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Overview

• Constituency structure vs dependency structure 
• Context-free grammar (CFG) 
• Probabilistic context-free grammar (PCFG) 
• The CKY algorithm 
• Evaluation 
• Lexicalized PCFGs 
• Neural methods for constituency parsing 
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Syntactic structure: constituency and dependency

Two views of linguistic structure 
• Constituency  

• = phrase structure grammar  
• = context-free grammars 

(CFGs)

• Dependency
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Constituency structure

• Phrase structure organizes words into nested constituents

• Starting units: words

the, cuddly, cat, by, the, door

are given a category: part-of-speech tags

DT,  JJ,    NN,   IN,   DT,    NN

recursively• Phrases can combine into bigger phrases
the cuddly cat, by the door

PP IN NP→NP

• Words combine into phrases

the cuddly cat, by, the door

with categories

NP DT NN→NP DT JJ NN→ IN

NP  NP PP→
the cuddly cat by the door

4



Dependency structure

• Dependency structure shows which words depend on 
(modify or are arguments of) which other words.

Satellites   spot   whales   from   space

Satellites   spot   whales   from   space
❌

Wednesday

nsubj

nmod

dobj case
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Why do we need sentence structure?

• We need to understand sentence structure in order to 
be able to interpret language correctly 

• Human communicate complex ideas by composing 
words together into bigger units  

• We need to know what is connected to what
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Syntactic parsing

• Syntactic parsing is the task of recognizing a 
sentence and assigning a structure to it.

Input: Output:

Boeing is located in Seattle.

7



Syntactic parsing
• Used as intermediate representation for downstream applications

Image credit: http://vas3k.com/blog/machine_translation/

English word order: subject — verb — object
Japanese word order: subject — object — verb

Syntax based 
machine translation
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Syntactic parsing

Image credit: (Zhang et al, 2018)

• Used as intermediate representation for downstream applications

Relation Extraction
9



Beyond syntactic parsing
This file doesn’t care about cleverness, wit or any 
other kind of intelligent humor.  Negative

Nested Sentiment 
Analysis

 Recursive deep models for semantic compositionality over a sentiment treebank 
Socher et al, EMNLP 201310



Context-free grammars (CFG)

• Widely used formal system for modeling constituency 
structure in English and other natural languages

• A context free grammar  where 

•  is a set of non-terminal symbols 

•  is a set of terminal symbols 

•  is a set of rules of the form  for 
,  

•  is a distinguished start symbol

G = (N, Σ, R, S)
N
Σ
R X → Y1Y2…Yn
n ≥ 1 X ∈ N, Yi ∈ (N ∪ Σ)
S ∈ N
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A Context-Free Grammar for English

Grammar Lexicon

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, 
DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition
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A derivation can be represented as a parse tree!

Derivations

• Given a CFG , a derivation is sequence of rule-expansions starting 
from the start symbol to a string consisting of terminal symbols 

• It can be expressed as a sequence of strings , where

G

s1, s2, …, sn

• s1 = S

•       where  is all the possible strings made up of words from sn ∈ Σ* Σ* Σ

• Each  for  is derived from  by picking some non-
terminal  in  and replacing it by some  where  

si i = 2,…, n si−1
X si−1 β X → β ∈ R

• : yield of the derivationsn
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start symbol

Left-most derivation: 
pick left-most non-terminal

yield



(Left-most) Derivation
• Ss1 =

• NP VPs2 =

• DT NN VPs3 =

• the NN VPs4 =

• the man VPs5 =

• the man Vis6 =

a parse tree

• A string  is in the language defined by the CFG if 
there is at least one derivation whose yield is 

s ∈ Σ*
s

• The set of possible derivations may be finite or infinite

• the man sleepss7 =
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Ambiguity

• Some strings may have more than one derivations 
(i.e. more than one parse tree!). 
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“Classical” NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of 
Toronto] [for $27 a share] [at its monthly meeting].

16

• How many parses for sentence of length n?



“Classical” NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of 
Toronto] [for $27 a share] [at its monthly meeting].

((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd)) 

Catalan number:  Cn =
1

n + 1 (2n
n )
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For a sentence of length n, can form constituents by 
placing parenthesis. 


Number of parses = number of ways to parenthesize 
expression such that

• there are equal number of open/close parenthesis

• they are properly nested with open before close 

• The number of (binary) parses happen to follow the Catalan numbers

# unlabeled parses for 
a sentence of n words 

See Church and Patil (CL Journal, 1982) or TAOCP VI pp 388-389 (Knuth, 1975) 



“Classical” NLP Parsing

• It is also difficult to construct a grammar with enough coverage 
• A less constrained grammar can parse more sentences but 

result in more parses for even simple sentences 

• There is no way to choose the right parse!
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Binary notion:

in or not in language

• In fact, sentences can have a very large number of possible parses

• Need to be able to assign scores to parses



Statistical parsing

• Learning from data: treebanks

• Adding probabilities to the rules: probabilistic CFGs (PCFGs)

Treebanks: a collection of sentences paired with their parse trees

The Penn Treebank Project (Marcus et al, 1993)
19



Probabilistic context-free grammars 
(PCFGs)

• A CFG tells us whether a sentence is in the language 
it defines 


• A PCFG gives us a mechanism for assigning scores 
(here, probabilities) to different parses for the same 
sentence. 
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Probabilistic context-free grammars (PCFGs)

• A probabilistic context-free grammar (PCFG) consists of:

• A context-free grammar: G = (N, Σ, R, S)
• For each rule , there is a parameter . 

For any ,
α → β ∈ R q(α → β) ≥ 0

X ∈ N

∑
α→β:α=X

q(α → β) = 1
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Probabilistic context-free grammars (PCFGs)
For any derivation (parse tree) containing rules: 

, the probability of the parse is:α1 → β1, α2 → β2, …, αl → βl

l

∏
i=1

q(αi → βi)

P(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the)
× q(NN → man) × q(VP → Vi) × q(Vi → sleeps)

= 1.0 × 0.8 × 1.0 × 0.1 × 0.3 × 1.0 = 0.024
Why do we want ?∑

α→β:α=X

q(α → β) = 1

22
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Treebanks
• Standard setup (WSJ portion of Penn Treebank):  

• 40,000 sentences for training 
• 1,700 for development 
• 2,400 for testing

• Why building a treebank instead of a grammar?

• Broad coverage
• Frequencies and distributional information

• A way to evaluate systems
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English

Penn Treebank (1989-1996)

- Syntactic annotation of text for POS 

tagging, parses, predicate-
arguments, and speech disfluencies


- WSJ articles from 3 years 



Penn Treebank
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Penn Treebank



Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG : 

•  is the set of all non-terminals seen in the trees 

•  is the set of all words seen in the trees 

•  is taken to be the start symbol S. 

•  is taken to be the set of all rules  seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β

• The maximum-likelihood parameter estimates are:

qML(α → β) =
Count(α → β)

Count(α)

If we have seen the rule  105 times, and the non-terminal  1000 times, VP → Vt NP VP
q(VP → Vt NP) = 0.105

Can add smoothing
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What if there is no annotated parses?

• Use Expectation Maximization.   
• For learning parameters for PCFGs  

• E-Step: compute expectation over trees with fixed model weights 
(probabilities) 

• M-Step: determine model weights (probabilities) that maximize 
likelihood of expected parses 

• Use the inside-outside algorithm (a dynamic programming 
algorithm) to compute these probabilities efficiently. 
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Parsing with PCFGs

• Given a sentence  and a PCFG, how to find the highest scoring 
parse tree for ?

s
s

• The CKY algorithm: applies to a PCFG in Chomsky 
normal form (CNF)

• Chomsky Normal Form (CNF): all the rules take one 
of the two following forms:

•  where  

•  where 
X → Y1Y2 X ∈ N, Y1 ∈ N, Y2 ∈ N
X → Y X ∈ N, Y ∈ Σ

• Can convert any PCFG into an equivalent grammar in CNF! 
• However, the trees will look differently 
• Possible to do “reverse transformation”

argmaxt∈𝒯(s)P(t)

Binary
Unary
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Converting PCFGs into a CNF grammar

• -ary rules ( ): n n > 2 NP → DT NNP VBG NN

• Unary rules: VP → Vi, Vi → sleeps
• Eliminate all the unary rules recursively by adding VP → sleeps

• We will come back to this later!
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The CKY algorithm

• Dynamic programming

• Given a sentence , denote  as the 
highest score for any parse tree that dominates words 

 and has non-terminal  as its root.

x1, x2, …, xn π(i, j, X)

xi, …, xj X ∈ N

• Output: π(1,n, S)

• Initially, for , i = 1,2,…, n

π(i, i, X) = {q(X → xi) if X → xi ∈ R
0 otherwise

Book the flight through  Houston
 0         1     2        3              4               5  

30
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The CKY algorithm

• For all  such that  for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree

Cells contain: 
- Best score for parse of span (i,j) 

for each non-terminal X 
- Backpointers 

Consider all ways span (i,j) can be split 
into 2 (k is the split point)
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sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

Example of CKY parsing

32



sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0
VP: 0.3

Example of CKY parsing
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sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

Example of CKY parsing

34

NP: 0.8 x 1.0 x 0.1 
= 0.08

VP: 0.3



sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

Example of CKY parsing
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NP: 0.08

VP: 0.3



sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

NoneNP: 0.08

Example of CKY parsing
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VP: 0.3



sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

NP: 0.08 None

Example of CKY parsing
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VP: 0.3



sleepsmanthe

DT: 1.0 NN: 0.1 Vi: 1.0

NP: 0.08 None

Example of CKY parsing
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S: 1.0 x 0.08 x 0.3

= 0.024

VP: 0.3



sleepsmanthe

DT: 1.0 NN: 0.1
Vi: 1.0

NP: 0.08 None

S: 0.024

Example of CKY parsing
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VP: 0.3



The CKY algorithm

• For all  such that  for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree

Cells contain: 
- Best score for parse of span (i,j) 

for each non-terminal X 
- Backpointers 

Consider all ways span (i,j) can be split 
into 2 (k is the split point)
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The CKY algorithm

Running time?

O(n3 |R | )
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CKY with unary rules

• In practice, we also allow unary rules:

 where X → Y X, Y ∈ N

conversion to/from the normal form is easier

π(i, j, X) = max
X→Y∈R

q(X → Y) × π(i, j, Y)

• Compute unary closure: if there is a rule chain 
, add X → Y1, Y1 → Y2, …, Yk → Y

q(X → Y) = q(X → Y1) × ⋯ × q(Yk → Y)

• Update unary rule once after the binary rules
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Constituency Parsing

• Borealis AI Tutorials 
• Parsing I (https://www.borealisai.com/en/blog/tutorial-15-parsing-i-context-free-grammars-

and-cyk-algorithm/)  
• CFGs and the CKY algorithm 
• CNF and number of parses 

• Parsing II (https://www.borealisai.com/en/blog/tutorial-18-parsing-ii-wcfgs-inside-algorithm-
and-weighted-parsing/) 
• Weighted CFGs and CKY algorithm for parsing Weighted CFGs 

• Parsing III (https://www.borealisai.com/en/blog/tutorial-19-parsing-iii-pcfgs-and-inside-
outside-algorithm/) 
• PCFGs 
• Parameter estimation for both supervised and unsupervised cases 

• Inside-Outside algorithm for unsupervised learning of parameters
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Evaluating constituency parsing

44



Evaluating constituency parsing

• Recall: (# correct constituents in candidate) / (# constituents in gold tree) 
• Precision: (# correct constituents in candidate) / (# constituents in 

candidate) 
• Labeled precision/recall require getting the non-terminal label correct 
• F1 = (2 * precision * recall) / (precision + recall) 
• Part-of-speech tagging accuracy is evaluated separately

45



Evaluating constituency parsing

• Precision: 3/7 = 42.9% 
• Recall: 3/8 = 37.5% 
• F1 = 40.0% 
• Tagging accuracy: 100%
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Weaknesses of PCFGs

• Strong independence assumption 
• Each production (e.g., NP -> DT NN) is 

independent of the rest of the tree 
• Lack of sensitivity to context (where is the non-

terminal in the tree, is it a subject or object) 
• Lack of sensitivity to lexical information (words)
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Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

The only difference between these two parses:

 vs q(VP → VP PP) q(NP → NP PP)
Difficult to  determine the correct parse without looking at the words!
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Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

Exactly the same set of context-free rules!
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Lexicalized PCFGs

• Key idea: add headwords to trees

• Each context-free rule has one special child that is the 
head of the rule (a core idea in syntax)

Annotate parent with 
more information
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Head finding rules
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Lexicalized PCFGs

• Further reading: Michael Collins. 2003. Head-Driven 
Statistical Models for Natural Language Parsing. 

• Results for a PCFG: 70.6% recall, 74.8% precision

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

Drawbacks: 
• Dramatically increases the size of the 

grammar -> less training data for each 
production 

• Increase the complexity of the model 
(running time and memory)
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Further improvements to parsing

• Discriminative reranking 
• PCFG is a generative model 
• Use discriminative models with more global features 

to score parses and rerank candidate parses from the 
PCFG 

• Self-training (incorporate unlabeled data)  
• Train on some data to get initial good model 
• Then run model on unlabeled data and combine 

newly labeled data with gold labeled data and retrain 
• Ensemble 

• Combine multiple models

Beyond supervised learning:  
Grammar Induction = learn grammar from unlabeled data

Charniak parser w/
self-train+rerank: 
(McClosky et al 2006) 
92.1 F1
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Using Neural Networks for 
Constituency Parsing
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Parsing with Neural Networks

What can neural networks bring? 
• Better phrase representations 

• Embeddings for words, tags, and nodes 
• Leverage pretrained embeddings 

• Learned scoring functions 
• Less independence assumptions
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Parsing as Seq2Seq
(Vinyals et al, 2015; Vaswani et al, 2017)

88.3 F1
• Linearize parse tree and train LSTM seq2seq model with attention 

May not be structural correct 
(i.e. unbalanced parenthesis)
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91.3 F1 • With transformers



Recursive Neural Networks
(Socher et al, 2013)

• Continuous representations for 
words and non-terminal nodes 

• Compositional representations 
for non-terminal nodes 

• Use neural networks to get 
compositional representations 
as well as scores for composition

Compositional Vector Grammar = PCFG + TreeRNN
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Recursive Neural Networks
(Socher et al, 2013)

Weights can be tied or parameterized by constituency type 

Weights depend on discrete 
category of children (NP, VP)

Node label Node embedding
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Recursive Neural Networks
(Socher et al, 2013)

90.4 F1
(figure credit: CMU CS 11-747, Graham Neubig)59



Recurrent Neural Network Grammars
(Dyer et al, 2016)

Transition Parsers 
• Like Seq2Seq but output is a 

sequence of operations that 
builds the tree incrementally 

• The sequence can guarantee 
structural consistency

Predict action from current configuration

Stack Buffer

History of actions
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Recurrent Neural Network Grammars
(Dyer et al, 2016)

Parser transitions 

Before action After action

Top-down parsing

S: stack of open 
nonterminals and 

completed subtrees 
B: buffer of unprocessed 

terminal symbols 
x: terminal symbol 

X: Non-terminal symbol 
: completed subtreeτ

Actions: 
NT(X): Open (create) a new 
non-terminal of type X   
SHIFT: move x from buffer to 
stack 
REDUCE: Close(finish) open 
non-terminal on stack   
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Recurrent Neural Network Grammars
(Dyer et al, 2016)

• BiLSTM to get composite representation of non-terminal

REDUCE
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Recurrent Neural Network Grammars
(Dyer et al, 2016)

Transition Parsers 
• Like Seq2Seq but output is a 

sequence of operations that 
builds the tree incrementally 

• The sequence can guarantee 
structural consistency

Predict action from current configuration

Stack Buffer

History of actions

91.2 F1
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Span Labeling
(Stern et al. 2017)

• Simple idea: decide whether span is 
constituent in tree or not 

• Scores labels and spans independently 
• Allows for various loss functions (local vs 

structured), inference algorithms (CKY 
vs topdown)

• Word representation 
• Span representation 
• Label scoring
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Span Labeling
(Stern et al. 2017)

• Bidirectional LSTM to get forward/backward encodings  for position  

• Span  representation: concat vector differences  

• Feedforward neural networks to predict scores for labels and spans 

( fi, bi) i
(i, j) [ fj − fi, bi − bj]

Sspan(i, j) = v⊤
s g(Wssij + bs)

Slabels(i, j) = Vlg(Wlsij + bl)

scalar

vector Slabel(i, j, l) = l th element of Slabels

(Gaddy et al, 2018)
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Span Labeling
(Stern et al. 2017)

91.8 F1

Greedy top down parsing 
• Recursively for each span: 

• Assign a label 
• Pick a split point

Running time?

O(n2)

̂k = arg max
k

Ssplit(i, k, j)

̂l = arg max
k

Slabel(i, j, l)

Sspan(i, k) + Sspan(k, j)
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Self-Attentional Encoding
(Kitaev and Klein, 2018)

93.6 F1

• Self-attention based encoding 
• Learned scoring  function for each 

span from token  to token  with label  
• CKY for decoding to find the best tree 
• Berkeley neural parser: https://

github.com/nikitakit/self-attentive-
parser

s(i, j, l)
i j l
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Self-Attentional Encoding
(Kitaev and Klein, 2018)

F1 
93.6 (no pretraining) 
93.7 (w/ FastText)  
95.2 (w/ ELMo), 
95.7 (w/ BERT LARGE cased), 
95.8 (Ensemble w/ BERT BASE/LARGE, 
cased/uncased 
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• Improvements with pretrained 
representations



Summary

• Two types of structured representations: constituency vs 
dependency 

• Formalism for context free grammars (CFG) and probabilistic 
context free grammars (PCFGs) 
• CFGs have terminals (leafs), non-terminals, and production rules 
• PCFGs are CFGs with probabilities on the rules 

• Estimating probabilities for PCFGs and decoding (parsing) 
• How to use neural networks for constituency parsing
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