

# Constituency Parsing

Spring 2024 2024-03-04

Adapted from slides from Dangi Chen and Karthik Narasimhan (with some content from Anoop Sarkar, David Bamman, Chris Manning, Mike Collins, and Graham Neubig)

CMPT 413/713: Natural Language Processing

# Overview

- Constituency structure vs dependency structure
- Context-free grammar (CFG)
- Probabilistic context-free grammar (PCFG)
- The CKY algorithm
- Evaluation
- Lexicalized PCFGs
- Neural methods for constituency parsing

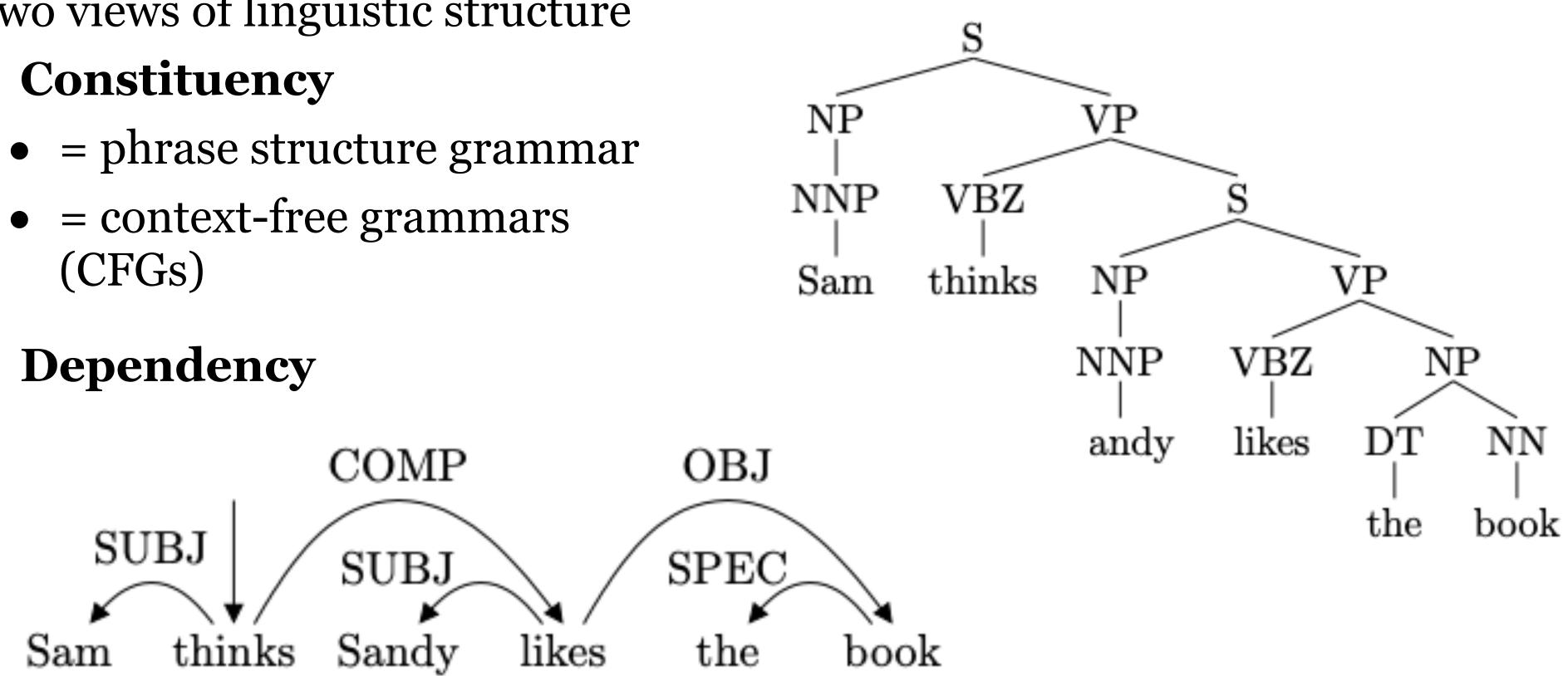
### Syntactic structure: constituency and dependency

Two views of linguistic structure

### • Constituency

- = context-free grammars (CFGs)

### • Dependency



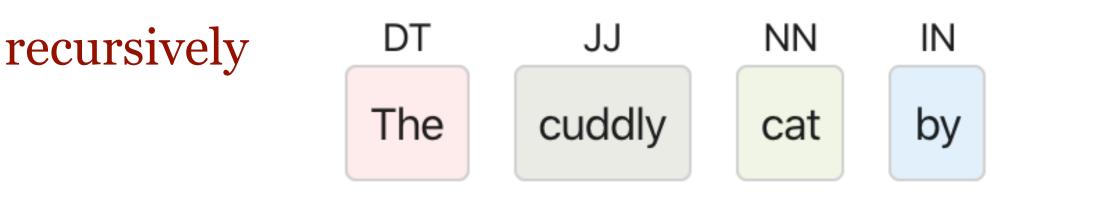
## Constituency structure

- **Phrase structure** organizes words into **nested constituents**
- Starting units: words are given a category: part-of-speech tags

the, cuddly, cat, by, the, door

DT, JJ, NN, IN, DT, NN

- Words combine into phrases with categories the cuddly cat, by, the door  $NP \rightarrow DT JJ NN$  IN  $NP \rightarrow DT NN$
- Phrases can combine into bigger phrases recursively the cuddly cat, by the door NP  $PP \rightarrow IN NP$ the cuddly cat by the door  $NP \rightarrow NP PP$

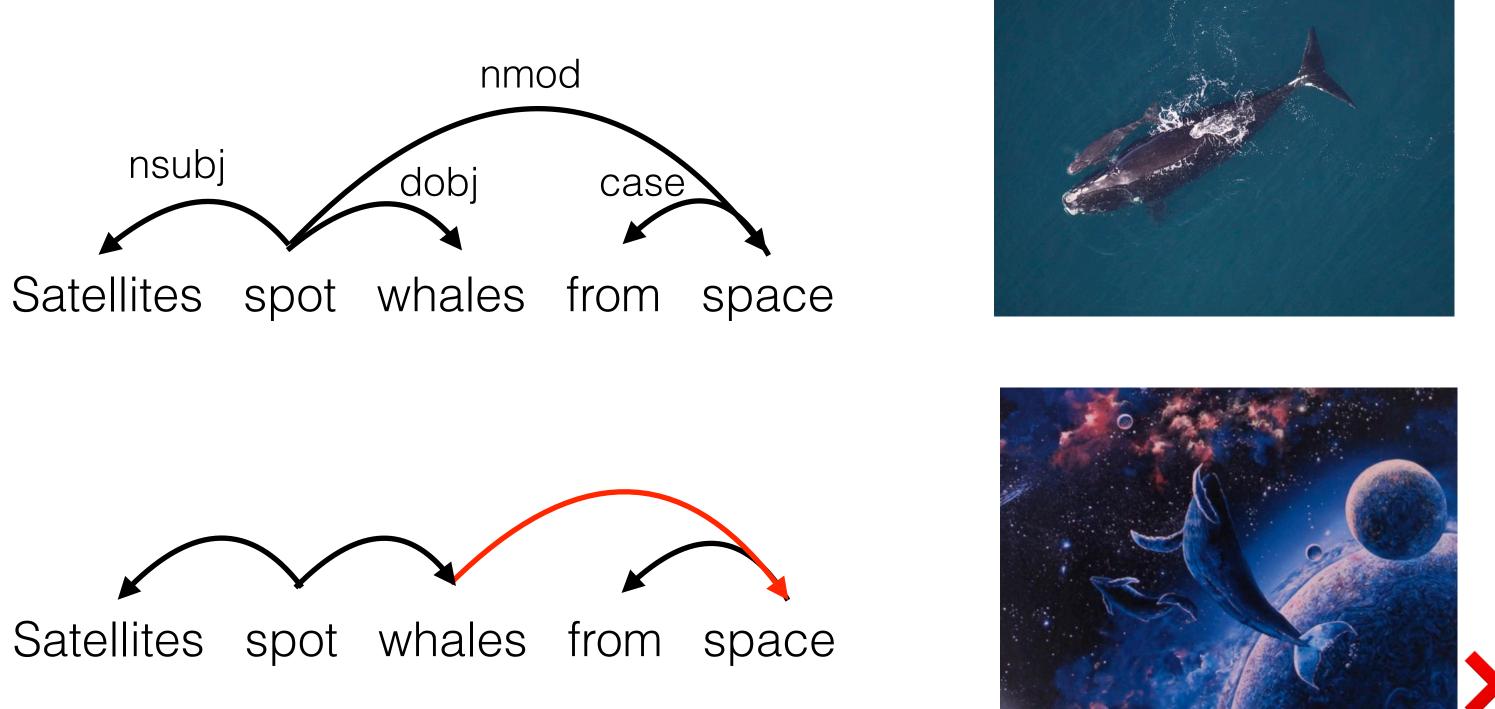


the

DT



# Dependency structure





### • Dependency structure shows which words depend on (modify or are arguments of) which other words.

5

## Why do we need sentence structure?

- be able to interpret language correctly
- words together into bigger units
- We need to know what is connected to what

• We need to understand sentence structure in order to

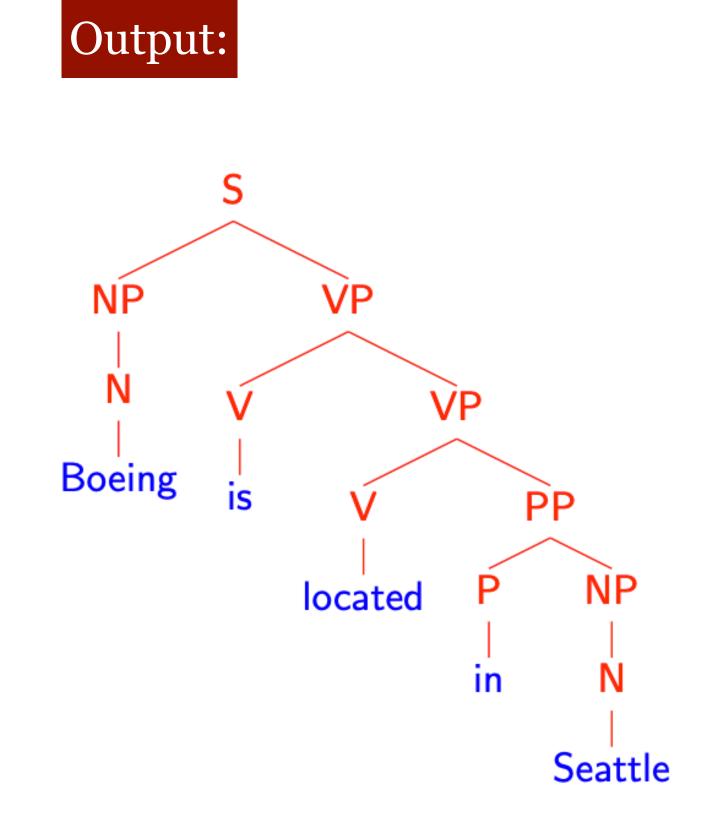
• Human communicate complex ideas by composing

# Syntactic parsing

• Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.



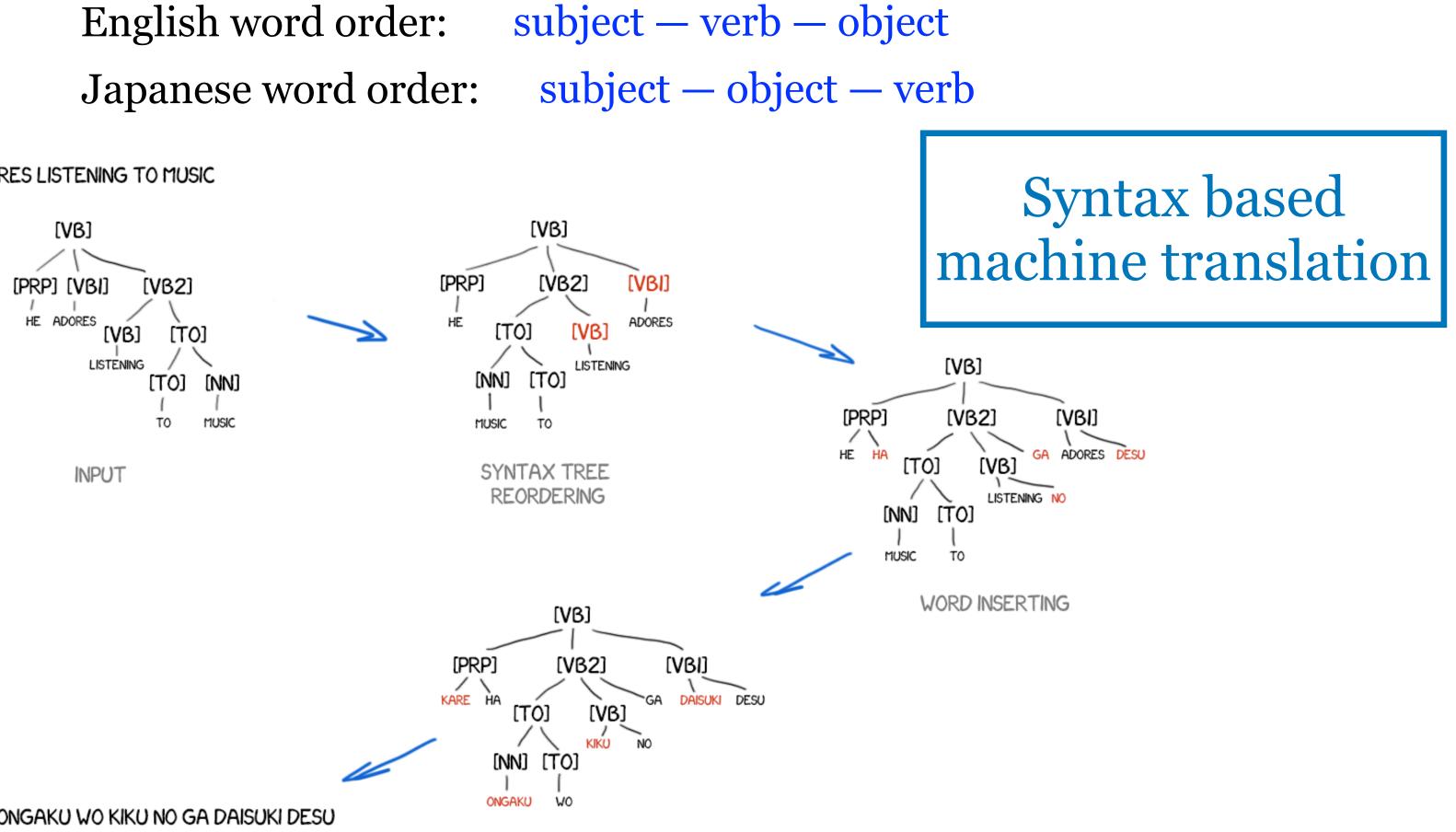
Boeing is located in Seattle.

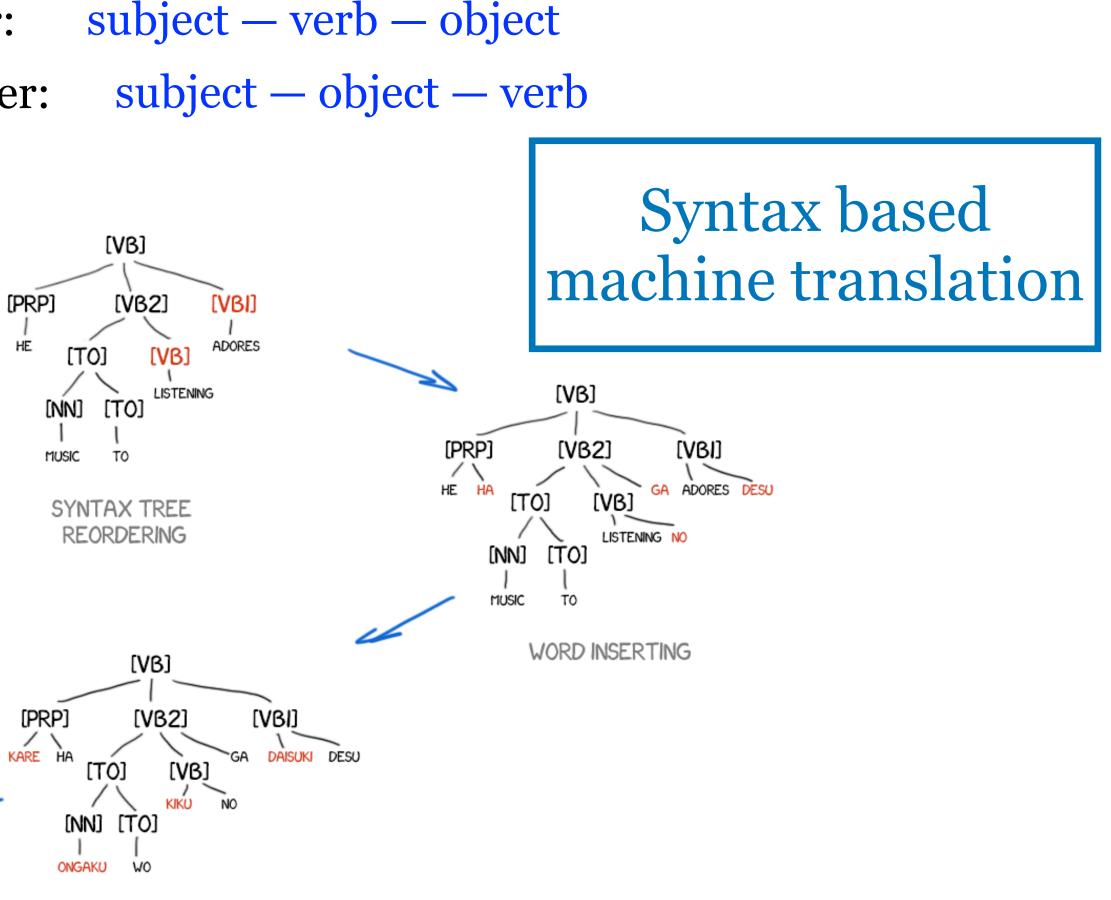


# Syntactic parsing

### • Used as intermediate representation for downstream applications

HE ADORES LISTENING TO MUSIC





KARE HA ONGAKU WO KIKU NO GA DAISUKI DESU

RESULT

TRANSLATION

Image credit: http://vas3k.com/blog/machine\_translation/



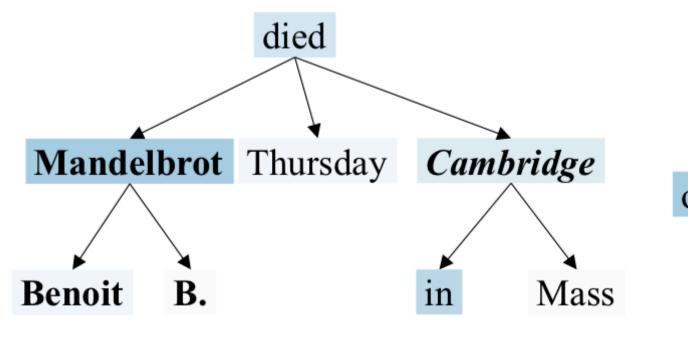
### • Used as intermediate representation for downstream applications

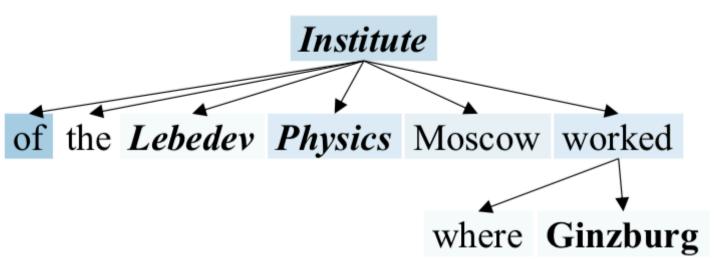
### Relation: *per:city of death*

**Benoit B. Mandelbrot**, a maverick mathematician who developed an innovative theory of roughness and applied it to physics, biology, finance and many other fields, died Thursday in *Cambridge*, Mass.

### Relation: per:employee\_of

In a career that spanned seven decades, Ginzburg authored several groundbreaking studies in various fields -- such as quantum theory, astrophysics, radio-astronomy and diffusion of cosmic radiation in the Earth's atmosphere -- that were of "Nobel Prize caliber," said Gennady Mesyats, the director of the *Lebedev Physics Institute* in Moscow, where Ginzburg worked.





### **Relation Extraction**

# Syntactic parsing



Anil Kumar, a former director at the consulting firm McKinsey & Co, pleaded guilty on Thursday to providing inside information to *Raj* **Rajaratnam**, the founder of the Galleon Group, in exchange for payments of at least \$ 175 million from 2004 through 2009.

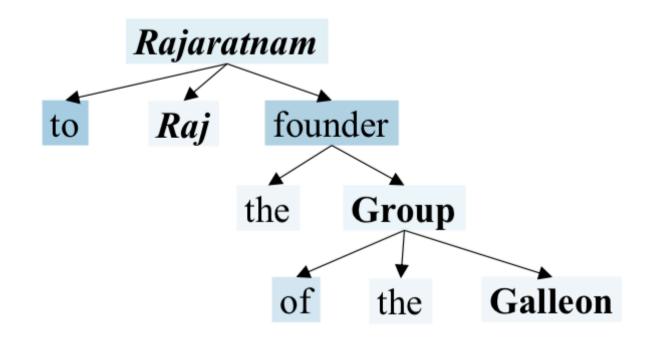
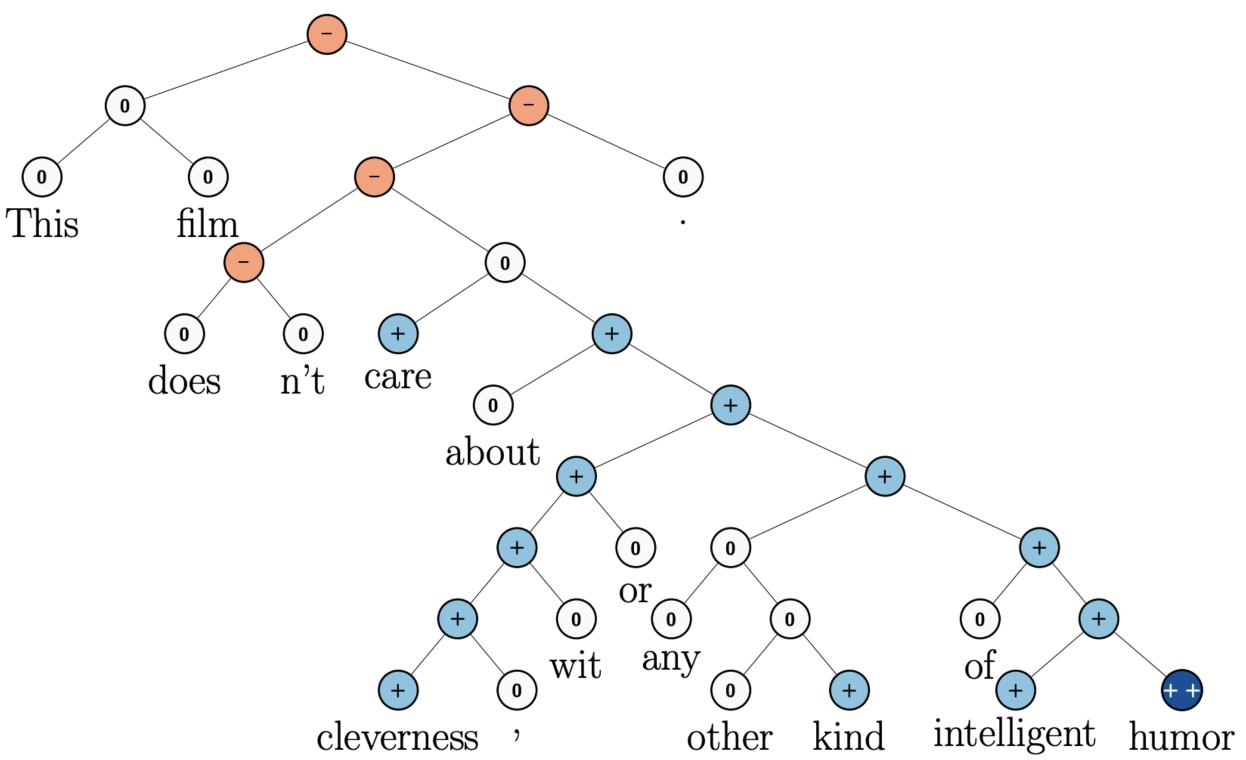


Image credit: (Zhang et al, 2018)

# Beyond syntactic parsing

other kind of intelligent humor. Negative



**Nested Sentiment** Analysis

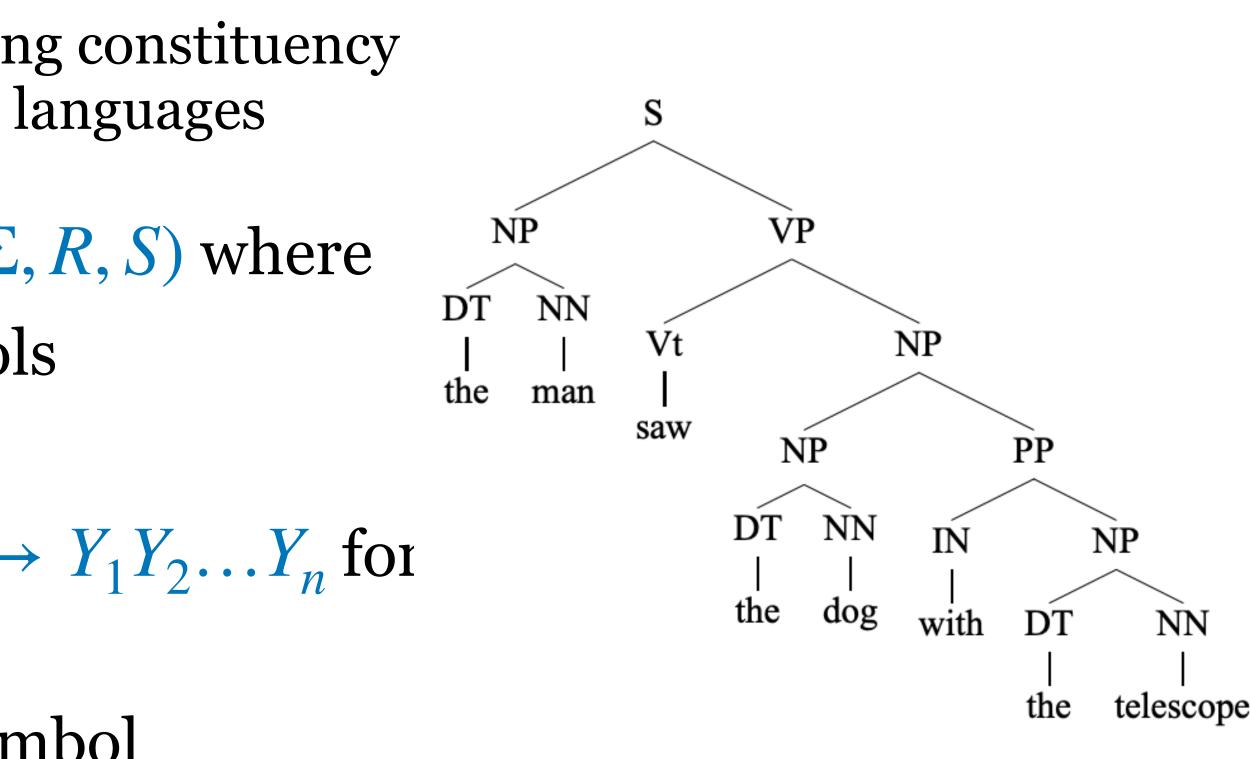
> Recursive deep models for semantic compositionality over a sentiment treebank Socher et al, EMNLP 2013 10

## This file doesn't care about cleverness, wit or any



- Widely used formal system for modeling constituency structure in English and other natural languages
- A context free grammar  $G = (N, \Sigma, R, S)$  where
  - *N* is a set of non-terminal symbols
  - $\Sigma$  is a set of terminal symbols
  - *R* is a set of rules of the form  $X \to Y_1 Y_2 \dots Y_n$  for  $n \geq 1, X \in N, Y_i \in (N \cup \Sigma)$
  - $S \in N$  is a distinguished start symbol

# Context-free grammars (CFG)



## A Context-Free Grammar for English

- $N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$ S = S

R =

| S  | $\rightarrow$ | NP | VP |
|----|---------------|----|----|
| VP | $\rightarrow$ | Vi |    |
| VP | $\rightarrow$ | Vt | NP |
| VP | $\rightarrow$ | VP | PP |
| NP | $\rightarrow$ | DT | NN |
| NP | $\rightarrow$ | NP | PP |
| PP | $\rightarrow$ | IN | NP |

### Grammar

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition 12

### $\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}$

POS tags word

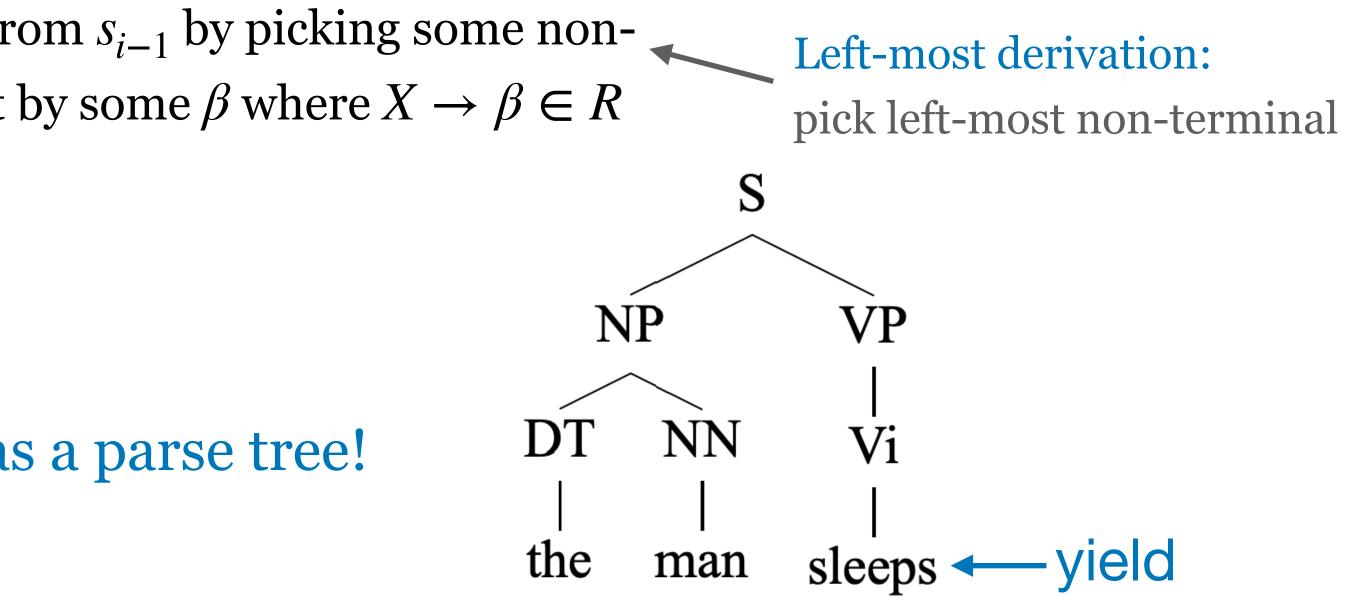
| Vi | $\rightarrow$ | sleeps    |
|----|---------------|-----------|
| Vt | $\rightarrow$ | saw       |
| NN | $\rightarrow$ | man       |
| NN | $\rightarrow$ | woman     |
| NN | $\rightarrow$ | telescope |
| NN | $\rightarrow$ | dog       |
| DT | $\rightarrow$ | the       |
| IN | $\rightarrow$ | with      |
| IN | $\rightarrow$ | in        |

### Lexicon

## Derivations

- Given a CFG *G*, a derivation is sequence of rule-expansions starting from the start symbol to a string consisting of terminal symbols
- It can be expressed as a sequence of strings  $s_1, s_2, \ldots, s_n$ , where
  - $s_1 = S$  start symbol
  - $s_n \in \Sigma^*$  where  $\Sigma^*$  is all the possible strings made up of words from  $\Sigma$
  - Each  $s_i$  for i = 2, ..., n is derived from  $s_{i-1}$  by picking some nonterminal X in  $s_{i-1}$  and replacing it by some  $\beta$  where  $X \rightarrow \beta \in R$
- *s<sub>n</sub>*: yield of the derivation

### A derivation can be represented as a parse tree!



# (Left-most) Derivation

- $s_1 = S$
- $s_2 = \text{NP VP}$
- $s_3 = \text{DT NN VP}$
- $s_4 = \text{the NN VP}$
- $s_5 = \text{the man VP}$
- $s_6 = \text{the man Vi}$
- $s_7$  = the man sleeps

DT the

- A string  $s \in \Sigma^*$  is in the language defined by the CFG if there is at least one derivation whose yield is *s*
- The set of possible derivations may be finite or infinite

S NP VP NN Vi sleeps man a parse tree

R =

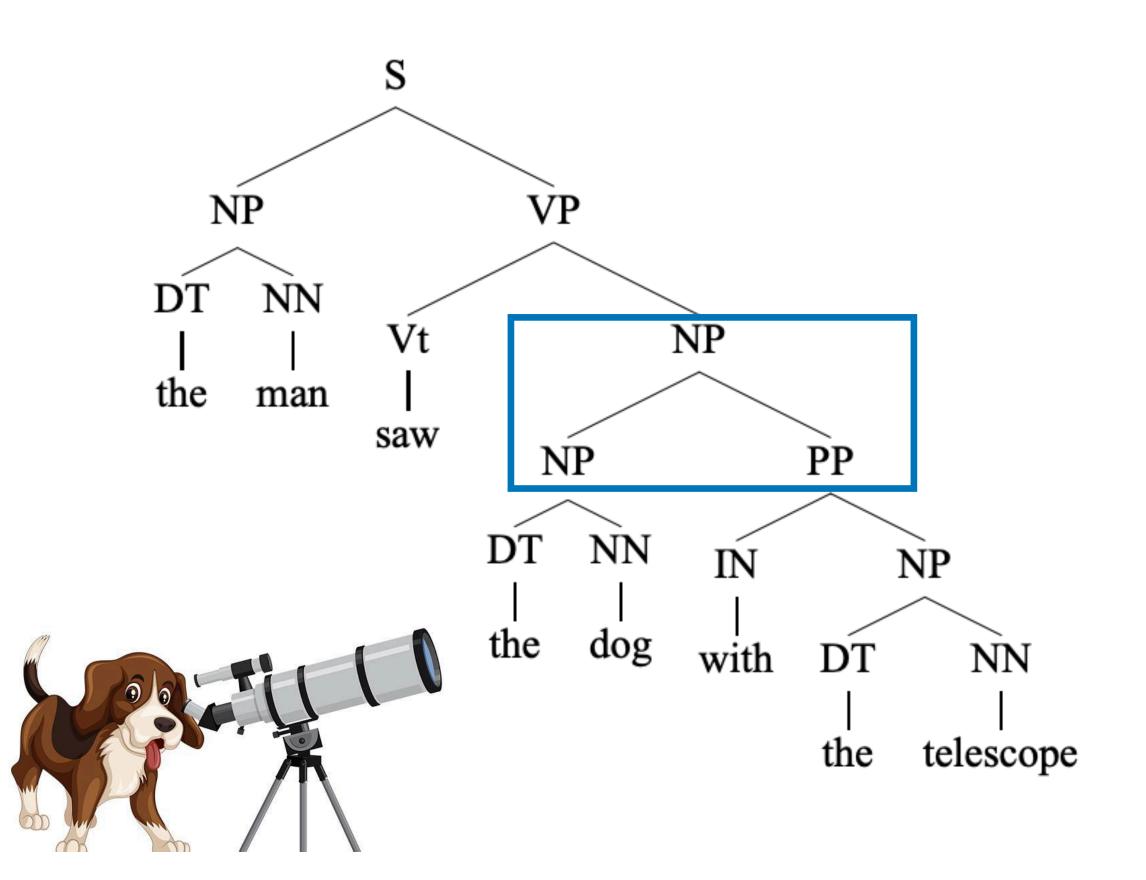
| S  | $\rightarrow$ | NP | VP |
|----|---------------|----|----|
| VP | $\rightarrow$ | Vi |    |
| VP | $\rightarrow$ | Vt | NP |
| VP | $\rightarrow$ | VP | PP |
| NP | $\rightarrow$ | DT | NN |
| NP | $\rightarrow$ | NP | PP |
| PP | $\rightarrow$ | IN | NP |

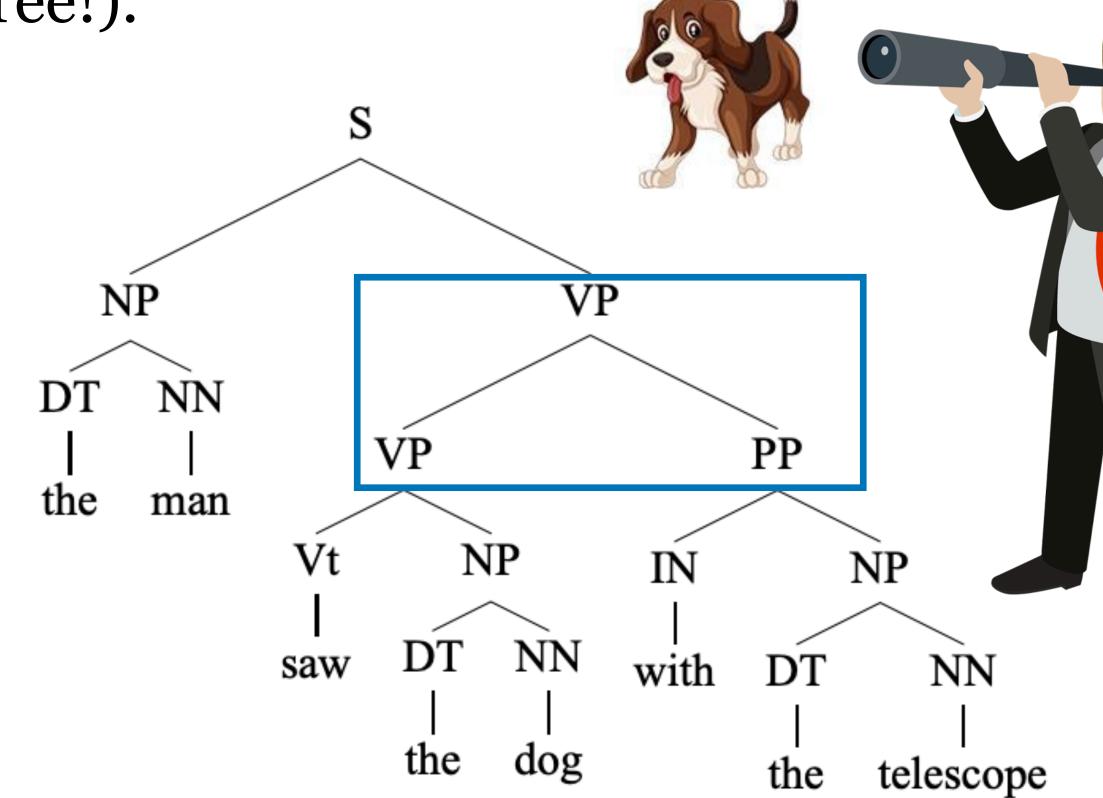
| Vi | $\rightarrow$ | sleeps    |
|----|---------------|-----------|
| Vt | $\rightarrow$ | saw       |
| NN | $\rightarrow$ | man       |
| NN | $\rightarrow$ | woman     |
| NN | $\rightarrow$ | telescope |
| NN | $\rightarrow$ | dog       |
| DT | $\rightarrow$ | the       |
| IN | $\rightarrow$ | with      |
| IN | $\rightarrow$ | in        |

14

# Ambiguity

# • Some strings may have more than one derivations (i.e. more than one parse tree!).







## "Classical" NLP Parsing

• In fact, sentences can have a very large number of possible parses

Toronto] [for \$27 a share] [at its monthly meeting].

• How many parses for sentence of length n?

((natural language) (learning course)) (((natural language) learning) course) ((natural (language learning)) course) (natural (language (learning course))) (natural ((language learning) course))

The board approved [its acquisition] [by Royal Trustco Ltd.] [of

| n:a <sup>n</sup> | number of parses |
|------------------|------------------|
| 1                | 1                |
| 2                | 1                |
| 3                | 2                |
| 4                | 5                |
| 5                | 14               |
| 6                | 42               |
| 7                | 132              |
| 8                | 429              |
| 9                | 1430             |
| 10               | 4862             |
| 11               | 16796            |

## "Classical" NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquis Toronto] [for \$27 a share] [at i

• The number of (binary) parses

((ab)c)d (a(bc))d (a

For a sentence of length *n*, can f placing parenthesis.

Number of parses = number of we expression such that

- there are equal number of o
- they are properly nested wit

See Church and Patil (CL Journal, 1982) or TAOCP VI pp 388-389 (Knuth, 1975)

|                                                                            |                    | -                                                     |
|----------------------------------------------------------------------------|--------------------|-------------------------------------------------------|
|                                                                            | n : a <sup>n</sup> | number of pars                                        |
| isition] [by Royal Trustco Ltd.] [of                                       | 1                  | 1                                                     |
| its monthly meeting].                                                      | 2                  | 1                                                     |
| tes monthly mooths].                                                       | 3                  | 2                                                     |
|                                                                            | 4                  | 5                                                     |
| honnon to follow the Catalon numbers                                       | 5                  | 14                                                    |
| happen to follow the Catalan numbers                                       | 6                  | 42                                                    |
|                                                                            | 7                  | 132                                                   |
| (ab)(cd) a((bc)d) a(b(cd))                                                 | 8                  | 429                                                   |
|                                                                            | 9                  | 1430                                                  |
|                                                                            | 10                 | 4862                                                  |
| form constituents by                                                       | 11                 | 16796                                                 |
| Catalan number: C<br>ways to parenthesize                                  | $T_n = -$          | $\frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$ |
| open/close parenthesis # unlabeled p<br>th open before close a sentence of |                    |                                                       |
| $1000 \approx T \land O O O \land I = 200 200 (K = 1075)$                  |                    |                                                       |





## "Classical" NLP Parsing

- - result in more parses for even simple sentences
  - There is no way to choose the right parse!

• Need to be able to assign scores to parses

• In fact, sentences can have a very large number of possible parses

• It is also difficult to construct a grammar with enough coverage • A less constrained grammar can parse more sentences but

> Binary notion: in or not in language

# Statistical parsing

### • Learning from data: treebanks

```
((S
   (NP-SBJ (DT That)
    (JJ cold) (, ,)
     (JJ empty) (NN sky) )
  (VP (VBD was)
     (ADJP-PRD (JJ full)
       (PP (IN of)
         (NP (NN fire)
           (CC and)
           (NN light) ))))
  (. .) ))
               (a)
```

- Adding probabilities to the rules: probabilistic CFGs (PCFGs)

  - **Treebanks**: a collection of sentences paired with their parse trees

```
((S
   (NP-SBJ The/DT flight/NN )
   (VP should/MD
     (VP arrive/VB
       (PP-TMP at/IN
         (NP eleven/CD a.m/RB ))
       (NP-TMP tomorrow/NN )))))
```

(b)

### The Penn Treebank Project (Marcus et al, 1993)

# Probabilistic context-free grammars (PCFGs)

- it defines
- sentence.

• A CFG tells us whether a sentence is in the language

 A PCFG gives us a mechanism for assigning scores (here, probabilities) to different parses for the same

## Probabilistic context-free grammars (PCFGs)

|    |               |    |    |     | Vi | ï  | $\rightarrow$ | sleeps    | Γ |
|----|---------------|----|----|-----|----|----|---------------|-----------|---|
| S  | $\rightarrow$ | NP | VP | 1.0 | Vi | 't | $\rightarrow$ | saw       |   |
| VP | $\rightarrow$ | Vi |    | 0.3 | N  | Ν  | $\rightarrow$ | man       | Γ |
| VP | $\rightarrow$ | Vt | NP | 0.5 | N  | Ν  | $\rightarrow$ | woman     |   |
| VP | $\rightarrow$ | VP | PP | 0.2 | N  | Ν  | $\rightarrow$ | telescope |   |
| NP | $\rightarrow$ | DT | NN | 0.8 | N  | Ν  | $\rightarrow$ | dog       |   |
| NP | $\rightarrow$ | NP | PP | 0.2 | D  | T  | $\rightarrow$ | the       |   |
|    | ,             |    |    |     | IN | N  | $\rightarrow$ | with      | ( |
| PP | $\rightarrow$ | IN | NP | 1.0 | IN | N  | $\rightarrow$ | in        | ( |

- - A context-free grammar:  $G = (N, \Sigma, R, S)$
  - For any  $X \in N$ ,

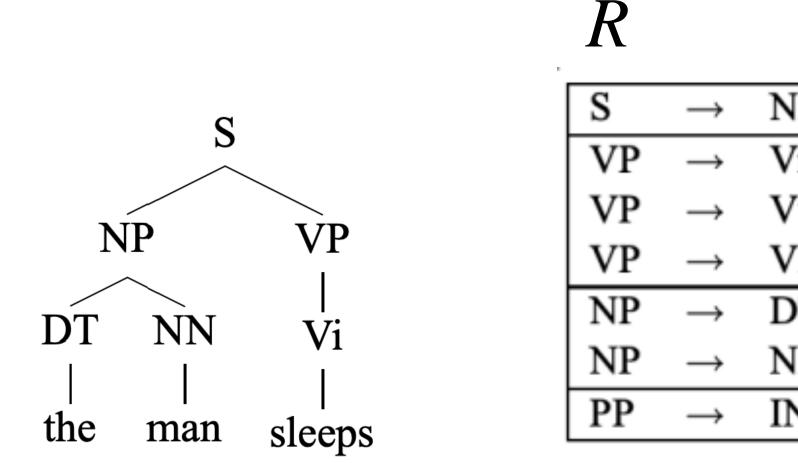
• A probabilistic context-free grammar (PCFG) consists of:

• For each rule  $\alpha \to \beta \in R$ , there is a parameter  $q(\alpha \to \beta) \ge 0$ .

$$\sum_{\substack{\alpha \to \beta: \alpha = X}} q(\alpha \to \beta) = 1$$

## Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules:



 $P(t) = q(S \rightarrow NP VP) \times q(NP \rightarrow DT NN) \times q(DT \rightarrow the)$  $\times q(NN \rightarrow man) \times q(VP \rightarrow Vi) \times q(Vi \rightarrow sleeps)$  $= 1.0 \times 0.8 \times 1.0 \times 0.1 \times 0.3 \times 1.0 = 0.024$ 

 $\alpha_1 \to \dot{\beta}_1, \alpha_2 \to \beta_2, \dots, \alpha_l \to \dot{\beta}_l$ , the probability of the parse is:  $\prod q(\alpha_i \to \beta_i)$ i=1

|    |    | q   |
|----|----|-----|
| IP | VP | 1.0 |
| 'i |    | 0.3 |
| ′t | NP | 0.5 |
| 'P | PP | 0.2 |
| DT | NN | 0.8 |
| IP | PP | 0.2 |
| N  | NP | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

Why do we want  $\sum q(\alpha \rightarrow \beta) = 1$ ?

 $\alpha \rightarrow \beta : \alpha = X$ 

# Treebanks

### English

- Standard setup (WSJ portion of Penn Treebank):
  - 40,000 sentences for training
  - 1,700 for development
  - 2,400 for testing
- Why building a treebank instead of a grammar?
  - Broad coverage
  - Frequencies and distributional information
  - A way to evaluate systems

- Penn Treebank (1989-1996)
- Syntactic annotation of text for POS tagging, parses, predicatearguments, and speech disfluencies
- WSJ articles from 3 years

### Phrasal categories

| ADJP   | Adjective phrase                  |
|--------|-----------------------------------|
| ADVP   | Adverb phrase                     |
| NP     | Noun phrase                       |
| PP     | Prepositional phrase              |
| S      | Simple declarative clause         |
| SBAR   | Subordinate clause                |
| SBARQ  | Direct question introduced by v   |
| SINV   | Declarative sentence with subject |
| SQ     | Yes/no questions and subconsti    |
| VP     | Verb phrase                       |
| WHADVP | Wh-adverb phrase                  |
| WHNP   | Wh-noun phrase                    |
| WHPP   | Wh-prepositional phrase           |
| X      | Constituent of unknown or unc     |
| *      | "Understood" subject of infinit   |
| 0      | Zero variant of that in subordin  |
| Т      | Trace of wh-Constituent           |
|        |                                   |

## Penn Treebank

wh-element ject-aux inversion tituent of SBARQ excluding wh-element

certain category itive or imperative nate clauses

### Part-of-speech tagset

| CC   | Coordinating conj.     | ТО   | infinitival to                |
|------|------------------------|------|-------------------------------|
| CD   | Cardinal number        | UH   | Interjection                  |
| DT   | Determiner             | VB   | Verb, base form               |
| EX   | Existential there      | VBD  | Verb, past tense              |
| FW   | Foreign word           | VBG  | Verb, gerund/present pple     |
| IN   | Preposition            | VBN  | Verb, past participle         |
| 11   | Adjective              | VBP  | Verb, non-3rd ps. sg. present |
| JJR  | Adjective, comparative | VBZ  | Verb, 3rd ps. sg. present     |
| JJS  | Adjective, superlative | WDT  | Wh-determiner                 |
| LS   | List item marker       | WP   | Wh-pronoun                    |
| MD   | Modal                  | WP\$ | Possessive wh-pronoun         |
| NN   | Noun, singular or mass | WRB  | Wh-adverb                     |
| NNS  | Noun, plural           | #    | Pound sign                    |
| NNP  | Proper noun, singular  | \$   | Dollar sign                   |
| NNPS | Proper noun, plural    |      | Sentence-final punctuation    |
| PDT  | Predeterminer          | ,    | Comma                         |
| POS  | Possessive ending      | :    | Colon, semi-colon             |
| PRP  | Personal pronoun       | (    | Left bracket character        |
| PP\$ | Possessive pronoun     | )    | Right bracket character       |
| RB   | Adverb                 | "    | Straight double quote         |
| RBR  | Adverb, comparative    | •    | Left open single quote        |
| RBS  | Adverb, superlative    | **   | Left open double quote        |
| RP   | Particle               | ,    | Right close single quote      |
| SYM  | Symbol                 | "    | Right close double quote      |
|      |                        |      |                               |

## Penn Treebank

## Deriving a PCFG from a treebank

- Training data: a set of parse trees  $t_1, t_2, \ldots, t_m$
- A PCFG  $(N, \Sigma, S, R, q)$ :
  - *N* is the set of all non-terminals seen in the trees
  - $\Sigma$  is the set of all words seen in the trees
  - *S* is taken to be the start symbol S.
  - *R* is taken to be the set of all rules  $\alpha \rightarrow \beta$  seen in the trees
  - The maximum-likelihood parameter estimates are:

If we have seen the rule VP  $\rightarrow$  Vt NP 105 times, and the non-terminal VP 1000 times,  $q(\text{VP} \rightarrow \text{Vt NP}) = 0.105$ 

 $q_{ML}(\alpha \to \beta) = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$ Can add smoothing

# What if there is no annotated parses?

- Use Expectation Maximization.
- For learning parameters for PCFGs
  - (probabilities)
  - likelihood of expected parses
- Use the inside-outside algorithm (a dynamic programming algorithm) to compute these probabilities efficiently.

• E-Step: compute expectation over trees with fixed model weights

• M-Step: determine model weights (probabilities) that maximize

parse tree for *s*?

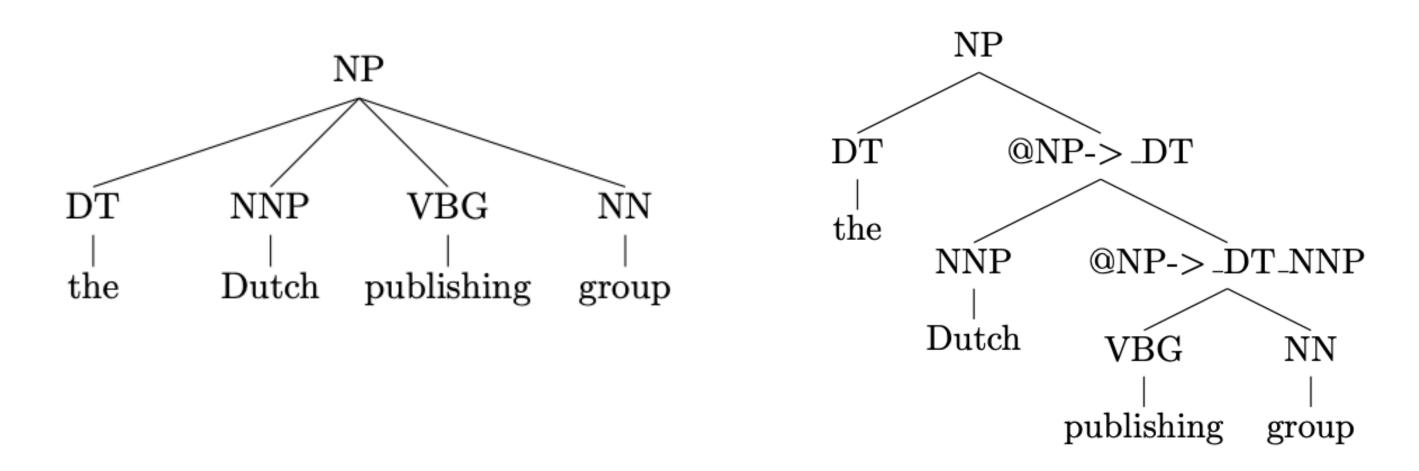
- **The CKY algorithm**: applies to a PCFG in Chomsky normal form (CNF)
- **Chomsky Normal Form (CNF)**: all the rules take one of the two following forms:
  - Binary Unary
  - $X \to Y$  where  $X \in N, Y \in \Sigma$
- $X \to Y_1 Y_2$  where  $X \in N, Y_1 \in N, Y_2 \in N$ • Can convert any PCFG into an equivalent grammar in CNF! • However, the trees will look differently
- - Possible to do "reverse transformation"

## Parsing with PCFGs

- Given a sentence s and a PCFG, how to find the highest scoring
  - $argmax_{t \in \mathcal{T}(s)} P(t)$

## Converting PCFGs into a CNF grammar

### • *n*-ary rules (n > 2): NP $\rightarrow$ DT NNP VBG NN



- Unary rules:  $VP \rightarrow Vi, Vi \rightarrow sleeps$ 

  - We will come back to this later!

• Eliminate all the unary rules recursively by adding VP  $\rightarrow$  sleeps

# The CKY algorithm

Cocke-Kasami-Younger

- Dynamic programming
- Given a sentence  $x_1, x_2, \ldots, x_n$ , denote  $\pi(i, j, X)$  as the  $x_i, \ldots, x_i$  and has non-terminal  $X \in N$  as its root.
- Output:  $\pi(1,n,S)$
- Initially, for  $i = 1, 2, \dots, n$ ,

 $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$ 

Book the flight through Houston 530

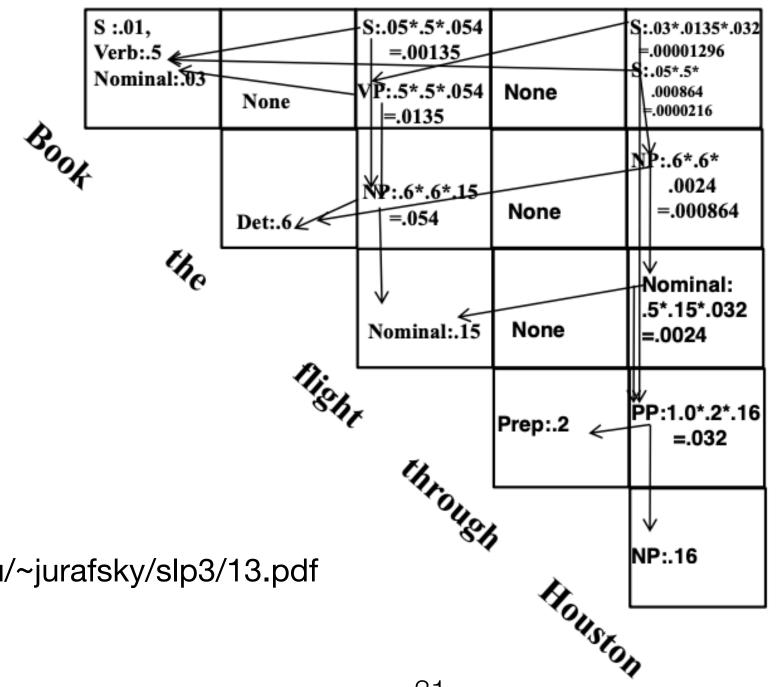
highest score for any parse tree that dominates words

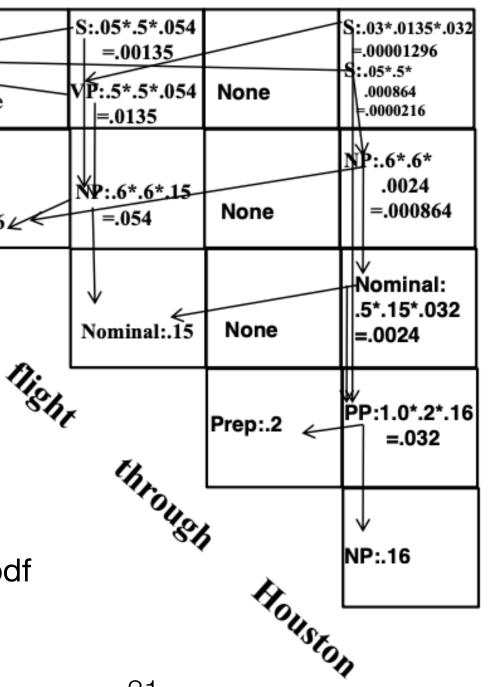
# The CKY algorithm

• For all (i, j) such that  $1 \le i < j \le n$  for all  $X \in N$ ,

$$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X)$$

Also stores backpointers which allow us to recover the parse tree





https://web.stanford.edu/~jurafsky/slp3/13.pdf

### $X \to YZ \times \pi(i, k, Y) \times \pi(k+1, j, Z)$

onsider all ways span (i,j) can be split into 2 (k is the split point)

Cells contain:

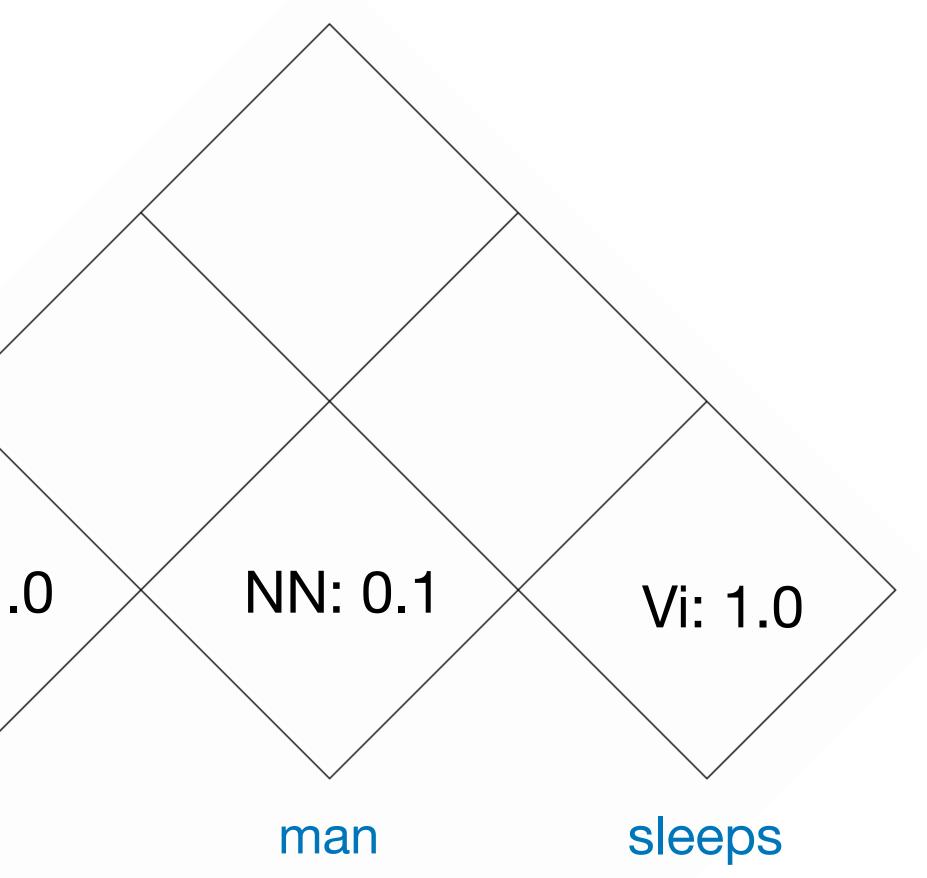
- Best score for parse of span (i,j) for each non-terminal X
- Backpointers

|               |                                                                                                                                                                        |                                                                                                                                          | _                                                                                                                                                             |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\rightarrow$ | NP                                                                                                                                                                     | VP                                                                                                                                       | 1.0                                                                                                                                                           |
| $\rightarrow$ | Vi                                                                                                                                                                     |                                                                                                                                          | 0.3                                                                                                                                                           |
| $\rightarrow$ | Vt                                                                                                                                                                     | NP                                                                                                                                       | 0.5                                                                                                                                                           |
| $\rightarrow$ | VP                                                                                                                                                                     | PP                                                                                                                                       | 0.2                                                                                                                                                           |
| $\rightarrow$ | DT                                                                                                                                                                     | NN                                                                                                                                       | 0.8                                                                                                                                                           |
| $\rightarrow$ | NP                                                                                                                                                                     | PP                                                                                                                                       | 0.2                                                                                                                                                           |
| $\rightarrow$ | IN                                                                                                                                                                     | NP                                                                                                                                       | 1.0                                                                                                                                                           |
|               | $\stackrel{\uparrow}{\rightarrow} \stackrel{\uparrow}{\rightarrow} \stackrel{\uparrow}{\rightarrow} \stackrel{\uparrow}{\rightarrow} \stackrel{\uparrow}{\rightarrow}$ | $\begin{array}{ccc} \rightarrow & Vi \\ \rightarrow & Vt \\ \rightarrow & VP \\ \hline \rightarrow & DT \\ \rightarrow & NP \end{array}$ | $\begin{array}{cccc} \rightarrow & Vi \\ \rightarrow & Vt & NP \\ \rightarrow & VP & PP \\ \hline \rightarrow & DT & NN \\ \rightarrow & NP & PP \end{array}$ |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the



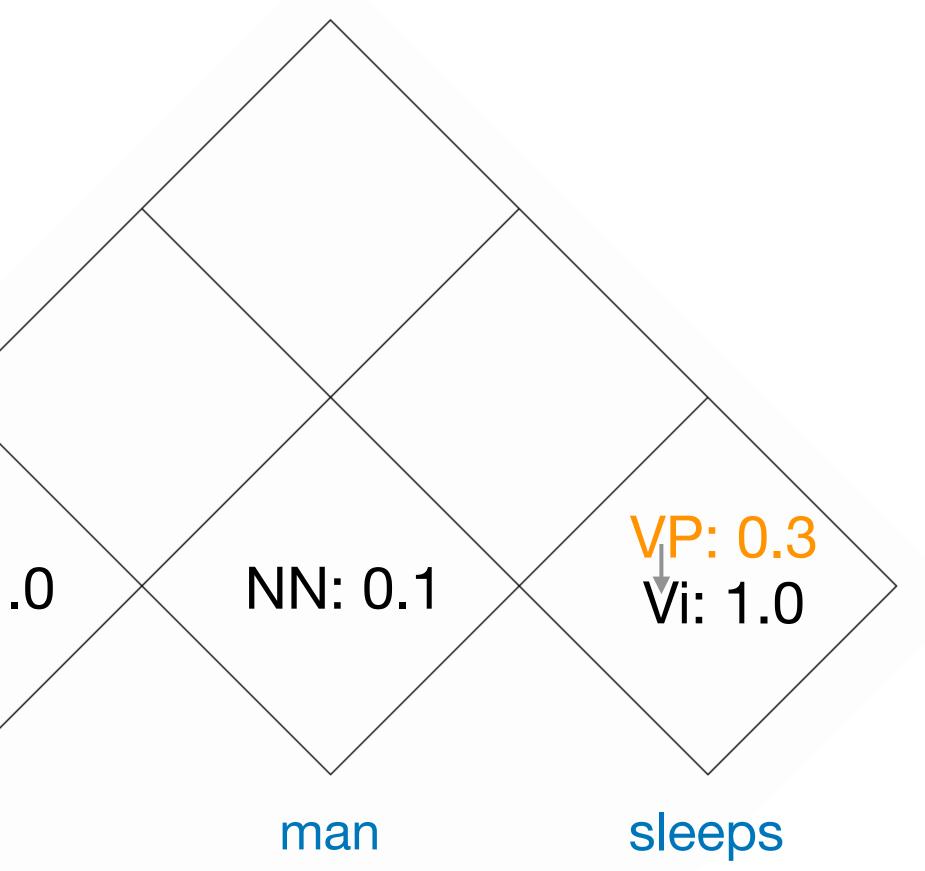
| S  | $\rightarrow$ | NP | VP | 1.0 |
|----|---------------|----|----|-----|
| VP | $\rightarrow$ | Vi |    | 0.3 |
| VP | $\rightarrow$ | Vt | NP | 0.5 |
| VP | $\rightarrow$ | VP | PP | 0.2 |
| NP | $\rightarrow$ | DT | NN | 0.8 |
| NP | $\rightarrow$ | NP | PP | 0.2 |
| PP | $\rightarrow$ | IN | NP | 1.0 |

.

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the

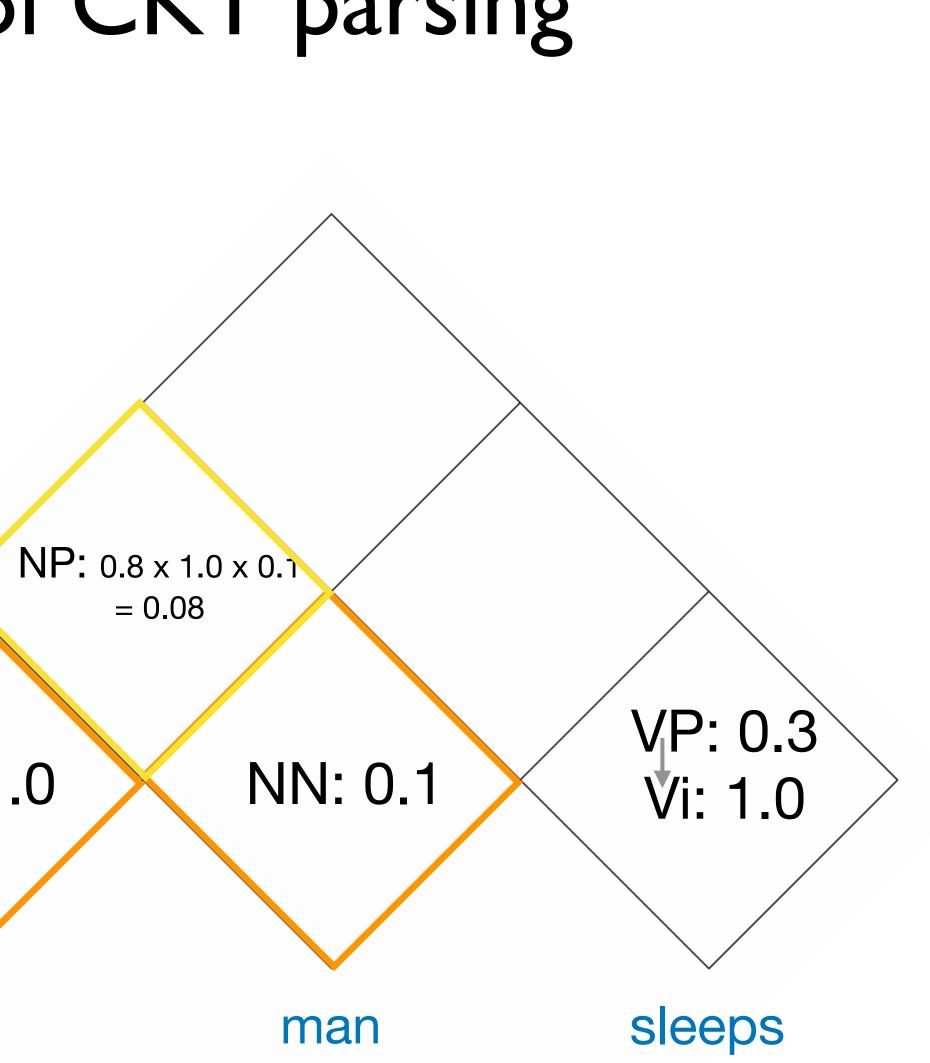


|    |               | 210 | T ID | 1.0 |
|----|---------------|-----|------|-----|
| S  | $\rightarrow$ | NP  | VP   | 1.0 |
| VP | $\rightarrow$ | Vi  |      | 0.3 |
| VP | $\rightarrow$ | Vt  | NP   | 0.5 |
| VP | $\rightarrow$ | VP  | PP   | 0.2 |
| NP | $\rightarrow$ | DT  | NN   | 0.8 |
| NP | $\rightarrow$ | NP  | PP   | 0.2 |
| PP | $\rightarrow$ | IN  | NP   | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the



34

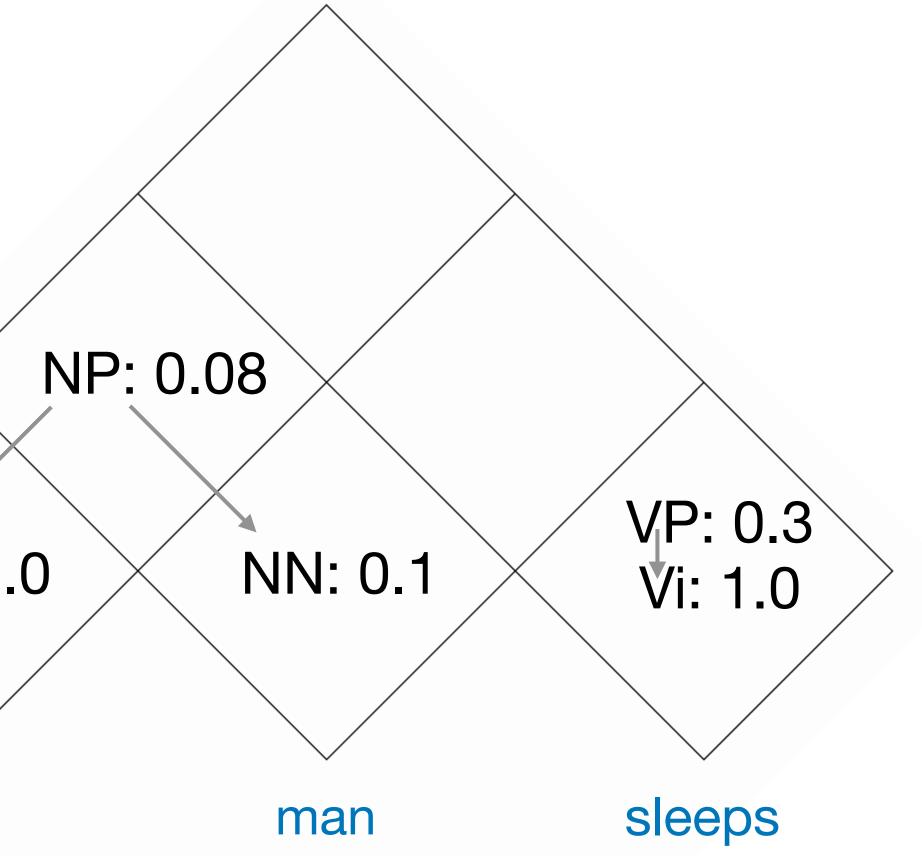
| S  | $\rightarrow$ | NP | VP | 1.0 |
|----|---------------|----|----|-----|
| VP | $\rightarrow$ | Vi |    | 0.3 |
| VP | $\rightarrow$ | Vt | NP | 0.5 |
| VP | $\rightarrow$ | VP | PP | 0.2 |
| NP | $\rightarrow$ | DT | NN | 0.8 |
| NP | $\rightarrow$ | NP | PP | 0.2 |
| PP | $\rightarrow$ | IN | NP | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the



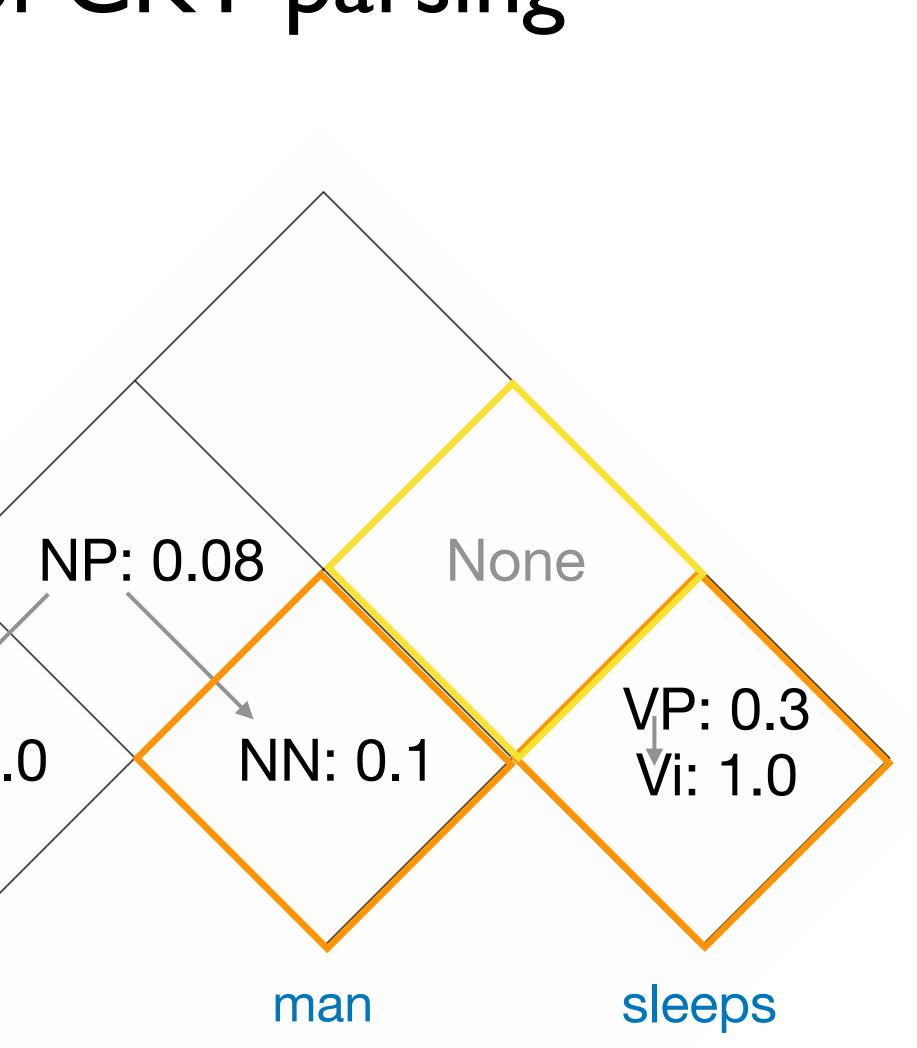


| S  | $\rightarrow$ | NP | VP | 1.0 |
|----|---------------|----|----|-----|
| VP | $\rightarrow$ | Vi |    | 0.3 |
| VP | $\rightarrow$ | Vt | NP | 0.5 |
| VP | $\rightarrow$ | VP | PP | 0.2 |
| NP | $\rightarrow$ | DT | NN | 0.8 |
| NP | $\rightarrow$ | NP | PP | 0.2 |
| PP | $\rightarrow$ | IN | NP | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the



### 36

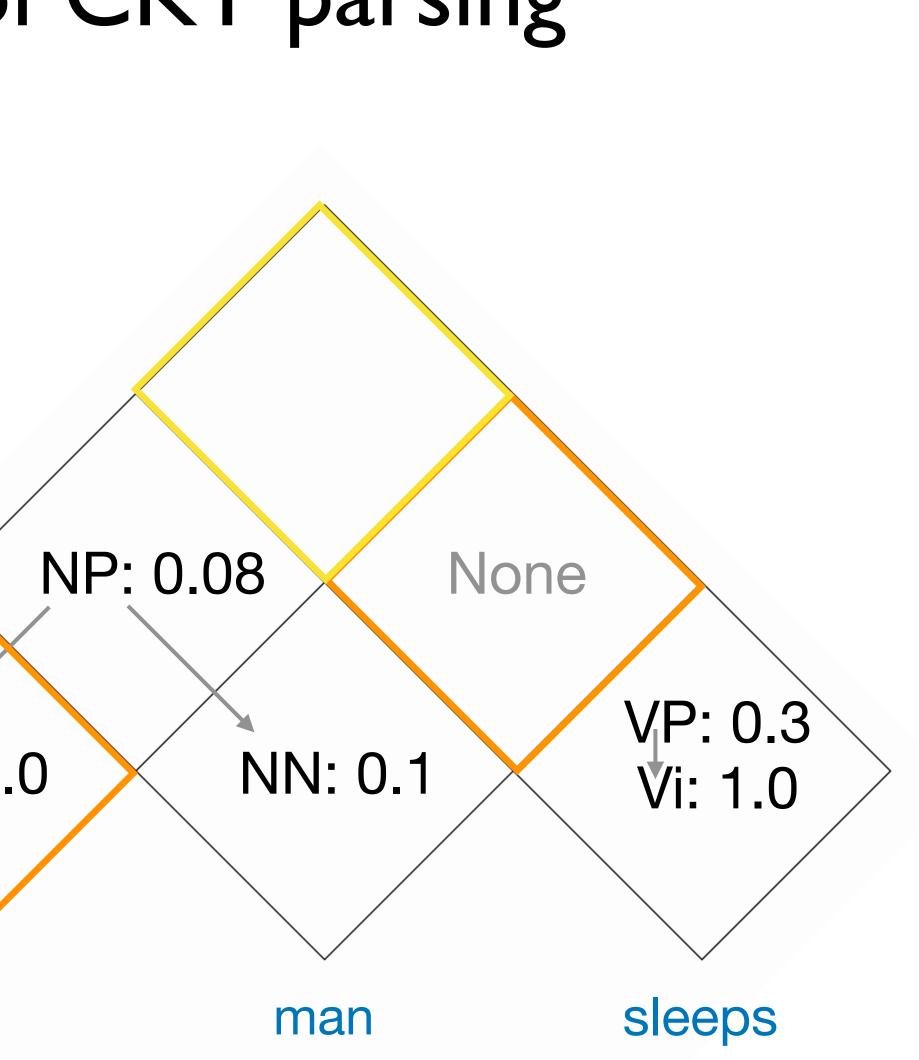
#### Example of CKY parsing

| S  | $\rightarrow$ | NP | VP | 1.0 |
|----|---------------|----|----|-----|
| VP | $\rightarrow$ | Vi |    | 0.3 |
| VP | $\rightarrow$ | Vt | NP | 0.5 |
| VP | $\rightarrow$ | VP | PP | 0.2 |
| NP | $\rightarrow$ | DT | NN | 0.8 |
| NP | $\rightarrow$ | NP | PP | 0.2 |
| PP | $\rightarrow$ | IN | NP | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the



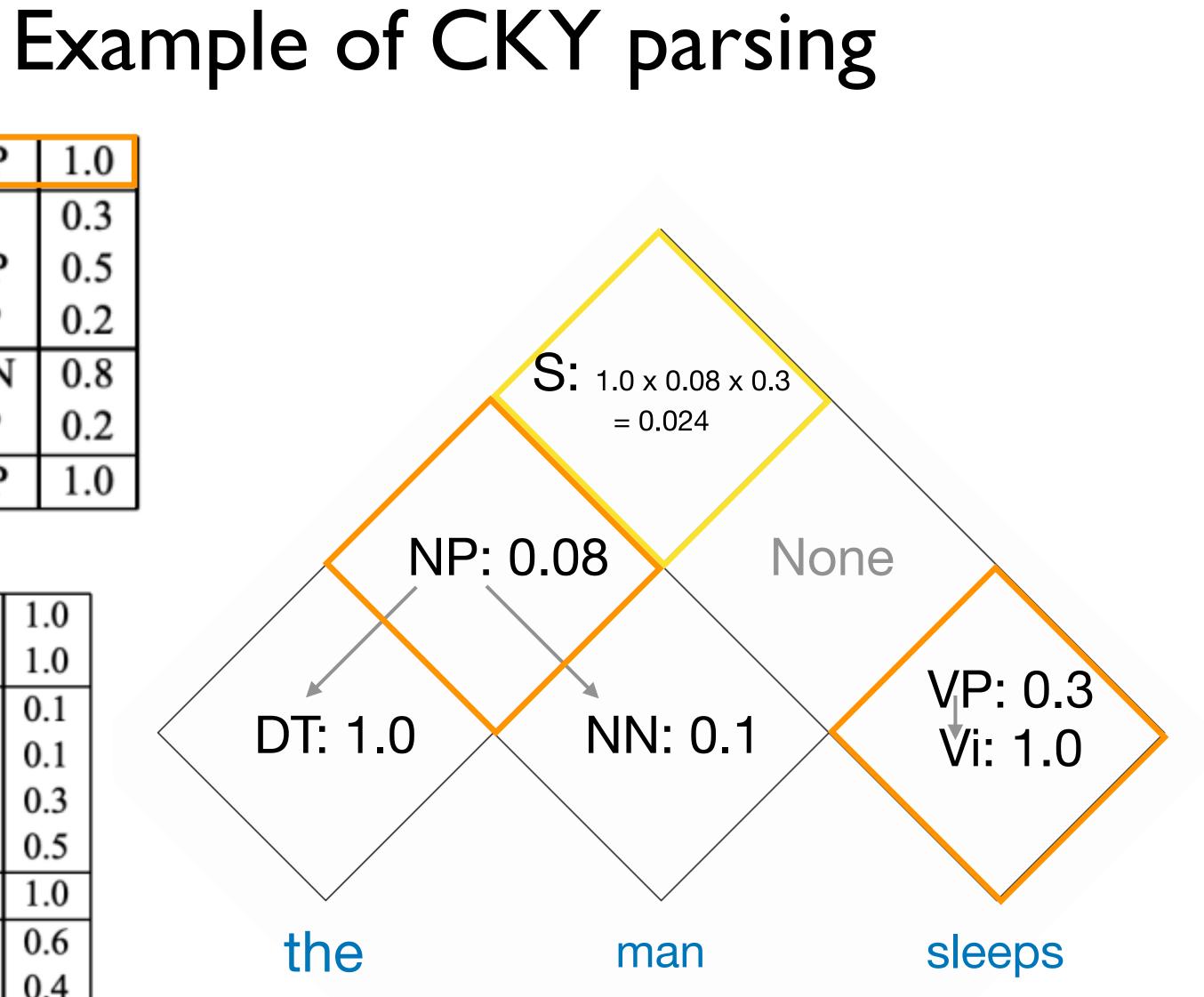
#### 37

| S  | $\rightarrow$ | NP | VP | 1.0 |
|----|---------------|----|----|-----|
| VP | $\rightarrow$ | Vi |    | 0.3 |
| VP | $\rightarrow$ | Vt | NP | 0.5 |
| VP | $\rightarrow$ | VP | PP | 0.2 |
| NP | $\rightarrow$ | DT | NN | 0.8 |
| NP | $\rightarrow$ | NP | PP | 0.2 |
| PP | $\rightarrow$ | IN | NP | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the

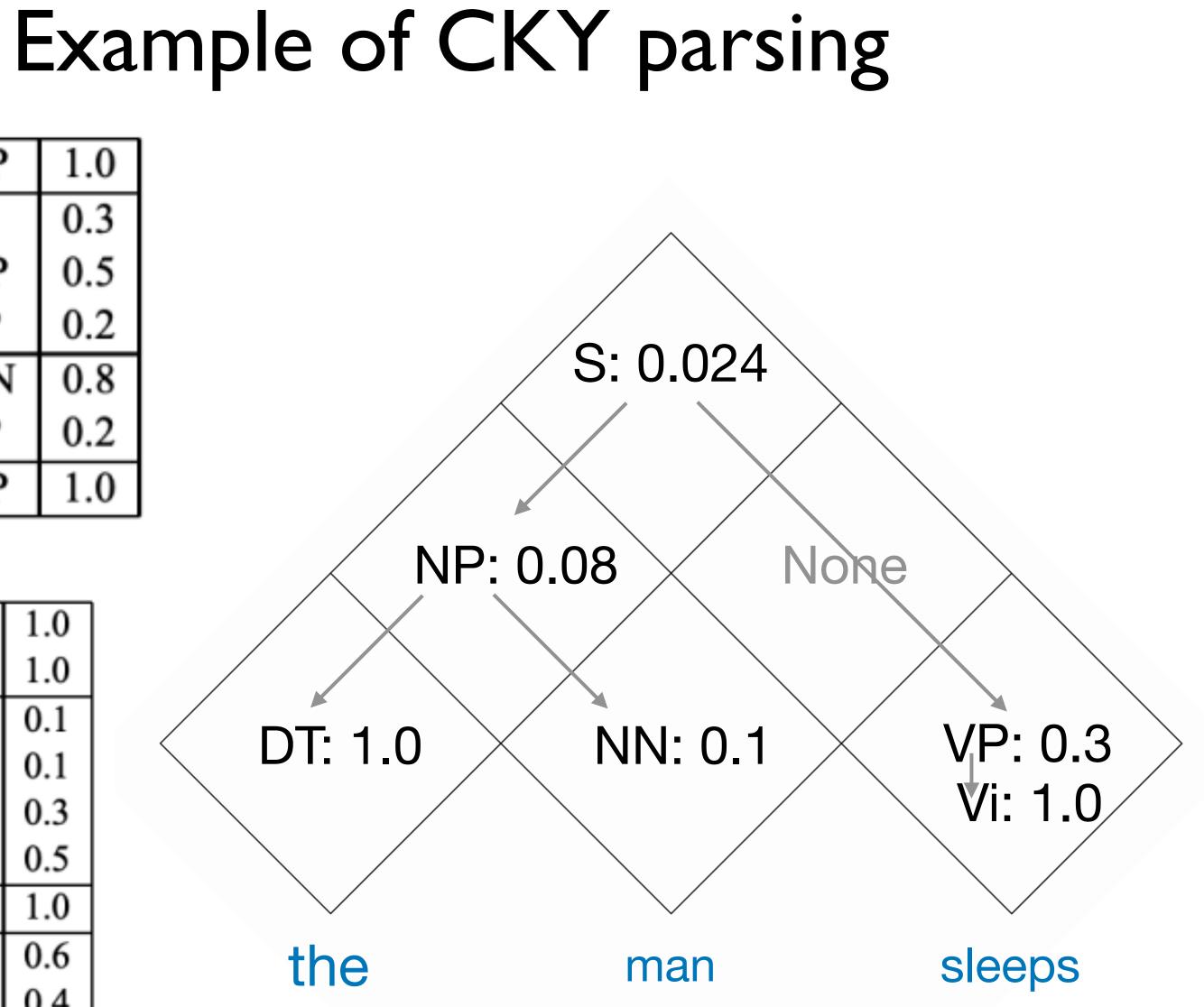


| S  | $\rightarrow$ | NP | VP | 1.0 |
|----|---------------|----|----|-----|
| VP | $\rightarrow$ | Vi |    | 0.3 |
| VP | $\rightarrow$ | Vt | NP | 0.5 |
| VP | $\rightarrow$ | VP | PP | 0.2 |
| NP | $\rightarrow$ | DT | NN | 0.8 |
| NP | $\rightarrow$ | NP | PP | 0.2 |
| PP | $\rightarrow$ | IN | NP | 1.0 |

| Vi | $\rightarrow$ | sleeps    | 1.0 |
|----|---------------|-----------|-----|
| Vt | $\rightarrow$ | saw       | 1.0 |
| NN | $\rightarrow$ | man       | 0.1 |
| NN | $\rightarrow$ | woman     | 0.1 |
| NN | $\rightarrow$ | telescope | 0.3 |
| NN | $\rightarrow$ | dog       | 0.5 |
| DT | $\rightarrow$ | the       | 1.0 |
| IN | $\rightarrow$ | with      | 0.6 |
| IN | $\rightarrow$ | in        | 0.4 |

DT: 1.0

the

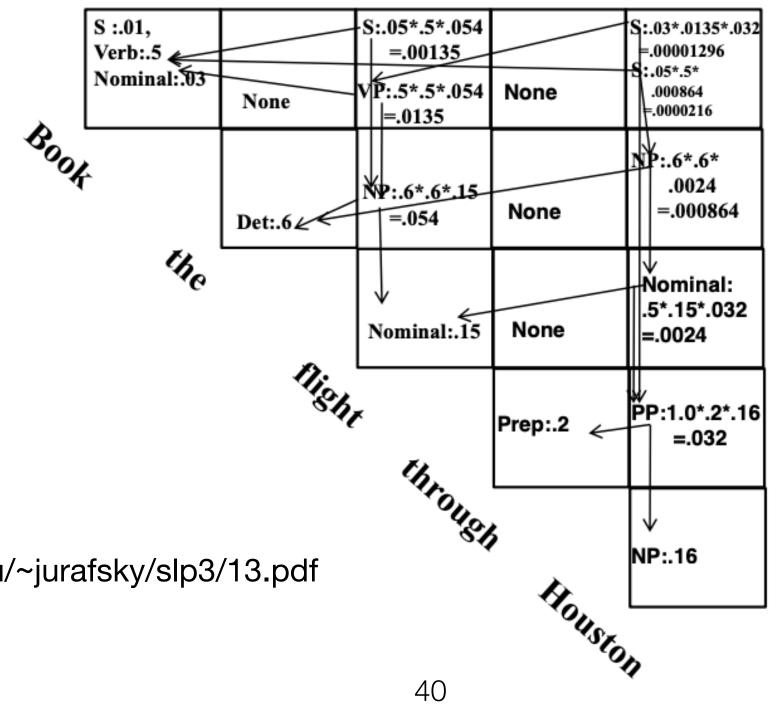


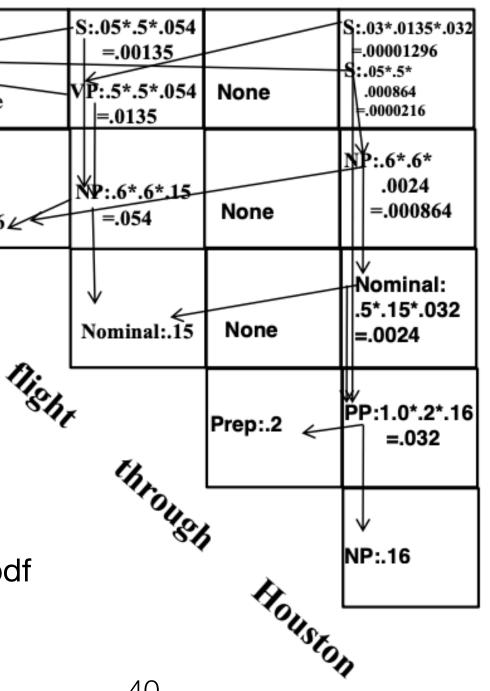
#### The CKY algorithm

• For all (i, j) such that  $1 \le i < j \le n$  for all  $X \in N$ ,

$$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X)$$

Also stores backpointers which allow us to recover the parse tree





https://web.stanford.edu/~jurafsky/slp3/13.pdf

#### $X \to YZ \times \pi(i, k, Y) \times \pi(k+1, j, Z)$

onsider all ways span (i,j) can be split into 2 (k is the split point)

Cells contain:

- Best score for parse of span (i,j) for each non-terminal X
- Backpointers

### The CKY algorithm

**Input:** a sentence  $s = x_1 \dots x_n$ , a PCFG  $G = (N, \Sigma, S, R, q)$ . **Initialization:** 

For all  $i \in \{1 \dots n\}$ , for all  $X \in N$ ,

$$\pi(i,i,X) = \begin{cases} q(X \to x_i) & \mathbf{i} \\ 0 & \mathbf{o} \end{cases}$$

Algorithm:

• For  $l = 1 \dots (n-1)$ 

- For 
$$i = 1 ... (n - l)$$

- \* Set j = i + l
- \* For all  $X \in N$ , calculate

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to Y))$$

and

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to Y))$$

**Output:** Return  $\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$ , and backpointers bp which allow recovery of  $\operatorname{arg} \max_{t \in \mathcal{T}(s)} p(t)$ .

if  $X \to x_i \in R$ otherwise

 $YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$ 

 $\rightarrow YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$ 

Running time?  $O(n^3 |R|)$ 

### CKY with unary rules

• In practice, we also allow unary rules:

conversion to/from the normal form is easier

$$\pi(i, j, X) = \max_{X \to Y \in \mathbb{R}} q(X \to Y) \times \pi(i, j, Y)$$

- Compute unary closure: if there is a rule chain  $X \to Y_1, Y_1 \to Y_2, \dots, Y_k \to Y$ , add  $q(X \to Y) = q(X \to Y_1) \times \cdots \times q(Y_k \to Y)$
- Update unary rule once after the binary rules

- $X \to Y$  where  $X, Y \in N$

# **Constituency** Parsing

- Borealis AI Tutorials
  - and-cyk-algorithm/)
    - CFGs and the CKY algorithm
    - CNF and number of parses
  - <u>and-weighted-parsing/</u>)
    - Weighted CFGs and CKY algorithm for parsing Weighted CFGs
  - <u>outside-algorithm/</u>)
    - PCFGs
    - Parameter estimation for both supervised and unsupervised cases
      - Inside-Outside algorithm for unsupervised learning of parameters

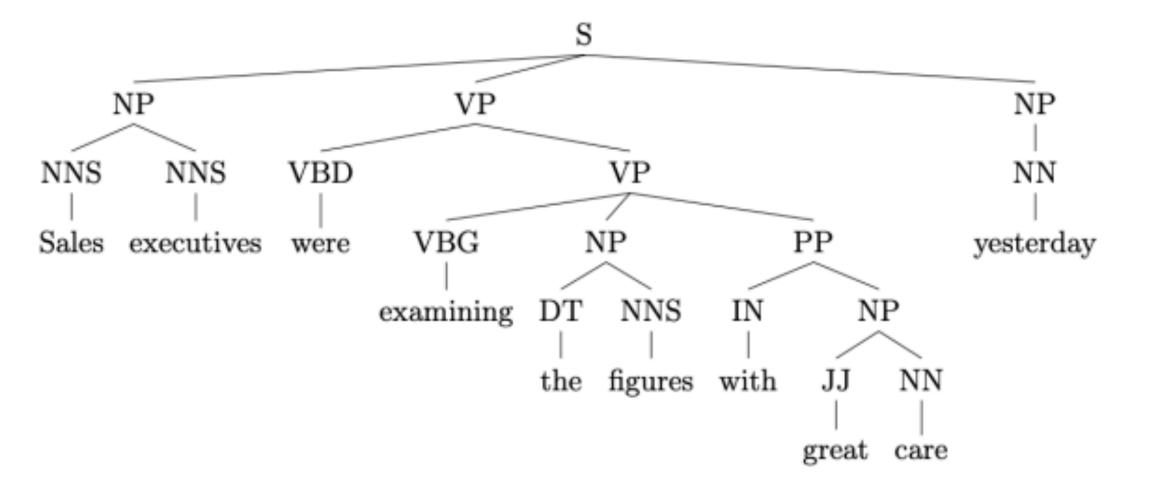
• Parsing I (https://www.borealisai.com/en/blog/tutorial-15-parsing-i-context-free-grammars-

Parsing II (<u>https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-</u>

Parsing III (<u>https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-</u>

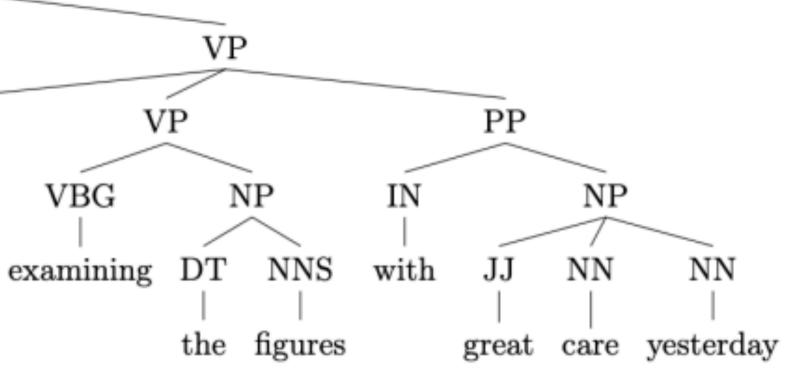
#### Evaluating constituency parsing

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)



#### Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP) $\mathbf{S}$ NPVBD NNS NNS

Sales executives were VBG

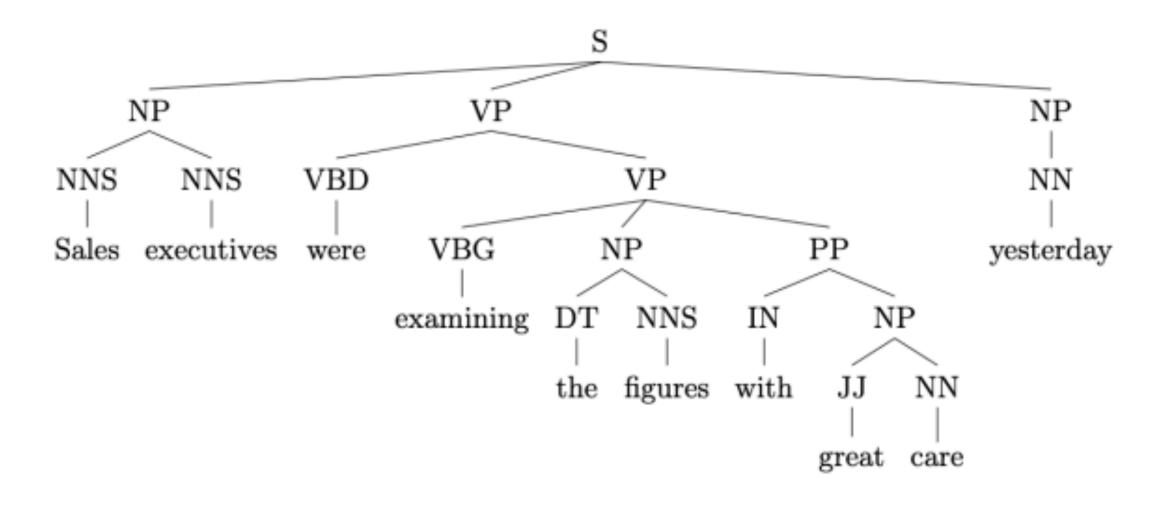


### Evaluating constituency parsing

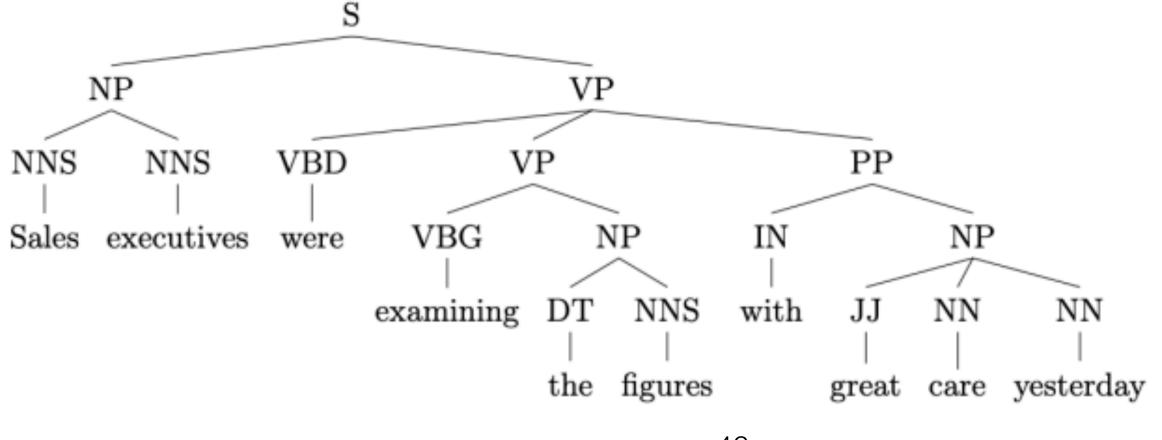
- Recall: (# correct constituents in candidate) / (# constituents in gold tree) Precision: (# correct constituents in candidate) / (# constituents in
- candidate)
- Labeled precision/recall require getting the non-terminal label correct •  $F_1 = (2 * precision * recall) / (precision + recall)$
- Part-of-speech tagging accuracy is evaluated separately

#### Evaluating constituency parsing

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)



Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)



- Precision: 3/7 = 42.9%
- Recall: 3/8 = 37.5%
- F1 = 40.0%
- Tagging accuracy: 100%

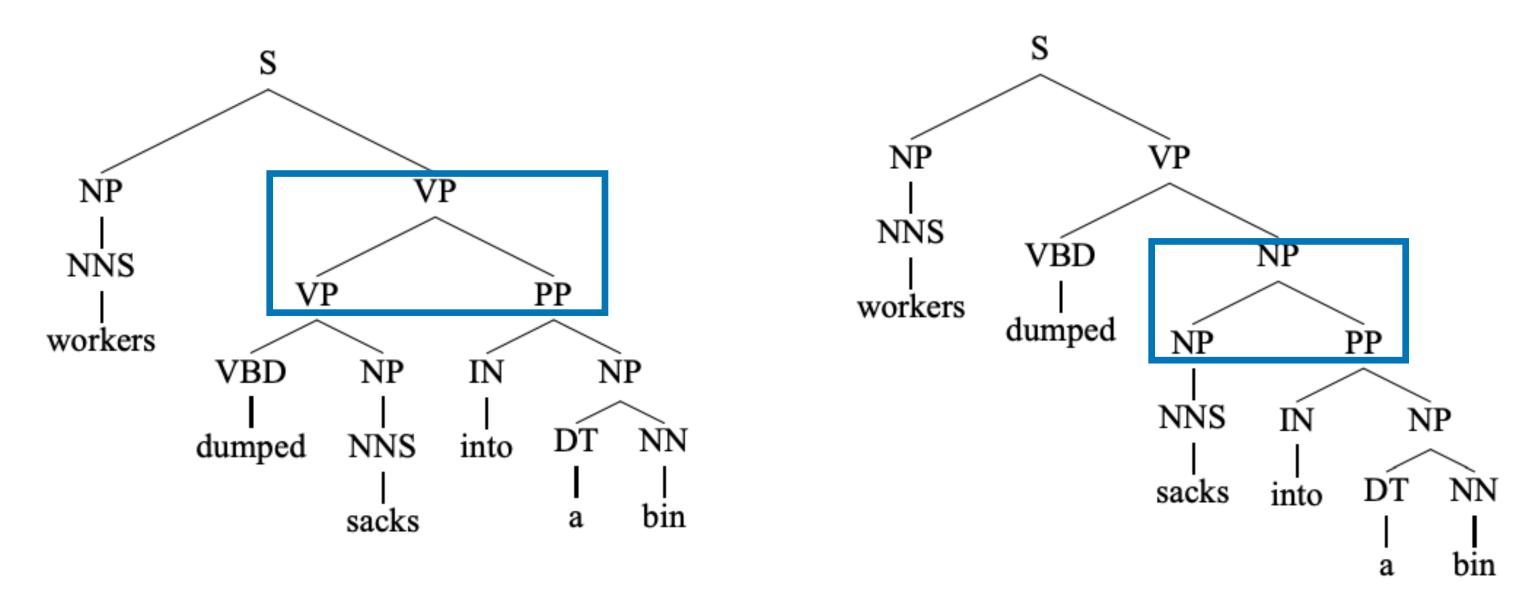


### Weaknesses of PCFGs

- Strong independence assumption • Each production (e.g., NP -> DT NN) is independent of the rest of the tree
- Lack of sensitivity to context (where is the nonterminal in the tree, is it a subject or object)
- Lack of sensitivity to lexical information (words)

## Weaknesses of PCFGs

#### • Lack of sensitivity to lexical information (words)

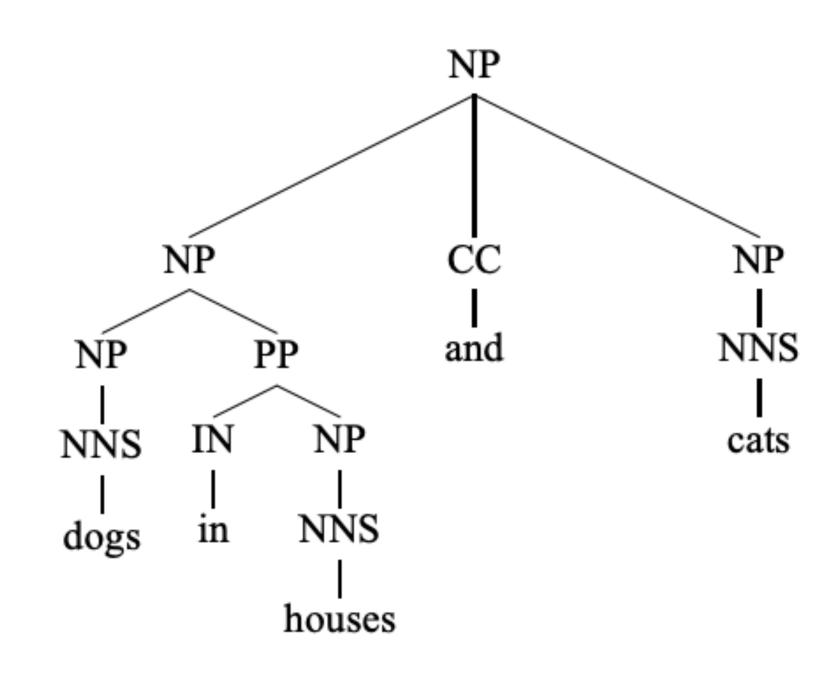


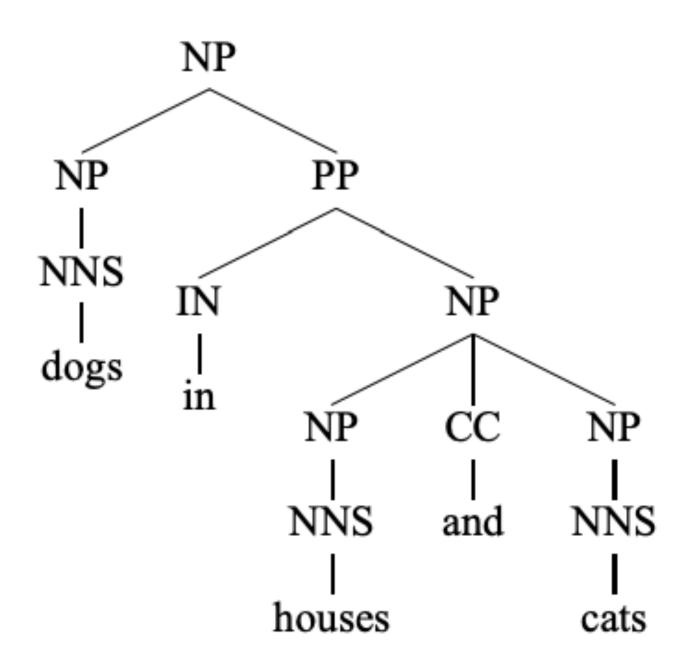
Difficult to determine the correct parse without looking at the words!

- The only difference between these two parses:
  - $q(\text{VP} \rightarrow \text{VP PP}) \text{ vs } q(\text{NP} \rightarrow \text{NP PP})$

#### Weaknesses of PCFGs

#### • Lack of sensitivity to lexical information (words)

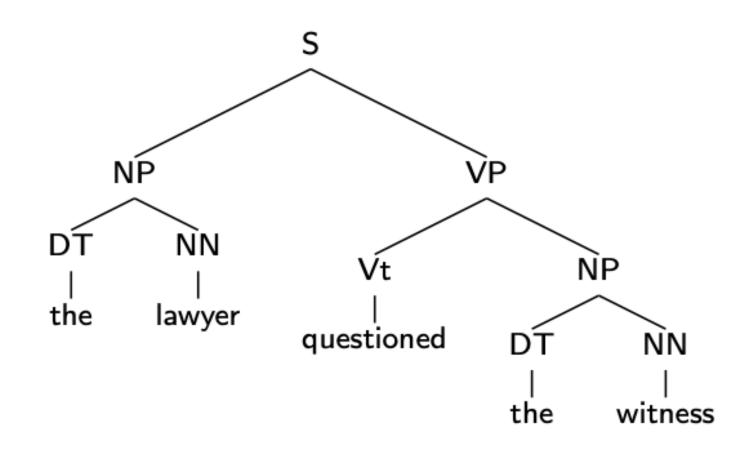




#### Exactly the same set of context-free rules!

## Lexicalized PCFGs

#### • Key idea: add **headwords** to trees

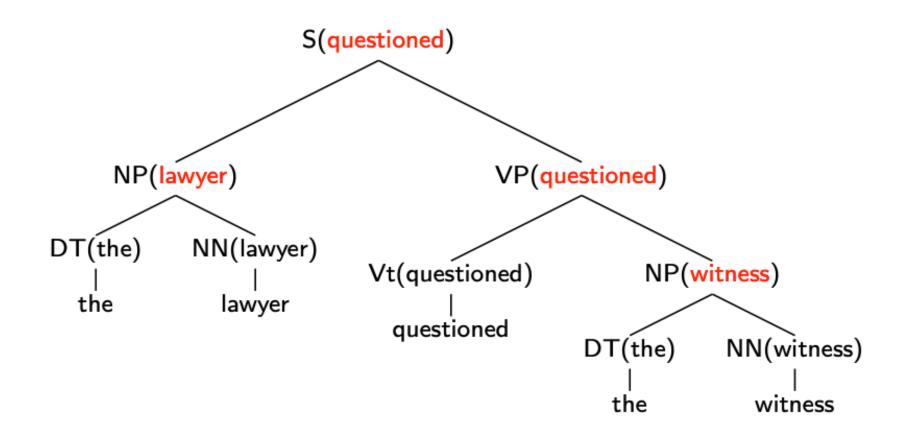


• Each context-free rule has one special child that is the head of the rule (a core idea in syntax)

$$\begin{array}{rcl} \mathsf{S} & \Rightarrow & \mathsf{NP} \\ \mathsf{VP} & \Rightarrow & \mathsf{Vt} \end{array}$$

NP DT  $\Rightarrow$ 

#### Annotate parent with more information



VP  $\mathsf{NP}$ NN NN

(VP is the head) (Vt is the head) (NN is the head)



# Head finding rules

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

**Else If** the rule contains an NP: Choose the leftmost NP

**Else If** the rule contains a JJ: Choose the rightmost JJ

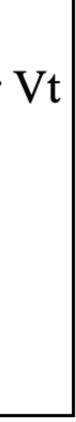
**Else If** the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

**Else If** the rule contains a VP: Choose the leftmost VP

**Else** Choose the leftmost child



### Lexicalized PCFGs

| S(saw)  | $\rightarrow_2$ | NP(man) | VP |
|---------|-----------------|---------|----|
| VP(saw) | $\rightarrow_1$ | Vt(saw) | NF |
| NP(man) | $\rightarrow_2$ | DT(the) | NΝ |
| NP(dog) | $\rightarrow_2$ | DT(the) | NN |
| Vt(saw) | $\rightarrow$   | saw     |    |
| DT(the) | $\rightarrow$   | the     |    |
| NN(man) | $\rightarrow$   | man     |    |
| NN(dog) | $\rightarrow$   | dog     |    |
|         |                 |         |    |

- Further reading: *Michael Collins. 2003. Head-Driven* Statistical Models for Natural Language Parsing.
- Results for a PCFG: 70.6% recall, 74.8% precision

<sup>></sup>(saw) P(dog) N(man) N(dog)

Drawbacks:

- Dramatically increases the size of the grammar -> less training data for each production
- Increase the complexity of the model (running time and memory)

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

### Further improvements to parsing

- Discriminative **reranking** 
  - PCFG is a generative model
  - Use discriminative models with more global features to score parses and rerank candidate parses from the PCFG
- **Self-training** (incorporate unlabeled data)
  - Train on some data to get initial good model
  - Then run model on unlabeled data and combine newly labeled data with gold labeled data and retrain
- Ensemble
  - Combine multiple models

Beyond supervised learning: Grammar Induction = learn grammar from unlabeled data Charniak parser w/ self-train+rerank: (McClosky et al 2006) 92.1 F1



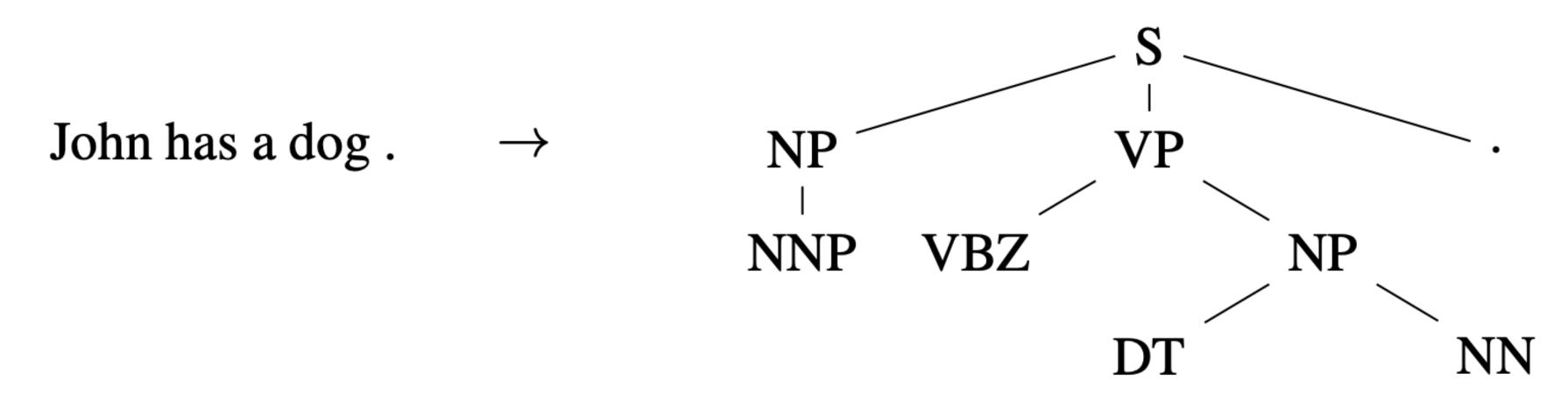
# Using Neural Networks for Constituency Parsing

# Parsing with Neural Networks

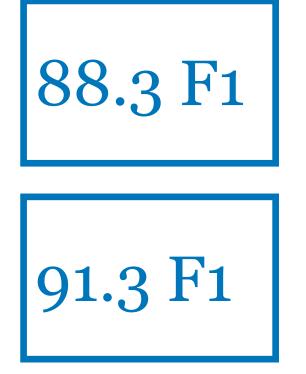
What can neural networks bring?

- Better phrase representations
  - Embeddings for words, tags, and nodes
  - Leverage pretrained embeddings
- Learned scoring functions
- Less independence assumptions

### Parsing as Seq2Seq (Vinyals et al, 2015; Vaswani et al, 2017)



John has a dog.



- With transformers

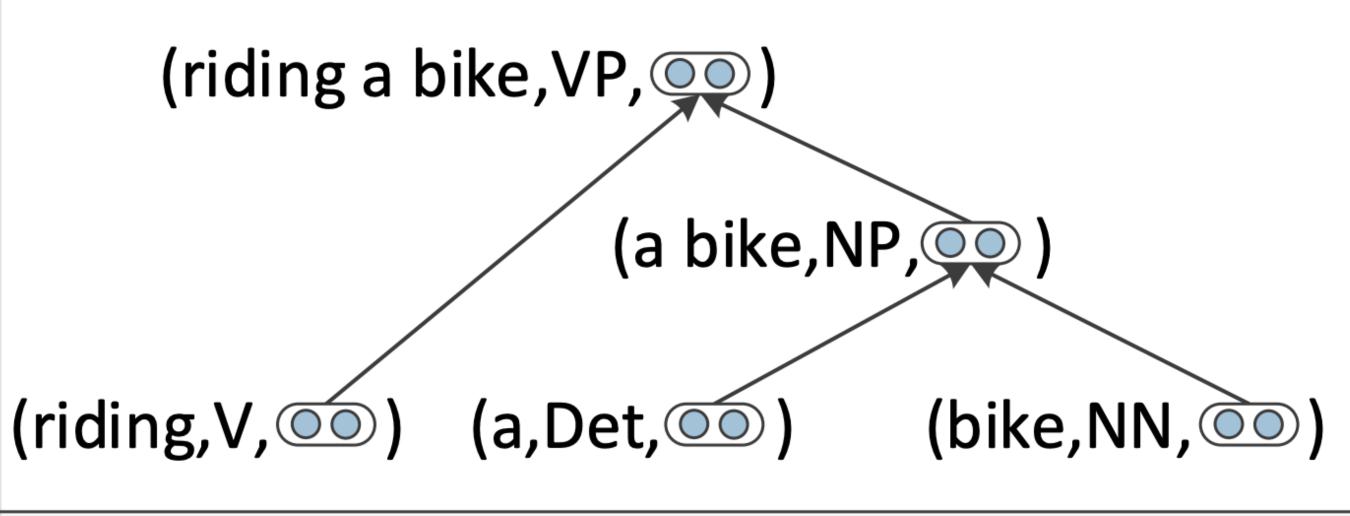
#### $(S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_{S}$

May not be structural correct (i.e. unbalanced parenthesis)

• Linearize parse tree and train LSTM seq2seq model with attention

# **Recursive Neural Networks** (Socher et al, 2013)

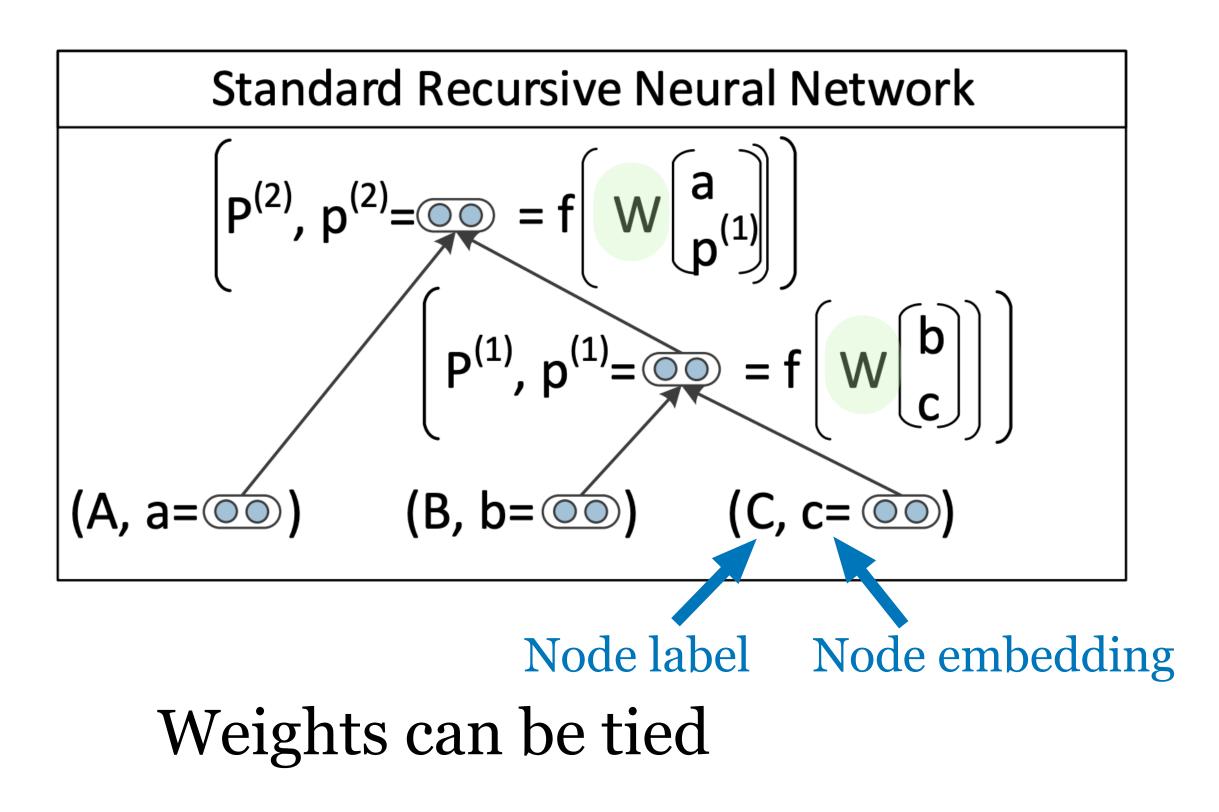
- Continuous representations for words and non-terminal nodes
- Compositional representations for non-terminal nodes
- Use neural networks to get compositional representations as well as scores for composition



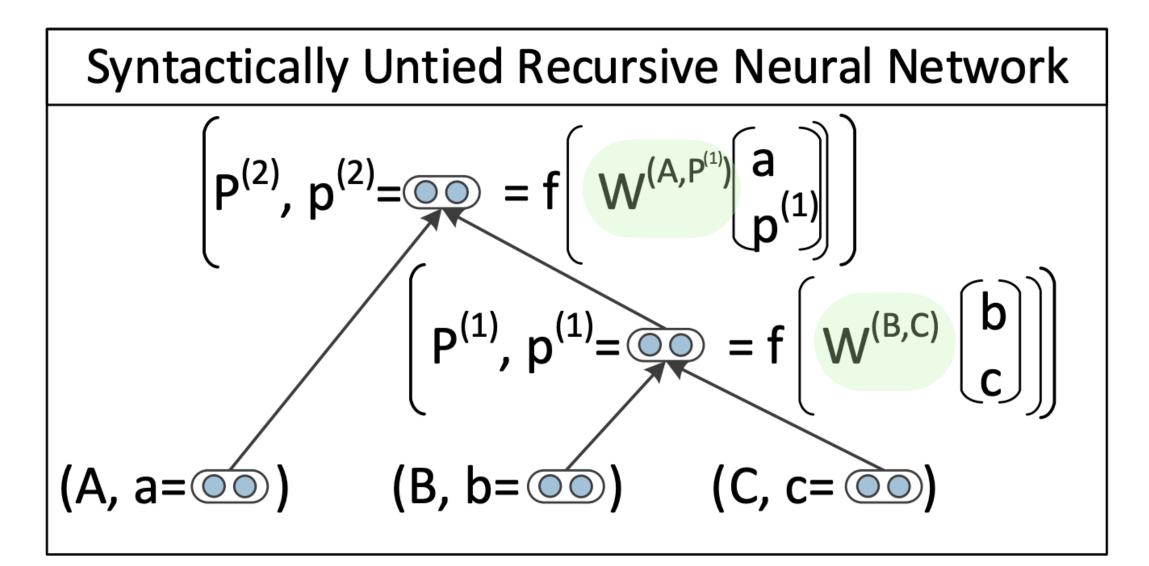
Discrete Syntactic – Continuous Semantic **Representations in the Compositional Vector Grammar** 

Compositional Vector Grammar = PCFG + TreeRNN

# Recursive Neural Networks (Socher et al, 2013)

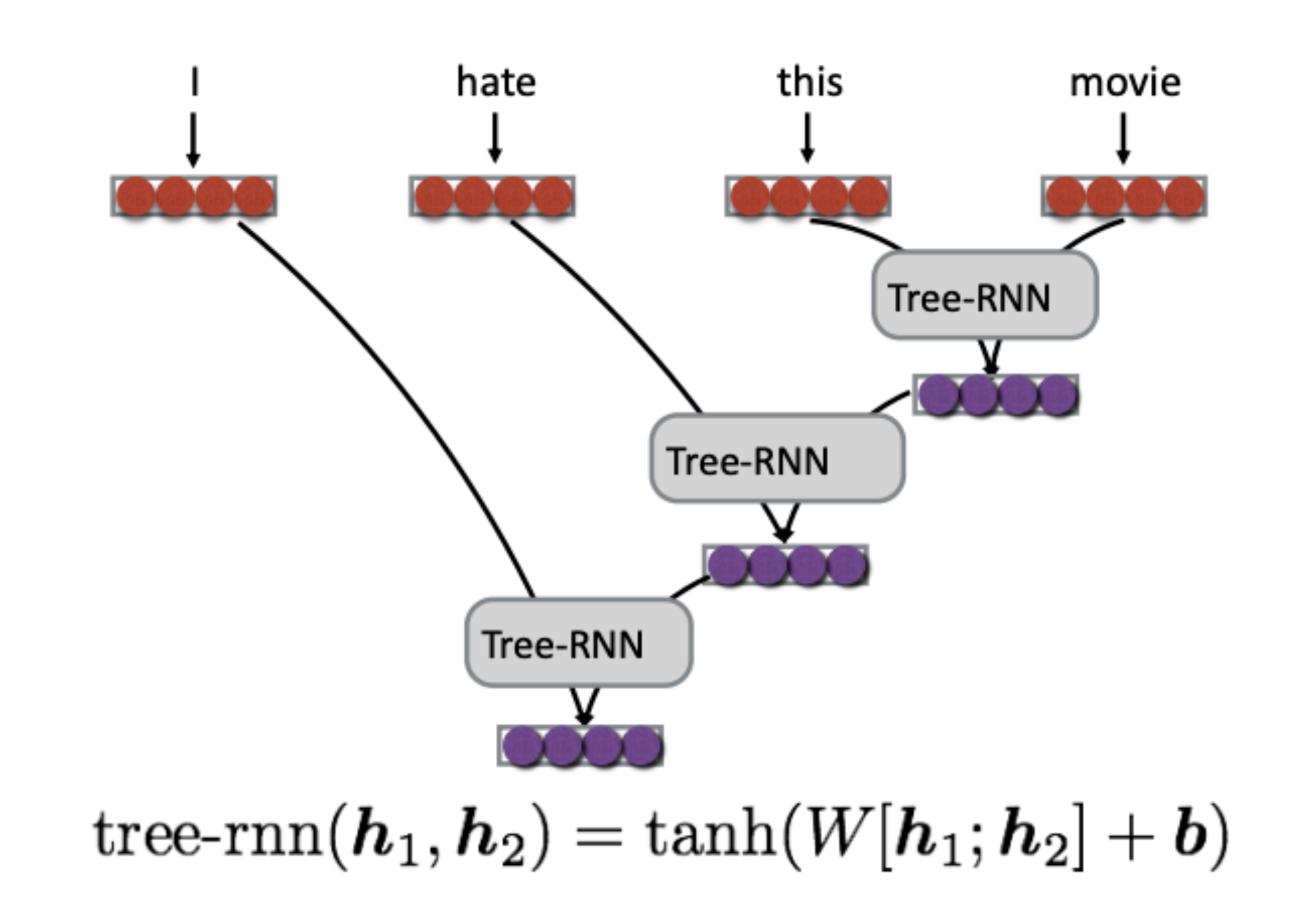


Weights depend on discrete category of children (NP, VP)



#### or parameterized by constituency type

## **Recursive Neural Networks** (Socher et al, 2013)



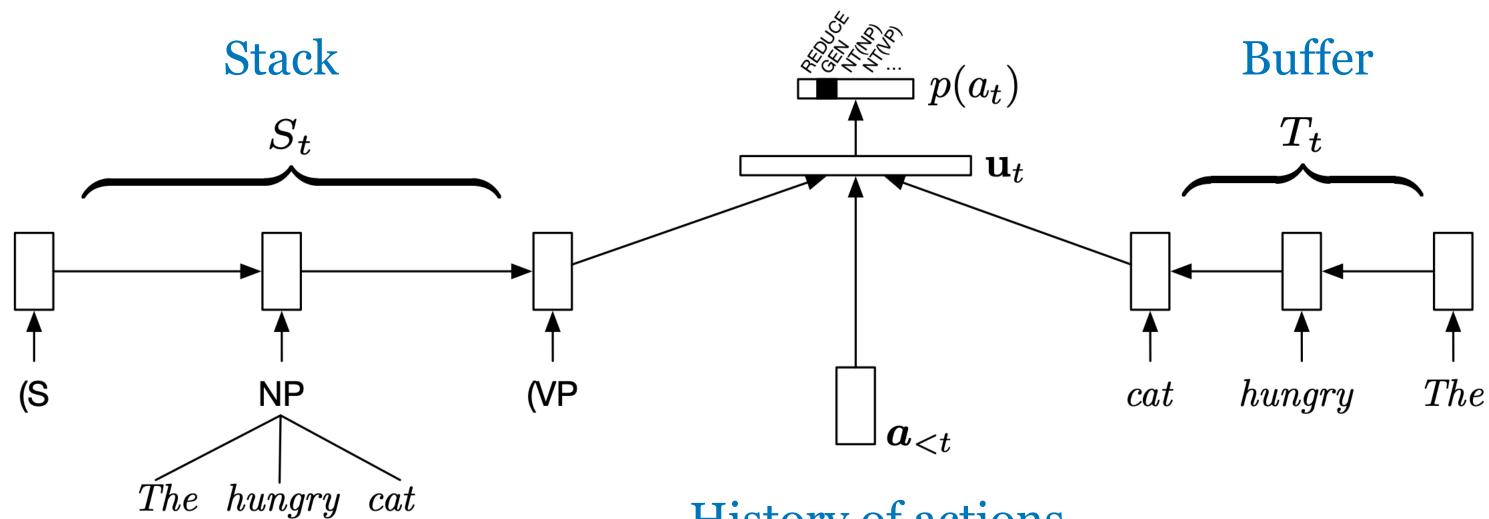


(figure credit: CMU CS 11-747, Graham Neubig)



**Transition Parsers** 

- Like Seq2Seq but output is a sequence of operations that builds the tree incrementally
- The sequence can guarantee structural consistency



Predict action from current configuration

History of actions

S: stack of open nonterminals and completed subtrees B: buffer of unprocessed terminal symbols x: terminal symbol X: Non-terminal symbol  $\tau$ : completed subtree

| - | Before                                                    | action                     |                              |        | Afte                                              | r action                |                         |
|---|-----------------------------------------------------------|----------------------------|------------------------------|--------|---------------------------------------------------|-------------------------|-------------------------|
| ) | <b>Stack</b> <sub>t</sub>                                 | <b>Buffer</b> <sub>t</sub> | <b>Open NTs</b> <sub>t</sub> | Action | <b>Stack</b> <sub><math>t+1</math></sub>          | $\mathbf{Buffer}_{t+1}$ | <b>Open</b> $NTs_{t+1}$ |
| - | S                                                         | B                          | n                            | NT(X)  | $S \mid (X)$                                      | В                       | n+1                     |
|   | S                                                         | $x \mid B$                 | n                            | SHIFT  | $S \mid x$                                        | B                       | n                       |
|   | $S \mid (\mathrm{X} \mid 	au_1 \mid \ldots \mid 	au_\ell$ | B                          | n                            | REDUCE | $S \mid (\mathrm{X} \ 	au_1 \ \ldots \ 	au_\ell)$ | B                       | n-1                     |

**Input:** *The hungry cat meows* .

|   |    | Stack                                 |
|---|----|---------------------------------------|
| - | 0  |                                       |
|   | 1  | (S                                    |
|   | 2  | (S   (NP                              |
|   | 3  | (S   (NP   The                        |
|   | 4  | (S   (NP   The   hungry               |
|   | 5  | (S   (NP   The   hungry   cat         |
|   | 6  | (S   (NP The hungry cat)              |
|   | 7  | (S   (NP The hungry cat)   (VP        |
|   | 8  | (S   (NP The hungry cat)   (VP meows  |
|   | 9  | (S   (NP The hungry cat)   (VP meows) |
|   | 10 | (S   (NP The hungry cat)   (VP meows) |
| _ | 11 | (S (NP The hungry cat) (VP meows).)   |

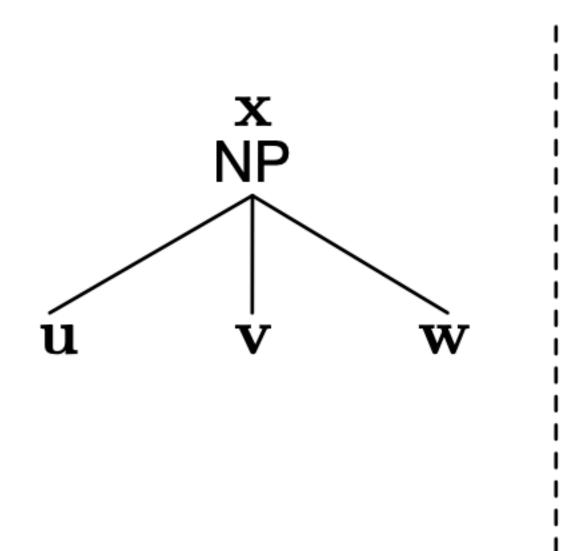
#### **Parser transitions**

#### **Top-down parsing**

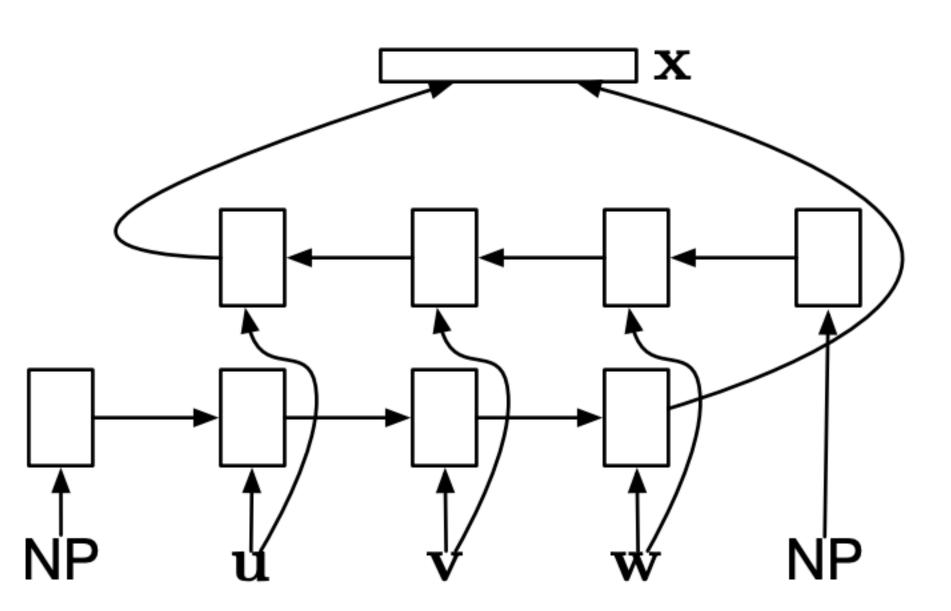
|   | Buffer                                                                                                                                                                                                                             | Action                                                                                      | Actiona                                                                                                                                                                          |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Buffer         The   hungry   cat   meows   .         The   hungry   cat   meows   .         The   hungry   cat   meows   .         hungry   cat   meows   .         cat   meows   .         meows   .         meows   .         . | Action<br>NT(S)<br>NT(NP)<br>SHIFT<br>SHIFT<br>SHIFT<br>REDUCE<br>NT(VP)<br>SHIFT<br>REDUCE | <ul> <li>Actions:</li> <li>NT(X): Open (create) are non-terminal of type X</li> <li>SHIFT: move x from buf stack</li> <li>REDUCE: Close(finish) non-terminal on stack</li> </ul> |
|   | •                                                                                                                                                                                                                                  | SHIFT<br>REDUCE                                                                             |                                                                                                                                                                                  |
| • | 61                                                                                                                                                                                                                                 | KEDUCE                                                                                      |                                                                                                                                                                                  |



REDUCE

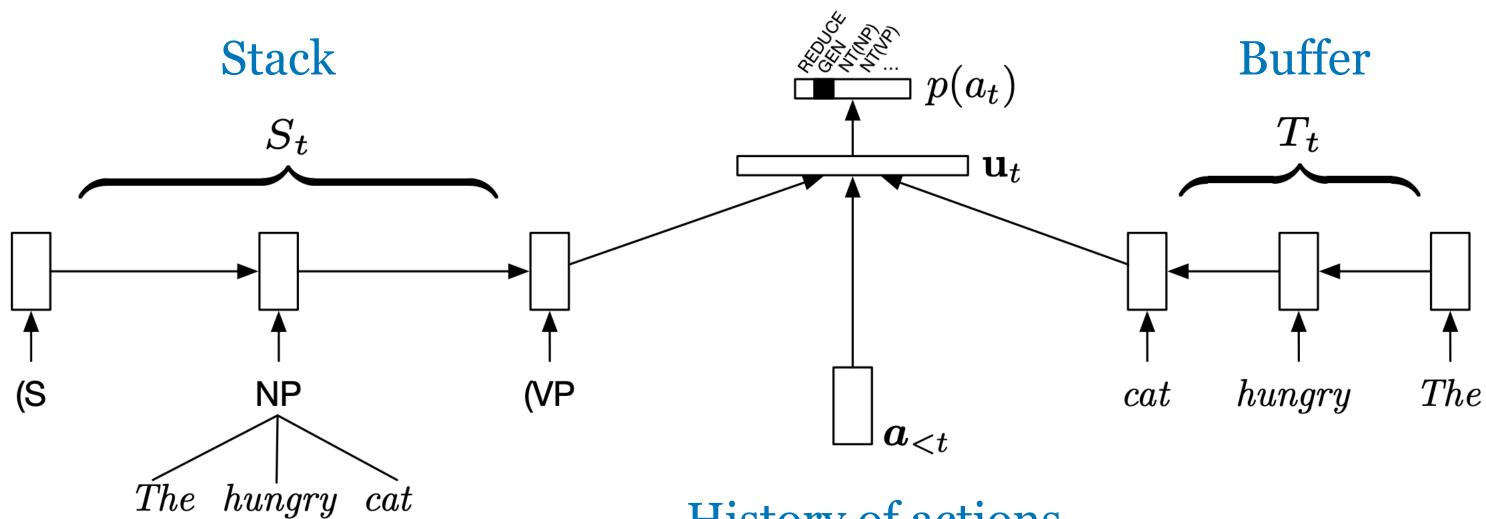


• BiLSTM to get composite representation of non-terminal



**Transition Parsers** 

- Like Seq2Seq but output is a sequence of operations that builds the tree incrementally
- The sequence can guarantee structural consistency





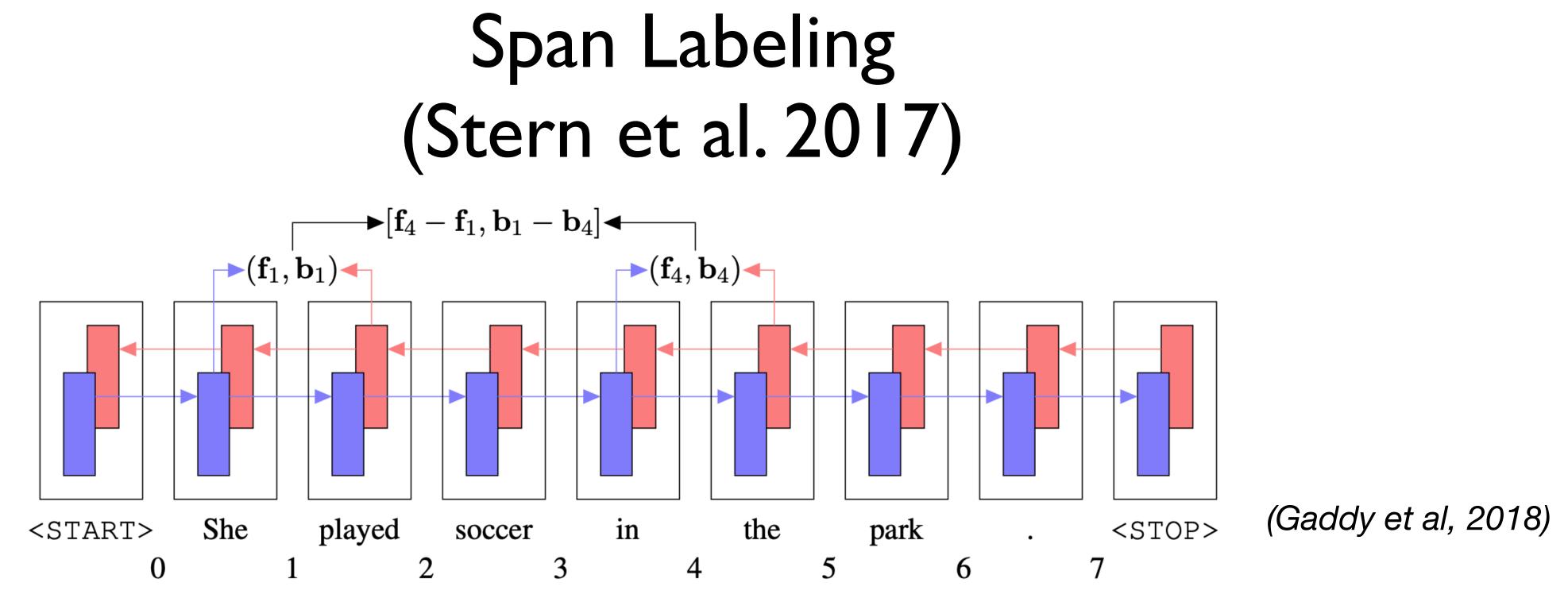
Predict action from current configuration

History of actions

- Simple idea: decide whether span is constituent in tree or not
- Scores labels and spans independently
- Allows for various loss functions (local vs structured), inference algorithms (CKY vs topdown)

### Span Labeling (Stern et al. 2017)

- Word representation
- Span representation
- Label scoring



- Bidirectional LSTM to get forward/backward encodings  $(f_i, b_i)$  for position i • Span (i, j) representation: concat vector differences  $[f_i - f_i, b_i - b_j]$ • Feedforward neural networks to predict scores for labels and spans

 $S_{\text{labels}}(i,j) = \mathbf{V}_l g(\mathbf{W}_l \mathbf{s}_{ij} + b_l)$  vector

 $S_{\text{span}}(i,j) = \mathbf{v}_s^{\top} g(\mathbf{W}_s \mathbf{s}_{ij} + b_s)$  scalar

 $S_{label}(i, j, l) = l$  th element of  $S_{labels}$ 

# Span Labeling (Stern et al. 2017)

NP

0

top-down

#### Greedy top down parsing

- Recursively for each span:
  - Assign a label

91.8 F1

• Pick a split point

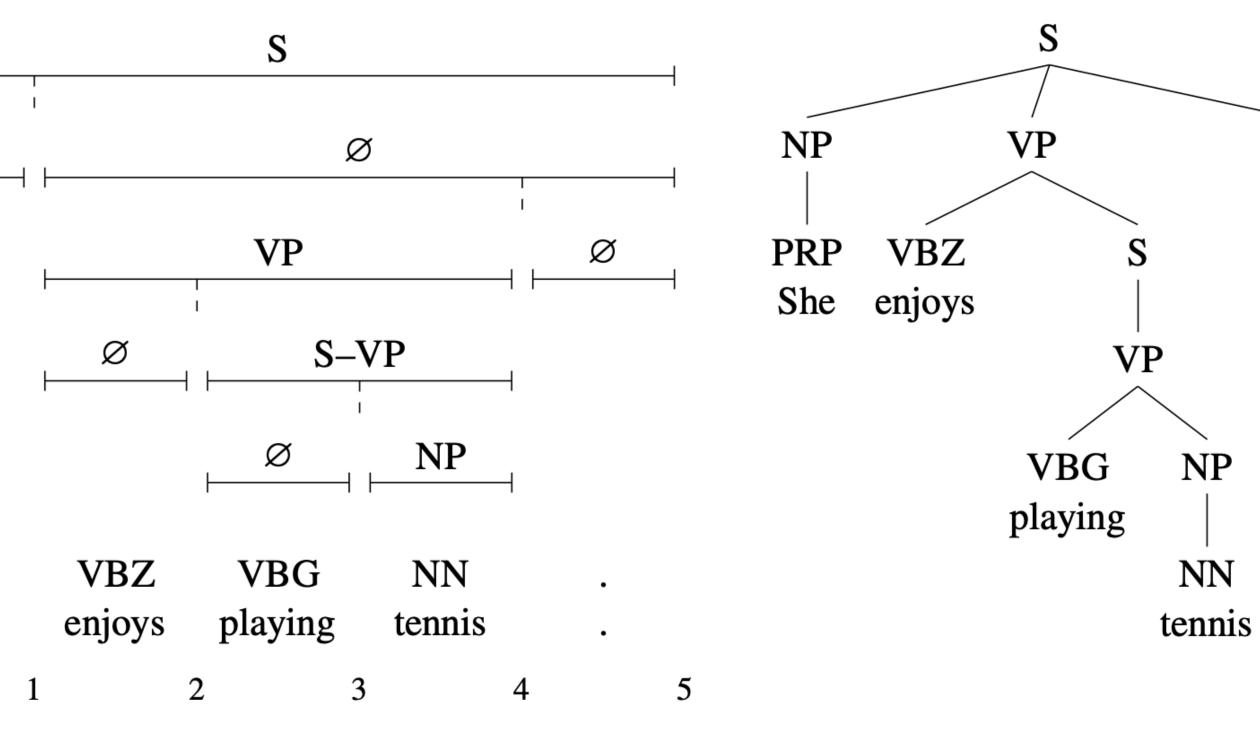
$$\hat{l} = \arg\max_{k} S_{\text{label}}(i, j, l)$$

$$\hat{k} = \arg\max_{k} S_{\text{split}}(i, k, j)$$

$$S_{\text{span}}(i, k) + S_{\text{span}}(k, j) \quad \text{input} \begin{cases} PRP \\ She \end{cases}$$

(a) Execution of the top-down parsing algorithm. (b) Output parse tree.

# Running time? $O(n^2)$

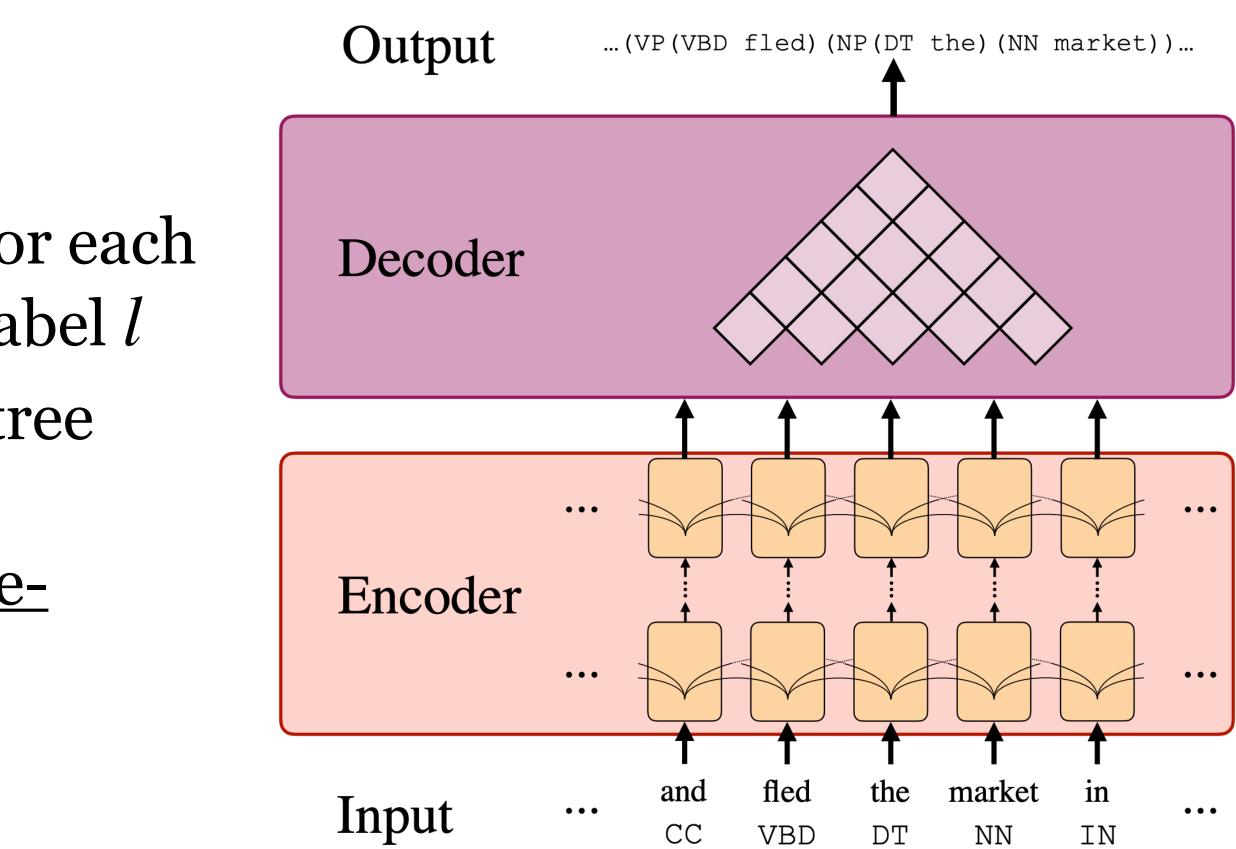


•

# Self-Attentional Encoding (Kitaev and Klein, 2018)

- Self-attention based encoding
- Learned scoring *s*(*i*, *j*, *l*) function for each span from token *i* to token *j* with label *l*
- CKY for decoding to find the best tree
- Berkeley neural parser: <u>https://</u> <u>github.com/nikitakit/self-attentive-</u> <u>parser</u>

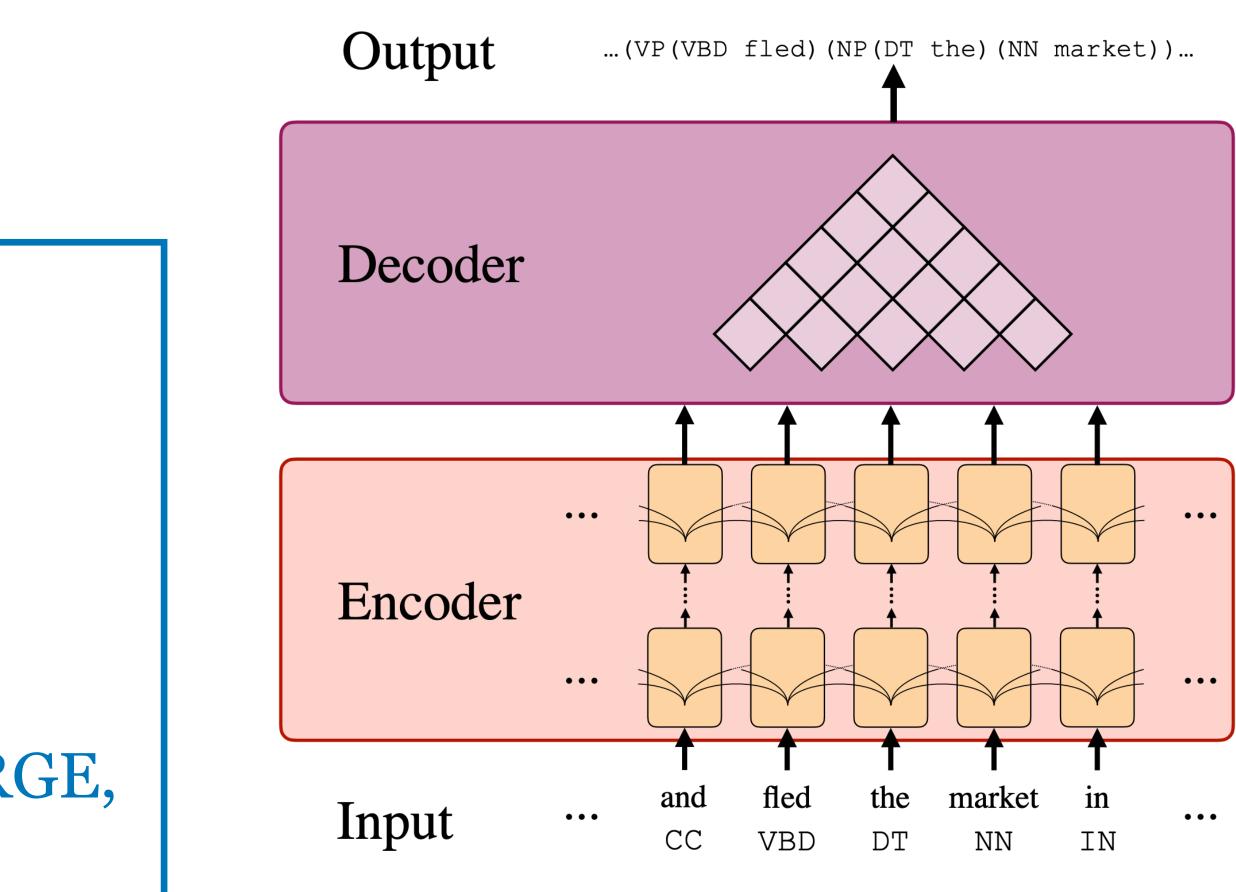
93.6 F1



# Self-Attentional Encoding (Kitaev and Klein, 2018)

• Improvements with pretrained representations

F1 93.6 (no pretraining) 93.7 (w/ FastText) 95.2 (w/ ELMo), 95.7 (w/ BERT LARGE cased), 95.8 (Ensemble w/ BERT BASE/LARGE, cased/uncased



- Two types of structured representations: constituency vs dependency
- Formalism for context free grammars (CFG) and probabilistic context free grammars (PCFGs)
  - CFGs have terminals (leafs), non-terminals, and production rules
  - PCFGs are CFGs with probabilities on the rules
- Estimating probabilities for PCFGs and decoding (parsing)
- How to use neural networks for constituency parsing

#### Summary