
Constituency Parsing

Spring 2024

2024-03-04

CMPT 413/713: Natural Language Processing

SFUNatLangLab

Adapted from slides from Danqi Chen and Karthik Narasimhan

(with some content from Anoop Sarkar, David Bamman, Chris Manning,

Mike Collins, and Graham Neubig)
1

Overview

• Constituency structure vs dependency structure
• Context-free grammar (CFG)
• Probabilistic context-free grammar (PCFG)
• The CKY algorithm
• Evaluation
• Lexicalized PCFGs
• Neural methods for constituency parsing

2

Syntactic structure: constituency and dependency

Two views of linguistic structure
• Constituency

• = phrase structure grammar
• = context-free grammars

(CFGs)

• Dependency

3

Constituency structure

• Phrase structure organizes words into nested constituents

• Starting units: words

the, cuddly, cat, by, the, door

are given a category: part-of-speech tags

DT, JJ, NN, IN, DT, NN

recursively• Phrases can combine into bigger phrases
the cuddly cat, by the door

PP IN NP→NP

• Words combine into phrases

the cuddly cat, by, the door

with categories

NP DT NN→NP DT JJ NN→ IN

NP NP PP→
the cuddly cat by the door

4

Dependency structure

• Dependency structure shows which words depend on
(modify or are arguments of) which other words.

Satellites spot whales from space

Satellites spot whales from space
❌

Wednesday

nsubj

nmod

dobj case

5

Why do we need sentence structure?

• We need to understand sentence structure in order to
be able to interpret language correctly

• Human communicate complex ideas by composing
words together into bigger units

• We need to know what is connected to what

6

Syntactic parsing

• Syntactic parsing is the task of recognizing a
sentence and assigning a structure to it.

Input: Output:

Boeing is located in Seattle.

7

Syntactic parsing
• Used as intermediate representation for downstream applications

Image credit: http://vas3k.com/blog/machine_translation/

English word order: subject — verb — object
Japanese word order: subject — object — verb

Syntax based
machine translation

8

http://vas3k.com/blog/machine_translation/

Syntactic parsing

Image credit: (Zhang et al, 2018)

• Used as intermediate representation for downstream applications

Relation Extraction
9

Beyond syntactic parsing
This file doesn’t care about cleverness, wit or any
other kind of intelligent humor. Negative

Nested Sentiment
Analysis

 Recursive deep models for semantic compositionality over a sentiment treebank
Socher et al, EMNLP 201310

Context-free grammars (CFG)

• Widely used formal system for modeling constituency
structure in English and other natural languages

• A context free grammar where

• is a set of non-terminal symbols

• is a set of terminal symbols

• is a set of rules of the form for
,

• is a distinguished start symbol

G = (N, Σ, R, S)
N
Σ
R X → Y1Y2…Yn
n ≥ 1 X ∈ N, Yi ∈ (N ∪ Σ)
S ∈ N

11

A Context-Free Grammar for English

Grammar Lexicon

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase,
DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition

12

POS tags word

A derivation can be represented as a parse tree!

Derivations

• Given a CFG , a derivation is sequence of rule-expansions starting
from the start symbol to a string consisting of terminal symbols

• It can be expressed as a sequence of strings , where

G

s1, s2, …, sn

• s1 = S

• where is all the possible strings made up of words from sn ∈ Σ* Σ* Σ

• Each for is derived from by picking some non-
terminal in and replacing it by some where

si i = 2,…, n si−1
X si−1 β X → β ∈ R

• : yield of the derivationsn

13

start symbol

Left-most derivation:
pick left-most non-terminal

yield

(Left-most) Derivation
• Ss1 =

• NP VPs2 =

• DT NN VPs3 =

• the NN VPs4 =

• the man VPs5 =

• the man Vis6 =

a parse tree

• A string is in the language defined by the CFG if
there is at least one derivation whose yield is

s ∈ Σ*
s

• The set of possible derivations may be finite or infinite

• the man sleepss7 =

14

Ambiguity

• Some strings may have more than one derivations
(i.e. more than one parse tree!).

15

“Classical” NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of
Toronto] [for $27 a share] [at its monthly meeting].

16

• How many parses for sentence of length n?

“Classical” NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of
Toronto] [for $27 a share] [at its monthly meeting].

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

Catalan number: Cn =
1

n + 1 (2n
n)

17

For a sentence of length n, can form constituents by
placing parenthesis.

Number of parses = number of ways to parenthesize
expression such that

• there are equal number of open/close parenthesis

• they are properly nested with open before close

• The number of (binary) parses happen to follow the Catalan numbers

unlabeled parses for
a sentence of n words

See Church and Patil (CL Journal, 1982) or TAOCP VI pp 388-389 (Knuth, 1975)

“Classical” NLP Parsing

• It is also difficult to construct a grammar with enough coverage
• A less constrained grammar can parse more sentences but

result in more parses for even simple sentences

• There is no way to choose the right parse!

18

Binary notion:

in or not in language

• In fact, sentences can have a very large number of possible parses

• Need to be able to assign scores to parses

Statistical parsing

• Learning from data: treebanks

• Adding probabilities to the rules: probabilistic CFGs (PCFGs)

Treebanks: a collection of sentences paired with their parse trees

The Penn Treebank Project (Marcus et al, 1993)
19

Probabilistic context-free grammars
(PCFGs)

• A CFG tells us whether a sentence is in the language
it defines

• A PCFG gives us a mechanism for assigning scores
(here, probabilities) to different parses for the same
sentence.

20

Probabilistic context-free grammars (PCFGs)

• A probabilistic context-free grammar (PCFG) consists of:

• A context-free grammar: G = (N, Σ, R, S)
• For each rule , there is a parameter .

For any ,
α → β ∈ R q(α → β) ≥ 0

X ∈ N

∑
α→β:α=X

q(α → β) = 1

21

Probabilistic context-free grammars (PCFGs)
For any derivation (parse tree) containing rules:

, the probability of the parse is:α1 → β1, α2 → β2, …, αl → βl

l

∏
i=1

q(αi → βi)

P(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the)
× q(NN → man) × q(VP → Vi) × q(Vi → sleeps)

= 1.0 × 0.8 × 1.0 × 0.1 × 0.3 × 1.0 = 0.024
Why do we want ?∑

α→β:α=X

q(α → β) = 1

22

R q

Treebanks
• Standard setup (WSJ portion of Penn Treebank):

• 40,000 sentences for training
• 1,700 for development
• 2,400 for testing

• Why building a treebank instead of a grammar?

• Broad coverage
• Frequencies and distributional information

• A way to evaluate systems

23

English

Penn Treebank (1989-1996)

- Syntactic annotation of text for POS

tagging, parses, predicate-
arguments, and speech disfluencies

- WSJ articles from 3 years

Penn Treebank

24

25

Penn Treebank

Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG :

• is the set of all non-terminals seen in the trees

• is the set of all words seen in the trees

• is taken to be the start symbol S.

• is taken to be the set of all rules seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β

• The maximum-likelihood parameter estimates are:

qML(α → β) =
Count(α → β)

Count(α)

If we have seen the rule 105 times, and the non-terminal 1000 times, VP → Vt NP VP
q(VP → Vt NP) = 0.105

Can add smoothing

26

What if there is no annotated parses?

• Use Expectation Maximization.
• For learning parameters for PCFGs

• E-Step: compute expectation over trees with fixed model weights
(probabilities)

• M-Step: determine model weights (probabilities) that maximize
likelihood of expected parses

• Use the inside-outside algorithm (a dynamic programming
algorithm) to compute these probabilities efficiently.

27

Parsing with PCFGs

• Given a sentence and a PCFG, how to find the highest scoring
parse tree for ?

s
s

• The CKY algorithm: applies to a PCFG in Chomsky
normal form (CNF)

• Chomsky Normal Form (CNF): all the rules take one
of the two following forms:

• where

• where
X → Y1Y2 X ∈ N, Y1 ∈ N, Y2 ∈ N
X → Y X ∈ N, Y ∈ Σ

• Can convert any PCFG into an equivalent grammar in CNF!
• However, the trees will look differently
• Possible to do “reverse transformation”

argmaxt∈𝒯(s)P(t)

Binary
Unary

28

Converting PCFGs into a CNF grammar

• -ary rules (): n n > 2 NP → DT NNP VBG NN

• Unary rules: VP → Vi, Vi → sleeps
• Eliminate all the unary rules recursively by adding VP → sleeps

• We will come back to this later!

29

The CKY algorithm

• Dynamic programming

• Given a sentence , denote as the
highest score for any parse tree that dominates words

 and has non-terminal as its root.

x1, x2, …, xn π(i, j, X)

xi, …, xj X ∈ N

• Output: π(1,n, S)

• Initially, for , i = 1,2,…, n

π(i, i, X) = {q(X → xi) if X → xi ∈ R
0 otherwise

Book the flight through Houston
 0 1 2 3 4 5

30

Cocke–Kasami-Younger

The CKY algorithm

• For all such that for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree

Cells contain:
- Best score for parse of span (i,j)

for each non-terminal X
- Backpointers

Consider all ways span (i,j) can be split
into 2 (k is the split point)

31

https://web.stanford.edu/~jurafsky/slp3/13.pdf

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

Example of CKY parsing

32

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0
VP: 0.3

Example of CKY parsing

33

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

Example of CKY parsing

34

NP: 0.8 x 1.0 x 0.1 
= 0.08

VP: 0.3

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

Example of CKY parsing

35

NP: 0.08

VP: 0.3

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

NoneNP: 0.08

Example of CKY parsing

36

VP: 0.3

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

NP: 0.08 None

Example of CKY parsing

37

VP: 0.3

sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

NP: 0.08 None

Example of CKY parsing

38

S: 1.0 x 0.08 x 0.3

= 0.024

VP: 0.3

sleepsmanthe

DT: 1.0 NN: 0.1
Vi: 1.0

NP: 0.08 None

S: 0.024

Example of CKY parsing

39

VP: 0.3

The CKY algorithm

• For all such that for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree

Cells contain:
- Best score for parse of span (i,j)

for each non-terminal X
- Backpointers

Consider all ways span (i,j) can be split
into 2 (k is the split point)

40

https://web.stanford.edu/~jurafsky/slp3/13.pdf

The CKY algorithm

Running time?

O(n3 |R |)

41

CKY with unary rules

• In practice, we also allow unary rules:

 where X → Y X, Y ∈ N

conversion to/from the normal form is easier

π(i, j, X) = max
X→Y∈R

q(X → Y) × π(i, j, Y)

• Compute unary closure: if there is a rule chain
, add X → Y1, Y1 → Y2, …, Yk → Y

q(X → Y) = q(X → Y1) × ⋯ × q(Yk → Y)

• Update unary rule once after the binary rules

42

Constituency Parsing

• Borealis AI Tutorials
• Parsing I (https://www.borealisai.com/en/blog/tutorial-15-parsing-i-context-free-grammars-

and-cyk-algorithm/)
• CFGs and the CKY algorithm
• CNF and number of parses

• Parsing II (https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-
and-weighted-parsing/)
• Weighted CFGs and CKY algorithm for parsing Weighted CFGs

• Parsing III (https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-
outside-algorithm/)
• PCFGs
• Parameter estimation for both supervised and unsupervised cases

• Inside-Outside algorithm for unsupervised learning of parameters

43

https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-and-weighted-parsing/
https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-and-weighted-parsing/
https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-and-weighted-parsing/
https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-outside-algorithm/
https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-outside-algorithm/
https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-outside-algorithm/

Evaluating constituency parsing

44

Evaluating constituency parsing

• Recall: (# correct constituents in candidate) / (# constituents in gold tree)
• Precision: (# correct constituents in candidate) / (# constituents in

candidate)
• Labeled precision/recall require getting the non-terminal label correct
• F1 = (2 * precision * recall) / (precision + recall)
• Part-of-speech tagging accuracy is evaluated separately

45

Evaluating constituency parsing

• Precision: 3/7 = 42.9%
• Recall: 3/8 = 37.5%
• F1 = 40.0%
• Tagging accuracy: 100%

46

Weaknesses of PCFGs

• Strong independence assumption
• Each production (e.g., NP -> DT NN) is

independent of the rest of the tree
• Lack of sensitivity to context (where is the non-

terminal in the tree, is it a subject or object)
• Lack of sensitivity to lexical information (words)

47

Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

The only difference between these two parses:

 vs q(VP → VP PP) q(NP → NP PP)
Difficult to determine the correct parse without looking at the words!

48

Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

Exactly the same set of context-free rules!
49

Lexicalized PCFGs

• Key idea: add headwords to trees

• Each context-free rule has one special child that is the
head of the rule (a core idea in syntax)

Annotate parent with
more information

50

Head finding rules

51

Lexicalized PCFGs

• Further reading: Michael Collins. 2003. Head-Driven
Statistical Models for Natural Language Parsing.

• Results for a PCFG: 70.6% recall, 74.8% precision

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

Drawbacks:
• Dramatically increases the size of the

grammar -> less training data for each
production

• Increase the complexity of the model
(running time and memory)

52

Further improvements to parsing

• Discriminative reranking
• PCFG is a generative model
• Use discriminative models with more global features

to score parses and rerank candidate parses from the
PCFG

• Self-training (incorporate unlabeled data)
• Train on some data to get initial good model
• Then run model on unlabeled data and combine

newly labeled data with gold labeled data and retrain
• Ensemble

• Combine multiple models

Beyond supervised learning:
Grammar Induction = learn grammar from unlabeled data

Charniak parser w/
self-train+rerank:
(McClosky et al 2006)
92.1 F1

53

Using Neural Networks for
Constituency Parsing

54

Parsing with Neural Networks

What can neural networks bring?
• Better phrase representations

• Embeddings for words, tags, and nodes
• Leverage pretrained embeddings

• Learned scoring functions
• Less independence assumptions

55

Parsing as Seq2Seq
(Vinyals et al, 2015; Vaswani et al, 2017)

88.3 F1
• Linearize parse tree and train LSTM seq2seq model with attention

May not be structural correct
(i.e. unbalanced parenthesis)

56

91.3 F1 • With transformers

Recursive Neural Networks
(Socher et al, 2013)

• Continuous representations for
words and non-terminal nodes

• Compositional representations
for non-terminal nodes

• Use neural networks to get
compositional representations
as well as scores for composition

Compositional Vector Grammar = PCFG + TreeRNN

57

Recursive Neural Networks
(Socher et al, 2013)

Weights can be tied or parameterized by constituency type

Weights depend on discrete
category of children (NP, VP)

Node label Node embedding

58

Recursive Neural Networks
(Socher et al, 2013)

90.4 F1
(figure credit: CMU CS 11-747, Graham Neubig)59

Recurrent Neural Network Grammars
(Dyer et al, 2016)

Transition Parsers
• Like Seq2Seq but output is a

sequence of operations that
builds the tree incrementally

• The sequence can guarantee
structural consistency

Predict action from current configuration

Stack Buffer

History of actions

60

Recurrent Neural Network Grammars
(Dyer et al, 2016)

Parser transitions

Before action After action

Top-down parsing

S: stack of open
nonterminals and

completed subtrees
B: buffer of unprocessed

terminal symbols
x: terminal symbol

X: Non-terminal symbol
: completed subtreeτ

Actions:
NT(X): Open (create) a new
non-terminal of type X
SHIFT: move x from buffer to
stack
REDUCE: Close(finish) open
non-terminal on stack

61

Recurrent Neural Network Grammars
(Dyer et al, 2016)

• BiLSTM to get composite representation of non-terminal

REDUCE

62

Recurrent Neural Network Grammars
(Dyer et al, 2016)

Transition Parsers
• Like Seq2Seq but output is a

sequence of operations that
builds the tree incrementally

• The sequence can guarantee
structural consistency

Predict action from current configuration

Stack Buffer

History of actions

91.2 F1
63

Span Labeling
(Stern et al. 2017)

• Simple idea: decide whether span is
constituent in tree or not

• Scores labels and spans independently
• Allows for various loss functions (local vs

structured), inference algorithms (CKY
vs topdown)

• Word representation
• Span representation
• Label scoring

64

Span Labeling
(Stern et al. 2017)

• Bidirectional LSTM to get forward/backward encodings for position

• Span representation: concat vector differences

• Feedforward neural networks to predict scores for labels and spans

(fi, bi) i
(i, j) [fj − fi, bi − bj]

Sspan(i, j) = v⊤
s g(Wssij + bs)

Slabels(i, j) = Vlg(Wlsij + bl)

scalar

vector Slabel(i, j, l) = l th element of Slabels

(Gaddy et al, 2018)

65

Span Labeling
(Stern et al. 2017)

91.8 F1

Greedy top down parsing
• Recursively for each span:

• Assign a label
• Pick a split point

Running time?

O(n2)

̂k = arg max
k

Ssplit(i, k, j)

̂l = arg max
k

Slabel(i, j, l)

Sspan(i, k) + Sspan(k, j)

66

Self-Attentional Encoding
(Kitaev and Klein, 2018)

93.6 F1

• Self-attention based encoding
• Learned scoring function for each

span from token to token with label
• CKY for decoding to find the best tree
• Berkeley neural parser: https://

github.com/nikitakit/self-attentive-
parser

s(i, j, l)
i j l

67

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser

Self-Attentional Encoding
(Kitaev and Klein, 2018)

F1
93.6 (no pretraining)
93.7 (w/ FastText)
95.2 (w/ ELMo),
95.7 (w/ BERT LARGE cased),
95.8 (Ensemble w/ BERT BASE/LARGE,
cased/uncased

68

• Improvements with pretrained
representations

Summary

• Two types of structured representations: constituency vs
dependency

• Formalism for context free grammars (CFG) and probabilistic
context free grammars (PCFGs)
• CFGs have terminals (leafs), non-terminals, and production rules
• PCFGs are CFGs with probabilities on the rules

• Estimating probabilities for PCFGs and decoding (parsing)
• How to use neural networks for constituency parsing

69

