting the next token


• 


• This is equivalent to training a Transformer decoder


• 


• 


• 


• Directionality is needed to generate a well-formed probability distribution 

𝒰 = {u1, …, un}

Li(𝒰) = ∑
i

log P(ui ∣ ui−k, …, ui−1; Θ)

h0 = UWe + Wp

hℓ = transformer_block(hℓ−1)∀ℓ ∈ [1,n]

P(u) = softmax(hnWT
e )

 is the context 
vector of tokens
U = (u−k, …, u−1)

 is the number of Transformer 
layers
n

 is the token embedding matrixWe

 is the position embedding matrixWp

BooksCorpus: 7K 
unpublished books 
(1B words)



https://openai.com/research/language-unsupervised

GPT1



GPT (Generative pretrained transformer)
• Unsupervised retraining: Standard language model loss 
• Supervised fine-tuning: Use simple classifier (linear layer + softmax) trained to predict correct class (use 

combined loss)

52

Improving language understanding by generative pre-training (Radford et al, 2018)



GPT-2

• Machine Translation

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-gpt2/)

• Express all tasks as a language modelling task 
• Training improvements 

• Improved initialization / additional layer 
normalization 

• Increased vocabulary / context /batch size

53Language Models are Unsupervised Multitask Learner (Radford et al. 2019)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/


GPT-2

Machine Translation

(figure credit: Jay Alammar 
http://jalammar.github.io/illustrated-gpt2/)

How can we use decoders for different tasks? 
• Use special token to indicate task

54Language Models are Unsupervised Multitask Learner (Radford et al. 2019)

Summarization

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/


GPT-3: Few-shot learning 

55Language Models are Few-Shot Learners (Brown et al. OpenAI, 2020)

A few examples are 
provided at test time

0 training  
examples

1 training  
examples



Multi-token prediction

• Predict multiple 
next tokens


• Shared 


• Shared trunk / 
unembedding 
matrix

Better & Faster Large Language Models via Multi-token Prediction [Gloeckle et al. 2024]

https://openreview.net/pdf?id=pEWAcejiU2


Multi-token prediction

• Predict multiple 
next tokens


• Sequential 
prediction

https://arxiv.org/abs/2412.19437

https://arxiv.org/abs/2412.19437


Transformer-XL
Dai+ 2019

• Vanilla Model

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860


Transformer-XL
Dai+ 2019

• Vanilla Model

https://arxiv.org/abs/1901.02860

Is there a better way to allow for long context?

https://arxiv.org/abs/1901.02860


Transformer-XL
Dai+ 2019

• Autoregressive LM (different from GPT)


• segment level recurrence (reuse states) + relative positional embeddings

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860


Transformer-XL
Dai+ 2019

• Autoregressive LM (different from GPT)

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860


XLNet
Yang+ 2019

• Autoregressive model for masked language modelling 


• Uses permutations (factorization order) to provide context 


• Allows for context from both sides through permutation


• Avoid [MASK] token that does not appear in downstream tasks

https://arxiv.org/abs/1906.08237

https://arxiv.org/abs/1906.08237


XLNet
Yang+ 2019

• Relative position embeddings (using auto-regressive TransformerXL)


• Absolute attention: position 4  5; position 128  129


• Relative attention: position 


• Mask prediction over all token positions using permutation on factorization 
order (sample a factorization order: 3  2  1  4)


• Two stream self-attention: standard and query on [MASK] token


• Permute only factorization order, not sequence order

→ →

t → (t − 1)

→ → →

https://arxiv.org/abs/1906.08237

https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1906.08237


XLNet



XLNet



XLNet





Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•
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• Language models
• Can’t condition on future 

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objectives and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt
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Bidirectional encoder models

70

BERT

Objectives: masked token prediction 

+ next sentence prediction 

• RoBERTa - train longer, more 
data, larger batch size, NSP not 
needed,  

• SpanBERT - mask spans 
• BERT style training used in vision, 

modelling audio, DNA, etc

Variants



Bidirectional encoder models

71

BERT

Objectives: masked token prediction 

+ next sentence prediction 

MAE-LM

Don’t pass [MASK] token to encoder



Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•
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• Language models
• Can’t condition on future 

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objectives and then transferred.



Autoregressive decoder-only models

73

GPT

Objectives: next token prediction 

• Multi-task training: modelling all 
tasks as autoregressive language 
modeling 

• Scaling up to lots and lots lots and 
hundreds of billions of parameters 

• Scaling up requires system 
engineering, tweaks to 
architecture for training stability 

• Multi-lingual, multi-modal…

Rise of LLMs

https://jalammar.github.io/illustrated-gpt2/



Larger and larger language models
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https://huggingface.co/blog/large-language-models

PaLM (540B, Google)

Llama (65B, FAIR)Chinchilla (70B, 
DeepMind)

2023

                                  

Megatron-Turing NLG (530B, 

MS+NVidia)

Bloom (176B, 
HuggingFace+BigScience)

LaMDA (137B, 
Google)

2024

GPTv4 (1.7T?, OpenAI)



New capabilities emerge at scale

75

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html



Autoregressive decoder-only models

76

GPT

Objectives: next token prediction 

https://jalammar.github.io/illustrated-gpt2/

Objectives: multi token prediction 

Advances



Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•
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• Language models
• Can’t condition on future 

words, good for generation
• GPT, LLaMa, PaLM

• Combine benefits of both
• Original Transformer, 

UniLM, BART, T5

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shattered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objectives and then transferred.



Encoder-Decoder pretraining

• Combine advantages of both 
encoder and decoder 

• Seq2Seq LM with masking 
• Next sentence prediction

78

Unified Language Model Pre-training for Natural Language Understanding and Generation [Dong et al, NeurIPS 2019]



UniLM v1

• Combine benefits of BERT (encoder) and GPT (decoder)

79

Unified Language Model Pre-training for Natural Language Understanding and Generation 
Dong et al, Microsoft, NeurIPS 2019



BART: Denoising seq2seq training
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BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension 
Lewis et al, Facebook AI, ACL 2020

BERT GPT BART

• Combine benefits of BERT 
(encoder) and GPT (decoder) 

• More flexibility in noise generation
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BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension 
Lewis et al, Facebook AI, ACL 2020

Classification Machine Translation

BART: Denoising seq2seq training



T5: Text to Text Transfer Transformer
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Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

• Treat all NLP problems as encoding text and generating text 
• Trained on cleaned up version of Common Crawl

https://arxiv.org/abs/1910.10683

https://arxiv.org/abs/1910.10683


T5: Text to Text Transfer Transformer
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Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

Normally: Separate parameters 
for encoder/decoder Causal masking only Masking similar to 

encoder/decoder

Can force sharing of parameters 
for encoder/decoder

Similar performance, 
less parameters



T5: Text to Text Transfer Transformer
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Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]
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T5 (use both encoder and decoder)

Slide Credit: Stanford CS224n, John Hewitt

Span corruption works best



T5: Text to Text Transfer Transformer

86
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

Different corruption type

Different corruption rate

Predict all

Predict 
corrupted



T5 (use both encoder and decoder)

87Slide Credit: Stanford CS224n, John Hewitt



T5 summary
Raffel+ 2019
• Ablation study on many aspects of pre-training and fine-tuning


• Model size (bigger is better; 11B parameters)


• Amount of training data (more is better)


• Domain / cleanliness of training data [-ve]


• Pre-training objective (e.g. span length of masked text) [-ve]


• Ensemble models [-ve]


• Fine-tuning recipe (e.g. only allow top k layers to fine-tune) [-ve]


• Multi-task training [-ve]

https://arxiv.org/abs/1910.10683

https://arxiv.org/abs/1910.10683


Using pre-trained LLMs



• So your language model can complete a sentence, but you may 
want to do different things


• Classify whether a email is SPAM or NOT SPAM


• Answer a question: when was Albert Einstein born?


• Extract information from text


• If I give it a piece of text, how do I tell it whether I want to 
translate it French, summarize it, or make it into a poem?

Using LLMs for tasks



Develop specialized model for your task (with LM as part)


• Hookup appropriate inputs/outputs


• Fine-tuning parameters (include some LM parameters) for task


Try to use the LM network as it is (no extra network training)


• Zero-shot / few-shot prompting (in-context learning)


Try to have smaller LM to allow running on various devices


• Model distillation and pruning


Using LLMs for tasks



Fine-tuning


• Full fine-tuning


• Parameter efficient fine-tuning (PEFT) 

 
Aligning to instructions / human values:


• Instruction tuning (fine-tune with instructions)


• Reinforcement learning with human feedback (train with 
modified objective that incorporates human preferences)

Different ways to fine-tune or
 align your model



Full finetuning vs parameter efficient fine-tuning
• Finetuning every parameter in a pretrained model works well, but is memory-intensive.  
• Lightweight finetuning methods adapt pretrained models in a constrained way.  
• Leads to less overfitting and/or more efficient finetuning and inference.

93Slide Credit: Stanford CS224n, John Hewitt [Liu et al., 2019; Joshi et al., 2020]



Parameter-Efficient Finetuning:  Adapters

• Add lightweight network with new learnable parameters 
• Only these parameters are fine-tuned, rest are frozen

94

https://github.com/adapter-hub/adapter-transformers

[Houlsby et al., 2019] [Pfeiffer et al., 2021]

New learnable parameters



Parameter-Efficient Finetuning:  Adapters
• Mixture of adapters - stochastically selected during training 
• Average weights of adapters during inference

95 [AdaMix, Wang et al., EMNLP 2022]

[Houlsby et al., 2019]

Performance on GLUE, fine-
tuning of RoBERTa-large



Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

• Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters. 
• The prefix is processed by the model just like real words would be.  
• Advantage: each element of a batch at inference could run a different tuned model.

96Slide Credit: Stanford CS224n, John Hewitt [Li and Liang, 2021; Lester et al., 2021]



Parameter-Efficient Finetuning: Low-Rank Adaptation

• Low-Rank Adaptation learns a low-rank “diff” between the pretrained and 
finetuned weight matrices.  

• Easier to learn than prefix-tuning

97Slide Credit: Stanford CS224n, John Hewitt [Hu et al., 2021]

https://arxiv.org/pdf/2106.09685.pdf
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Parameter-Efficient Finetuning: Low-Rank Adaptation

[AdaMix, Wang et al., EMNLP 2022]

Good performance by tuning just a fraction of the weights



Going toward smaller powerful LMs

• Knowledge Distillation 
• DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.  Sanh et al.  

NeurIPS Workshop 2019 
• TinyBERT: Distilling BERT for Natural Language Understanding. Jiao et al. Findings of 

ACL 2020 
• Quantization 

• Q8BERT: Quantized 8bit BERT, Zafrir et al, NeurIPS Workshop 2019 
• Model Pruning 

• Compressing BERT: Studying the effects of weight pruning on transfer learning.  Gordon 
et al.  Workshop of ACL 2020.
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