EdNatLanglLab

CMPT 413/713: Natural Language Processing

Constituency Parsing

Spring 2024
2024-03-04

Adapted from slides from Dangi Chen and Karthik Narasimhan
(with some content from Anoop Sarkar, David Bamman, Chris Manning,

Mike Collins, anq Graham Neubig)

Overview

Constituency structure vs dependency structure
Context-free grammar (CFG)

Probabilistic context-free grammar (PCFG)

The CKY algorithm

Evaluation

Lexicalized PCFGs
Neural methods for constituency parsing

Syntactic structure: constituency and dependency

Two views of linguistic structure

S
e Constituency — T
NP VP
e = phrase structure grammar | _— T
e = context-free grammars NTP VI|3Z /S\
(CFGs) Sam thinks NP VP
e Dependenc NRNES VaZ DAL
P dy ke DT NN
| andy 1Kes INL
COMP OBJ | |

the book

SUBJ

Sam thinks Sandy likes the book

Constituency structure

Phrase structure organizes words into nested constituents

Starting units: words are given a category: part-of-speech tags
the, cuddly, cat, by, the, door
DT, JJ, NN, IN, DT, NN

Words combine into phrases with categories

the cuddly cat, by, the door

NP—-DT JJ NN NP - DT NN
Phrases can combine into bigger phrases recursively DT JJ NN IN
the cuddly cat, by the door The cuddly cat by
NP PP—IN NP DT NN
the cuddly cat by the door the door

NP— NP PP

Wednesday

Dependency structure

e Dependency structure shows which words depend on
(modify or are arguments of) which other words.

nmMod

nsubj dobj case

Satellites spot whales from space

NN N

Satellites spot whales from space

Why do we need sentence structure?
¢ We need to understand sentence structure in order to
be able to interpret language correctly

¢ Human communicate complex ideas by composing
words together into bigger units

e We need to know what is connected to what

Syntactic parsing

e Syntactic parsing is the task of recognizing a
sentence and assigning a structure to it.

Boeing is located in Seattle. S

Seattle

Syntactic parsing

e Used as intermediate representation for downstream applications

English word order: subject — verb — object

Japanese word order: subject — object — verb

HE ADORES LISTENING TO MUSIC

Syntax based

(VB] [(VB]
A wo e machine translation
/ | / \ |
" el o) = " ga e ¥ S~
LISTEINING [Té] \[NN] [NN/] \[\TO] LISTENING [VB]
[f I | _— T
TO MUsIC MUSIC TO [F;RP] (VB2] (VBl]
HE \HA < NN GA Aoo%ssu
INPOT SYNTAX TREE (TO] [V\B]\
REORDERING /N ustenne wo
[NN] [TO]
/ ncisnc io
[VB] WORD INSERTING
[PRP] (VB2] [VBI]
KA{E \HA ~ \\GA DAISUKI\DESU
(TO] [VB]

/ \ KIK{.) \No
/ N (70
|
ONGAKU ("[0)
KARE HA ONGAKU WO KIKU NO GA DAISUKI DESU

RESULT TRANSLATION

o Image credit: http://vasgk.com/blog/machine_translation/

http://vas3k.com/blog/machine_translation/

Syntactic parsing
e Used as intermediate representation for downstream applications

Relation: per:city of death Relation: per:employee of Relation: org:founded by

Benoit B. Mandelbrot, a maverick In a career that spanned seven decades, Ginzburg Anil Kumar, a former director at the consulting
mathematician who developed an innovative authored several groundbreaking studies in various firm McKinsey & Co, pleaded guilty on

theory of roughness and applied it to physics, fields -- such as quantum theory, astrophysics, Thursday to providing inside information to Zaj
biology, finance and many other fields, died radio-astronomy and diffusion of cosmic radiation Rajaratnam, the founder of the Galleon Group,
Thursday in Cambridee, Mass. in the Earth's atmosphere -- that were of “Nobel in exchange for payments of at least $ 175

Prize caliber,” said Gennady Mesyats, the director million from 2004 through 2009.
of the Lebedev Physics Institute in Moscow, where
died Ginzburg worked . Rajaratnam

- 4%\
/R ‘%Insntute\’ to Raj founder

Mandelbrot Thursday Cambridge W

/\ A of the Lebedev Physics MOSfow/worlked the Group

Benoit B. n Mass where Ginzburg of the Galleon

Relation Extraction

9 Image credit: (Zhang et al, 2018)

Beyond syntactic parsing

This file doesn’t care about cleverness, wit or any
other kind of intelligent humor.

@
(0) @
() O @ O
This film '
@ ()
@ © & ©
does n't care O @
about © ©
@ © @O ©
or
»H O O O OO
@ o g o ‘e e
Nested Sentiment cleverness - other kind intelligent humor

Analysis

Recursive deep models for semantic compositionality over a sentiment treebank
10 Socher et al, EMNLP 2013

Context-free grammars (CFG)

e Widely used formal system for modeling constituency

structure in English and other natural languages A
e A context free grammar G = (N, 2, R, S) where ™ A
. 5 . () DT NN V/\NP
—_ t
e Nis a set of non-terminal symbols gL P
e > is a set of terminal symbols o oo
e Risaset of rules of the form X — V,7,...7, for TN N
n>1,XeN,Y,e (NUZ) "e T8 with DT NN

the telescope

e 5 € Nis a distinguished start symbol

11

A Context-Free Grammar for English

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S =39S
>, = {sleeps, saw, man, woman, telescope, the, with, in}
POS tags word
R = Vi — sleeps
S — NP Vt — saw
VP —» W1 NN — man
VP — Vt NN — woman
VP — VP NN — telescope
NP — DT NN — dog
NP — NP DT — the
PP — IN IN — with
IN — m
Grammar Lexicon

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase,

DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition
12

Derivations

e Given a CFG G, a derivation 1s sequence of rule-expansions starting
from the start symbol to a string consisting of terminal symbols

e It can be expressed as a sequence of strings s, 5, ..., s, where
e 5y =3 start symbol

e 5. € 2% where X* is all the possible strings made up of words from -

e Each s fori =2,...,nis derived from s;_; by picking some non- +—__ Left-most derivation:

terminal X in s5;_; and replacing it by some where X — f € R pick left-most non-terminal
e 5 :vield of the derivation S
NP VP
/\ |
A derivation can be represented as a parse tree! DT NN Vi

the man s]eeps <—y|eld

13

(Left-most) Derivation

o Sl — S R
S — NP VP
e 5, =NPVP VP — Vi
S VP — Vt NP
e 535 =DTNNVP VP — VP PP
T NP — DT NN
e 5, =the NN VP NP VP NP — NP PP
o~ ‘ PP — IN NP
e s5; = the man VP DT NN Vi T —
. Vt — saw
e 5. = the man Vi | | |
6 the man sleeps ﬁ — Than
— woman
e 5, = the man sleeps NN — telescope
a parse tree NN — dog
DT — the
IN — with
IN — 1

e Astring s € 2* is in the language defined by the CFG if
there is at least one derivation whose yield is s

e The set of possible derivations may be finite or infinite
14

Ambiguity

e Some strings may have more than one derivations

(i.e. more than one parse tree!).

NP VP
/\
DT NN
| | Vit NP
the man | /\
saw ND
S
DT NN IN/\

I
R

the telescope

NP

DT
|

the

Vit NP IN

saw DT NN ith DT NN

the dog the telescope

15

“Classical” NLP Parsing

e In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of
Toronto] [for $27 a share] [at its monthly meeting].

¢ How many parses for sentence of length n?

n:a" | number of parses

((natural language) (learning course)) ; i
(((natural language) learning) course) 3 9
((natural (language learning)) course) 4 5
(natural (language (learning course))) 2 ig
(natural ((language learning) course)) 7 132

8 429

9 1430

10 4862

11 16796

16

“Classical” NLP Parsing

e In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of
Toronto] [for $27 a share] [at its monthly meeting].

e The number of (binary) parses happen to follow the Catalan numbers

((ab)e)d (a(be))d (ab)(ed) a((bc)d) a(b(ed))

For a sentence of length n, can form constituents by
placing parenthesis.

Catalan number: C, =

Number of parses = number of ways to parenthesize /'
expression such that
e there are equal number of open/close parenthesis
e they are properly nested with open before close

See Church and Patil (CL Journal, 1982) or TAOCP VI pp 388-389 (Knuth, 1975)

17

number of parses

[—
= O

O 00O ~NOOTL S WN =7

1
1
2
5
14
42
132
429
1430
4862
16796

— (%)
n+1\n

unlabeled parses for
a sentence of n words

“Classical” NLP Parsing

e In fact, sentences can have a very large number of possible parses

e It is also difficult to construct a grammar with enough coverage

e A less constrained grammar can parse more sentences but
result in more parses for even simple sentences

e There is no way to choose the right parse! “~ Binary notion:

in or not in language

e Need to be able to assign scores to parses

18

Statistical parsing

e Adding probabilities to the rules: probabilistic CFGs (PCFGs)

e Learning from data: treebanks

Treebanks: a collection of sentences paired with their parse trees

((S
(NP-SBJ (DT That) (S
(JJ cold) (, ,) (NP-SBJ The/DT flight/NN)
(JJ empty) (NN sky)) (VP should/MD
(VP (VBD was) (VP arrive/VB
(ADJP-PRD (JJ full) (PP-TMP at/IN
(PP (IN of) (NP eleven/CD a.m/RB))
(NP (NN fire) (NP-TMP tomorrow/NN)))))
(CC and)
(NN light)))))
. D))
(a) (b)

The Penn Treeb%lk Project (Marcus et al, 1993)

Probabilistic context-free grammars
(PCFGs)

e A CFG tells us whether a sentence is in the language
it defines

e A PCFG gives us a mechanism for assigning scores
(here, probabilities) to different parses for the same
sentence.

20

Probabilistic context-free grammars (PCFGs)

Vi — sleeps 1.0

— Vit — Saw 1.0

— NN — man 0.1

— NN — woman 0.1

— . NN — telescope | 0.3

NP — DI NN |08 AL AL 2
— e .

NP — Nv I 102 IN — with 0.6

e A probabilistic context-free grammar (PCFG) consists of:
e A context-free grammar: G = (N, 2, R, 5)

e For eachrule a — / € R, there is a parameter g(a —) > 0.
Forany X € N,

D). qla—p=1

a—f.a=X

21

Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules: l
a, = P, = P, ...,a; = [, the probability of the parse is: Hq (a; = f)
i=1

| K q Vi — sleeps 1.0

S S — NP VP [1.0 Vt — saw 1.0

VP — Wi 0.3 NN — man 0.1

/\ VP — Vt NP |05 NN — woman 0.1

NP VP VP — VP PP | 0.2 NN — telescope | 0.3
0T NN \|,i NP — DT NN |08 NN — dog 0.5
| | | NP — NP PP |0.2 DT — the 1.0
the man gleeps PP — IN NP | 1.0 IN — with 0.6
IN — 1n 04

P(f) = g(S — NP VP) X g(NP — DT NN) X ¢(DT — the)
X g(NN — man) X g(VP — Vi) X g(Vi — sleeps)

= 1.0xX0.8Xx1.0x0.1x03x1.0=0.024

Why do we want Z qgla —) =17
a—f.a=X

22

Treebanks

English
e Standard setup (WSJ portion of Penn Treebank):
e 40,000 sentences for training Penn Treebank (1989-1996)
- I - Syntactic annotation of text for POS
e 1,700 for development tagging, parses, predicate-
e 2,400 for testing arguments, and speech disfluencies

- WSJ articles from 3 years

¢ Why building a treebank instead of a grammar?

e Broad coverage
e Frequencies and distributional information

e A way to evaluate systems

23

Phrasal categories Penn Treebank

ADJP Adjective phrase

ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by wh-element
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

“Understood™ subject of infinitive or imperative
Zero variant of that in subordinate clauses
Trace of wh-Constituent

- O *

24

Part-of-speech tagset

CC
CD
DT
EX

IN

JJ
JIR
JIS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS
PRP
PP$
RB
RBR
RBS
RP
SYM

Penn Treebank

Coordinating conj.
Cardinal number
Determiner
Existential there
Foreign word
Preposition

Adjective

Adjective, comparative
Adjective, superlative
List item marker
Modal

Noun, singular or mass
Noun, plural

Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb

Adverb, comparative
Adverb, superlative
Particle

Symbol

25

TO
UH
VB
VBD
VBG
VBN
VBP
VBZ
WDT
WP
WP$
WRB

infinitival ro

Interjection

Verb, base form

Verb, past tense

Verb, gerund/present pple
Verb, past participle
Verb, non-3rd ps. sg. present
Verb, 3rd ps. sg. present
Wh-determiner
Wh-pronoun

Possessive wh-pronoun
Wh-adverb

Pound sign

Dollar sign
Sentence-final punctuation
Comma

Colon, semi-colon

Left bracket character
Right bracket character
Straight double quote
Left open single quote
Left open double quote
Right close single quote
Right close double quote

Deriving a PCFG from a treebank

e Training data: a set of parse trees #, 1,, ..., f,,

e APCFG (N, 2,5, R,q):
e N isthe set of all non-terminals seen in the trees
e 2 isthe set of all words seen in the trees
e Sistaken to be the start symbol S.

e Ristaken to be the set of all rules @ — f seen in the trees

¢ The maximum-likelihood parameter estimates are:

qui(@ = f) = wountla > /) Can add smoothing

Count(a)

If we have seen the rule VP — Vt NP 105 times, and the non-terminal VP 1000 times,
g(VP — VtNP) = 0.105

20

What if there is no annotated parses!

e Use Expectation Maximization.
e For learning parameters for PCFGs

e E-Step: compute expectation over trees with fixed model weights
(probabilities)

e M-Step: determine model weights (probabilities) that maximize
likelihood of expected parses

¢ Use the inside-outside algorithm (a dynamic programming
algorithm) to compute these probabilities efficiently.

27

Parsing with PCFGs

e Given a sentence s and a PCFG, how to find the highest scoring

parse tree for s?
argmax,e g P(t)

e The CKY algorithm: applies to a PCFG in Chomsky
normal form (CNF)

e Chomsky Normal Form (CNF): all the rules take one
of the two following forms:

e X — Y,Y,whereX€ N,Y, €N,Y, €N Binary

e X > YwhereXE€N,Ye X Unary

e Can convert any PCFG into an equivalent grammar in CNF!
e However, the trees will look differently
e Possible to do “reverse transformation”

28

Converting PCFGs into a CNF grammar

e n-aryrules (n > 2): NP — DT NNP VBG NN

NP

NP /\
/\ DT @NP-> DT
DT NNP VBG NN | TN

the

| | | | NNP @NP->_DT.NNP
the Dutch publishing group | /__

Dutch VBG NN

| |
publishing group

¢ Unary rules: VP — Vi, Vi — sleeps

e Eliminate all the unary rules recursively by adding VP — sleeps

e We will come back to this later!

29

The CKY algorithm

Cocke-Kasami-Younger

¢ Dynamic programming

e Given a sentence x;, x,, ..., x,, denote z(i, j, X) as the
highest score for any parse tree that dominates words

Xijs o es X; and has non-terminal X € N as its root.

e Output: z(1,n,S)

e Initially, fori = 1,2,...,n,
gX —->x) X —>x R
0 otherwise

(i, 1, X) = {

Book the flight through Houston
1 2 3 4 5

30

The CKY algorithm

e Forall (;,j)suchthat1 <i<j<nforall X € N,

(i,], X) = max

g X - YZ)X n(i,k,Y)X n(k+ 1,j,72)

X—>YZERISk<] Consider all ways span (i,]) can be split
into 2 (k is the split point)

Also stores backpointers which allow us to recover the parse tree

S .01,

Verb:.5 e—-—-/

S:.05*.5%.054

_—’—””’__,——"

00001296

j:03*.0135*.0321

Nominal: 03—

None

=.00135
o ——VP:.5*.5%.054

|=.0135

None

< 05*.5*
000864
0000216

Det:.6ké

%L.6*.6*
*M

None

1.6%.6%
0024
=.000864

l

Nominal:.15

None

s

Nominal:
5*.15*.032
=.0024

https://web.stanford.edu/~jurafsky/slp3/13.pdf

31

E_P:1 .0*.2*.16
=.032

Cells contain:

- Best score for parse of span (1,j)
for each non-terminal X

- Backpointers

Example of CKY parsing

DT NN |08

NP NP PP | 0.2
PP IN NP | 1.0
Vi — sleeps | 1.0
Vt — saw | 1.0
NN — man | 0.1

NP

NN — woman 0.1
NN — telescope | 0.3
NN — dog 0.5

DT — the [1.0

IN — with 0.6 the man sleeps
IN — in 0.4

32

Example of CKY parsing

— NP VP [1.0]
VP — Vi | 0.3 |
VP — Vt NP |05
vP — VP PP | 0.2
NP — DT NN|O08
NP — NP PP |0.2
PP — IN NP | 1.0
Vi — sleeps 1.0
Vt — saw 1.0
NN — man 0.1
NN — woman 0.1
NN — telescope | 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6 the man sleeps
IN — in 0.4

33

Example of CKY parsing

— NP VP | 1.0
VP — Wi 0.3
VP — Vt NP | 0.5
VP — VP PP | 0.2
NP — DT NN|O0.8
NP — NP PP |0.2
PP — IN NP | 1.0

NP: 0.8 x1.0x0.1
=0.08

Vi — sleeps 1.0
Vt — saw 1.0
NN — man 0.1
NN — woman 0.1
NN — telescope | 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6 the man sleeps
IN — in 0.4

34

Example of CKY parsing

— NP VP | 1.0
VP — Vi 0.3
VP — Vt NP |0.)5
vP — VP PP | 0.2
NP — DT NN |08
NP — NP PP |02
PP — IN NP | 1.0
Vi sleeps 1.0
Vi saw 1.0
man 0.1

woman 0.1
telescope | 0.3

A

22312227

dog 0.5
the 1.0
with 0.6
In 0.4

35

Example of CKY parsing

NP

DT

NN

NP VP [1.0
VP Vi 0.3
VP Vt NP [0.5
VP VP PP | 0.2

0.8

U R AR

NP NP PP |0.2
PP IN NP | 1.0
Vi — sleeps 1.0
Vt — saw 1.0
NN — man 0.1
NN — woman 0.1
NN — telescope | 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6
IN — I 0.4

NP:{OB
W
DT: 1.0 NN: 0.1
the man

36

None

‘%P:OEB
Vi: 1.0

sleeps

Example of CKY parsing

— NP VP | 1.0
'VP — Vi 0.3
VP — Vt NP |05
vP — VP PP | 0.2
NP — DT NN|O08
NP — NP PP |0.2
PP — IN NP | 1.0
Vi — sleeps 1.0
Vt — saw 1.0
NN — man 0.1
NN — woman 0.1
NN — telescope | 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6 the man sleeps
IN — in 0.4

37

Example of CKY parsing

— NP VP | 1.0
VP — Wi 0.3
VP — Vt NP |0.)5
vP — VP PP | 0.2
NP — DT NN|O.8 S 1.0x0.08x0.3
NP — NP PP |02 =0024
PP — IN NP | 1.0

NP: 0.08 None

Vi — sleeps 1.0 / \ \
Vt — saw 1.0 / |
NN — man 0.1 _ - _ VlP O&
NN — woman 0.1 DT: 1.0 NN: 0.1 Vi: 1.0
NN — telescope | 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6 the man S|eeps
IN — m 04

38

Example of CKY parsing

— NP VP | 1.0
VP — Vi 0.3
VP — Vt NP |0.)5
vP — VP PP |02
NP — DT NN |08
NP — NP PP |02
PP — IN NP | 1.0
Vi sleeps 1.0
Vi saw 1.0
man 0.1

woman 0.1
telescope | 0.3

A

22312227

dog 0.5
the 1.0
with 0.6
n 04

39

The CKY algorithm

e Forall (;,j)suchthat1 <i<j<nforall X € N,

(i,], X) = max

g X - YZ)X n(i,k,Y)X n(k+ 1,j,72)

X—>YZERISk<] Consider all ways span (i,]) can be split
into 2 (k is the split point)

Also stores backpointers which allow us to recover the parse tree

S .01,

Verb:.5 e—-—-/

S:.05*.5%.054

_—’—””’__,——"

00001296

j:03*.0135*.0321

Nominal: 03—

None

=.00135
o ——VP:.5*.5%.054

|=.0135

None

< 05*.5*
000864
0000216

Det:.6ké

%L.6*.6*
*M

None

1.6%.6%
0024
=.000864

l

Nominal:.15

None

s

Nominal:
5*.15*.032
=.0024

https://web.stanford.edu/~jurafsky/slp3/13.pdf

40

E_P:1 .0*.2*.16
=.032

Cells contain:

- Best score for parse of span (1,j)
for each non-terminal X

- Backpointers

The CKY algorithm

Input: a sentence s =z;1...z,,a PCFGG = (N, %, 5, R, q).
Initialization:
Forall: € {1...n},forall X € N,

. B g X —zx;) ifX >z, €R
UCU { 0 otherwise

Algorithm:
e Fori=1...(n—1)

— Fori=1...(n—1)
x Setg =141
x For all X € N, calculate

n(i,5,X) = max (q(X - YZ) x(i,s,Y) x 7(s + 1,4, 2))

X —Y ZER,
se{i...(7—1)}

and

bp(i,j, X) = arg max (¢(X =YZ)xn(i,sY)xn(s+1,75,2))

X—YZecR,
s€d{i...(7—1)}

Output: Return 7(1,n,S) = max.c7(s) P(t), and backpointers bp which allow recovery
of arg max;c7 () P(1)

41

Running time?

O(n*|R|)

CKY with unary rules

e In practice, we also allow unary rules:
X = YwhereX,YEN

conversion to/from the normal form is easier

n(i,j,X)= max g X = Y)Xx(i,},Y)
X—YER

e Compute unary closure: if there is a rule chain
X—->Y,Y,—>Y, .. Y — Y add
gqX—=>Y)=qgX—>Y)X--XqglY,—=Y)

e Update unary rule once after the binary rules

42

Constituency Parsing

e Borealis Al Tutorials

e Parsing I (https://www.borealisai.com/en/blog/tutorial-15-parsing-i-context-free-grammars-
and-cyk-algorithm/)

¢ CFGs and the CKY algorithm
¢ CNF and number of parses

e Parsing II (https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-
and-weighted-parsing/)

e Weighted CFGs and CKY algorithm for parsing Weighted CFGs

e Parsing III (https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-
outside-algorithm/)

o PCFGs
e Parameter estimation for both supervised and unsupervised cases

¢ Inside-Outside algorithm for unsupervised learning of parameters

43

https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-and-weighted-parsing/
https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-and-weighted-parsing/
https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-and-weighted-parsing/
https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-outside-algorithm/
https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-outside-algorithm/
https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-outside-algorithm/

Evaluating constituency parsing

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)

— S S—
NP VP NP
_— T |
NNS NNS VBD VP NN
|) T |
Sales executives were VBG NP PP yesterday
examining DT NNS IN NP

| | | N
the figures with JJ NN

great care

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)

S
NP P
T — T
NNS NNS VBD VP PP
Sales executives were VBG NP IN NP
| N | —7

examining DT NNS with JJ NN NN

| | | | |
the figures great care yesterday

44

Evaluating constituency parsing

Recall: (# correct constituents in candidate) / (# constituents in gold tree)

Precision: (# correct constituents in candidate) / (# constituents in
candidate)

Labeled precision/recall require getting the non-terminal label correct
F1 = (2 * precision * recall) / (precision + recall)
Part-of-speech tagging accuracy is evaluated separately

45

Evaluating constituency parsing

Gold: (1, 10, 8), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)

5
N§¢———————_E€- X
NNS NNS VBD “u:ig% NN
Sa|les executives were VB-(-}— o \P/; - —ISP yesterday
cxzunlining DT N N S IN NP

| | |
the figures with JJ NN

]

great care

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)

S
NP WP ..
- Precision: 3/7 = 42.9%
NNS NNS VBD VP PP
| | Recall: 3/8 = 37.5%
Sales executives were VBG NP IN NP
| F1=40.0%

examining DT NNS with JJ NN NN . o
' | | Tagging accuracy: 100%

the figures great care yesterday

46

Weaknesses of PCFGs

e Strong independence assumption

e Each production (e.g., NP -> DT NN) is
independent of the rest of the tree

e Lack of sensitivity to context (where 1s the non-
terminal in the tree, is it a subject or object)

e Lack of sensitivity to lexical information (words)

47

Weaknesses of PCFGs

Lack of sensitivity to lexical information (words)

S S
NP VP
NP VP
NNS
Nll\IS /\ VBD T
| vP PP workers | /\
workers N P dumped NP PP
VBD NP IN NP —_
I] N NNS IN NP
dumped NNS into DT NN | o~
| | | sacks into DT NN
sacks a bin | |

a bin
The only difference between these two parses:

g(VP — VP PP) vs g(NP — NP PP)

Difficult to determine the correct parse without looking at the words!

48

Weaknesses of PCFGs

e Lack of sensitivity to lexical information (words)

NP NP

/‘\ NP/\PP
|

NP CC NP s N

Np/\pp allld NII\IS do‘gs HI\I /N‘P\
s N NP cats " NP CC NP
dolgs iL NIl\IS NI‘\IS arlld NII\IS

hox!ses hollses cz!ts

Exactly the same set of context-free rules!

49

Lexicalized PCFGs

e Keyidea: add headwords to trees Annotate parent with
more information

/S\ S(questioned)

NP b NP(!) VP(questioned)
/\ /\ awyer questione
DT NN TN /\
| | Vit NP DT(the) NN(lawyer) Vi(Goned) NP(Witness)

questione witness
the lawyer I /\ tl|1e Iawlyer |
questioned DT NN questioned

| | DT(the) NN (witness)
| |

the witness the witness

e Each context-free rule has one special child that is the
head of the rule (a core idea in syntax)

S = NP VP (VP is the head)
VP = Vit NP (Vt is the head)
NP = DT NN NN (NN is the head)

50

Head finding rules

If the rule contains NN, NNS, or NNP:

Choose the rightmost NN, NNS, or NNP

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a VP: Choose the leftmost VP

Else If the rule contains a JJ: Choose the rightmost JJ
Else Choose the leftmost child

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

51

Lexicalized PCFGs

S(saw) —2 NP(man) VP(saw)

VP(saw) —; Vt(saw) NP(dog) Drawbacks:

NP(man) —, DT(the) NN(man) e Dramatically increases the size of the

NP(dog) —» DT(the) NN(dog) grammar -> less training data for each

Vt(saw) — saw production

DT(th — th :

NN(e) © e Increase the complexity of the model
(man) — man (running time and memory)

NN(dog) — dog S Y

e Further reading: Michael Collins. 2003. Head-Driven
Statistical Models for Natural Language Parsing.

e Results for a PCFG: 70.6% recall, 74.8% precision

e Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

52

Further improvements to parsing

¢ Discriminative reranking
e PCFG is a generative model

e Use discriminative models with more global features
to score parses and rerank candidate parses from the

PCFG
e Self-training (incorporate unlabeled data) Charniak parser w/
e Train on some data to get initial good model self-train+rerank:

¢ Then run model on unlabeled data and combine (McClosky et al 2006)
newly labeled data with gold labeled data and retrain 92.1 F1

e Ensemble
¢ Combine multiple models

Beyond supervised learning;:
Grammar Induction = learn grammar from unlabeled data

53

Using Neural Networks for
Constituency Parsing

54

Parsing with Neural Networks

What can neural networks bring?

e Better phrase representations
¢ Embeddings for words, tags, and nodes
e Leverage pretrained embeddings

¢ Learned scoring functions

¢ Less independence assumptions

55

Parsing as Seq2Seq
(Vinyals et al, 201 5;Vaswani et al, 201 7)

S

|
John has a dog . — NP /VP\ :
| / N
NNP VBZ NP
/ N
DT NN
John has a dog . — (S (NP NNP)np (VP VBZ (NP DT NN)np)ve -)s

May not be structural correct
(i.e. unbalanced parenthesis)

38.3 F1
e Linearize parse tree and train LSTM seq2seq model with attention
e With transformers

e Continuous representations for (riding a bike,VP,©9)

words and non-terminal nodes
e Compositional representations

for non-terminal nodes

e Use neural networks to get
compositional representations

as well as scores for composition (I’I din g V @6)
) Y

Recursive Neural Networks
(Socher et al, 201 3)

Discrete Syntactic — Continuous Semantic
Representations in the Compositional Vector Grammar

(a bike,NP,©9)

(a,Det,©@9)

(bike,NN,©©)

Compositional Vector Grammar = PCFG + TreeRNN

57

Recursive Neural Networks
(Socher et al, 201 3)

Weights depend on discrete
category of children (NP, VP)

Standard Recursive Neural Network Syntactically Untied Recursive Neural Network

4 - — ~)

Node label Node embedding
Weights can be tied or parameterized by constituency type

58

Recursive Neural Networks
(Socher et al, 201 3)

hate th|s movne
:Tree RNNT
Tree- RNN

Gree RNN

o

tree—rnn(hl, hg) — tanh(W[hl, hg] + b)

59 (figure credit: CMU CS 11-747, Graham Neubig)

Recurrent Neural Network Grammars
(Dyer et al, 2016)

. Predict action from current configuration
Transition Parsers

o Like Seq2Seq but outputis a & oe
sequence of operations that Stack gg«% p(ay) Bufter

builds the tree incrementally St I U, P

e — A
e The sequence can guarantee / \

structural consistency
f f f f f f

(S NP (VP cat hungry The
at

The h t : '
e hungry ca History of actions

60

S: stack of open
nonterminals and
completed subtrees

B: buffer of unprocessed
terminal symbols

X: terminal symbol

X: Non-terminal symbol

7: completed subtree

Recurrent Neural Network Grammars
(Dyer et al, 2016)

Before action

Parser transitions

After action

Stack; Buffer; Open NTs; | Action Stack; , Buffer;,; Open NTs;
S B n NT(X) S| (X B n+ 1
S x| B n SHIFT S| x B n
S|X|m|...|7 B n REDUCE | S| (X7 ... %) B n—1
Top-down parsing
Input: The hungry cat meows .

Stack Buffer Action : .
0 The | hungry | cat | meows |. | NT(S) Actions:
1| (S The | hungry | cat | meows |. | NT(NP) NT(X): Open (create) a new
> | (S| (NP The | hungry | cat | meows |. | SHIFT non-terminal of type X
3 | (S| (NP|The hungry | cat | meows |. SHIFT SHIFT: move x from buffer to
4+ | (S| (NP | The | hungry cat | meows | . SHIFT stack
s | (S| (NP | The | hungry | cat meows |. REDUCE o
6 | (S| (NP The hungry cat) meows | . NT(VP) REDUCE: Close(finish) open
7 | (S| (NP The hungry cat) | (VP meows | . SHIFT non-terminal on stack
s | (S| (NP The hungry cat) | (VP meows REDUCE
o | (S| (NP The hungry cat) | (VP meows) SHIFT
10 | (S| (NP The hungry cat) | (VP meows) |. REDUCE
11 | (S (NP The hungry cat) (VP meows).) |a1

Recurrent Neural Network Grammars
(Dyer et al, 2016)

REDUCE
X
X
N P\
u V W

M T

NTP >|V \T/ NP

e BiLSTM to get composite representation of non-terminal

62

Recurrent Neural Network Grammars
(Dyer et al, 2016)

. Predict action from current configuration
Transition Parsers

e Like Seq2Seq but outputis a ¢ e
se f ' : Buffer
quence of operations that
builds the tree incrementally St | -
t ——

e — A
e The sequence can guarantee / \

structural consistency
f f f f f f

(S NP (VP cat hungry The
at

The hungry cat

History of actions

Span Labeling
(Stern et al. 2017)

e Simple idea: decide whether span is
constituent 1n tree or not

e Word representation

e Scores labels and spans independently e Span representation

e Allows for various loss functions (local vs
structured), inference algorithms (CKY
vs topdown)

e Label scoring

o4

Span Labeling
(Stern et al. 2017)

’—>[f4 — f1, b1 — b4]<—’

'(fla bl) '(f47 b4)

<START> She played soccer in the park . <stop> (Gaddy et al, 2018
0 1 2 3 4 5 6 7

e Bidirectional LSTM to get forward/backward encodings (f;, b;) for position i
e Span (i, /) representation: concat vector differences [f; — f;, b, — b/}

e Feedforward neural networks to predict scores for labels and spans

Slabels(i,j) = Vlg(WlSlj + b)) vector SlabEI(i’j’ [) = [th element of Slabels

Sspan(i»]) — VSTg(WSSij + bs) scalar

65

Span Labeling
(Stern et al. 2017)

Running time?

O(n?)
Greedy top down parsing
e Recursively for each span: l S , S
. ' :] T
e Assign a label o NP o NP VP -
. . . g~ | [| . i ‘ /\
Q.
e Pick a split point c vp 5 PR VBZ S
R »-g | - | She enjoys ‘
[= argmax S (1,7, 1) Z. 2 SvP VP
X k lab61 0% | . : | /\
k =argmax S.1:+(i, k, v SRS | S VBG NP
> k Spht(]) playing |
. . ” PRP VBZ VBG NN . NN
S Span(l, k) + 5 Span(k,]) input < She enjoys playing tennis : tennis
. 0 1 2 3 4 5

9 1 8 F1 (a) Execution of the top-down parsing algorithm. (b) Output parse tree.

66

Self-Attentional Encoding
(Kitaev and Klein, 2018)

Output ..(VP (VBD fled) (NP (DT the) (NN market))..

e Self-attention based encoding r
e Learned scoring s(i, j, [) function for each Decoder
span from token i to token j with label /

¢ CKY for decoding to find the best tree

¢ Berkeley neural parser: https://
github.com/nikitakit/self-attentive- Encoder
parser
put T

03.6 F1

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser

Self-Attentional Encoding
(Kitaev and Klein, 2018)

Output ..(VP (VBD fled) (NP (DT the) (NN market))..

T

e Improvements with pretrained

representations !
Decoder
F1

03.6 (no pretraining)

03.7 (w/ FastText)

95.2 (w/ ELMo), Encoder
95.7 (w/ BERT LARGE cased),

05.8 (Ensemble w/ BERT BASE/LARGE,

and fled the market 1n

Input
Cased/uncased P CC VBD DT NN IN

63

Summary

e Two types of structured representations: constituency vs
dependency

e Formalism for context free grammars (CFG) and probabilistic
context free grammars (PCFGs)

¢ CFGs have terminals (leafs), non-terminals, and production rules
e PCFGs are CFGs with probabilities on the rules

e Estimating probabilities for PCFGs and decoding (parsing)
e How to use neural networks for constituency parsing

69

