
Pretraining Language Models

Spring 2024

2024-02-26

CMPT 413/713: Natural Language Processing

SFUNatLangLab

1

Some slides adapted from Stanford CS224n and Anoop Sarkar

Pretraining and task-specific fine-tuning
Task-specific fine-tuning
• Annotated data specific to a task

(usually small)
• Initialize with pre-trained model

Pretraining
• Big pile of unlabeled text data!
• Lots of resources to train!

Helps to build
• Useful representations of language

• Provide good initial parameters for downstream tasks

• Probability distributions that can be sampled from

Pretraining language models

• Model (Neural Architecture)
• Does it use FFN, RNN (LSTM, GRU), or Transformer?

• Is it an encoder-based, decoder-based, or encoder-decoder model?
• Specifics of the neural architecture (number of layers, embedding size, etc)

• Dataset
• What is the data that is used to pretrain the model?

• Training objective
• What is the training objective?

• Other details
• Tokenization: what tokenization is applied?
• Implementation and training details?

3

Summary of pretrained models we looked at

4

Paper Model Dataset Training Objec6ve

W2V CBOW
[Miklov et al, 2013]

FFN Google News
(100B words)

Masked LM
(within window)

ELMo
[Peters et al, 2018]

Bi-LSTM 1B Word benchmark
(800M words)

Bidirec6onal LM

BERT
[Devlin et al, 2018]

Transformer
(encoder block)

BookCorpus + English Wikipedia
(3.3B words)

Masked LM
Next sentence predic6on

Brief History of Pre-training
1960 to 2015

• Singular Value Decomposition (1960s):

• Take matrix of word co-occurrence counts

• Use SVD to map truncate to initial singular values

• Use truncated use as word embeddings.

• Word2Vec/GloVe (2010):

• Continuous Bag of Words (CBOW) - context words predict target word

• Skip-gram - target word predicts each context word

M ∈ |V | × |V |

M = USVT |V | × k

U

https://arxiv.org/abs/1511.01432 Nov 2015Fig from J. Devlin BERT slides

https://arxiv.org/abs/1511.01432

https://arxiv.org/abs/1802.05365 Oct 2017

ELMO

https://arxiv.org/abs/1802.05365

https://arxiv.org/abs/1802.05365Fig from J. Devlin BERT slides

ELMO

https://arxiv.org/abs/1802.05365

Pre-training Transformers
Representation Learning

Preliminaries

Word structure and subword models
• NLP used to model the vocabulary in simplistic ways based on English

• Tokenize based on spaces into a sequence of "words"

• All novel words at test time were mapped to [UNK] (unknown token)

hat
learn
laern
taaasty
Transformerify

cs224n-2023-lecture9-pretraining.pdf

word

variations

spell errors

neologisms

index embedding

hat
learn
[UNK]
[UNK]
[UNK]

Byte Pair Encoding algorithm
• Learn a vocabulary of parts of words (subwords)

• Vocabulary of subwords is produced before training a model on the training dataset
(larger the better)

• At training and test time the vocabulary is split up into a sequence of known
subwords

• Byte Pair Encoding (BPE) algorithm (takes max merges as input)

• Init subwords with individual characters/bytes and "end of word" token.

• Using the training data find most common adjacent subwords, merge and add to
list of subwords

• Replace all pairs of characters with new subword token; iterate until max merges

See bpe.ipynb https://arxiv.org/abs/1508.07909

cs224n-2023-lecture9-pretraining.pdf

Word structure and subword models
• Common words are kept as part of the vocabulary (ignore morphology)

• Rarer words are split up into subword tokens

• In the worst case, words are split up into characters (or bytes)

hat
learn
laern
taaasty
Transformerify

cs224n-2023-lecture9-pretraining.pdf

word

variations

spell errors

neologisms

index embedding

hat
learn
la## ##ern
ta## #aa #sty
Transformer## ##ify

Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

14

• Language models
• Can’t condition on future

words, good for generation
• GPT-2, GPT-3, LaMDA

• Combine benefits of both
• Original Transformer,

UniLM, BART, T5, Meena

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaXered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objec6ves and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt

Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)

15

• Language models
• Can’t condition on future

words, good for generation
• GPT-2, GPT-3, LaMDA

• Combine benefits of both
• Original Transformer,

UniLM, BART, T5, Meena

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaXered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objec6ves and then transferred.

Slide adapted from: Stanford CS224n, John Hewitt

Pre-training and fine-tuning

16
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/1810.04805.pdf

BERT

• Transformer Encoder
• Two training objectives

• Masked Language Modeling
• Next Sentence Prediction

17

Masked language models (MLMs)

Mask 15% of tokens

Example: my dog is hairy, we replace the word hairy

• 80% of time: replace word with [MASK] token
 my dog is [MASK]
• 10% of time: replace word with random word
 my dog is apple
• 10% of time: keep word unchanged to bias representation

toward actual observed word
 my dog is hairy

18

RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach
Liu et al, UW and Facebook, arXiv 2019

• Train with more data and for more epochs
• Vocabulary size of 50K subword units vs 30K for BERT
• Larger batch size and more training data

• No need for NSP

19
pretrain with 1024 V100 GPUs for ~1 day

RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach
Liu et al, UW and Facebook, arXiv 2019

• Train with more data and for more epochs
• Vocabulary size of 50K subword units vs 30K for BERT
• Larger batch size and more training data

• No need for NSP

20

Dynamic masking (masking changes)

Better results with careful reimplementation.

Mean over 5 random seeds.

• Mask out spans!

21

SpanBERT: Improving Pre-training by Representing and Predicting Spans
Joshi et al, TACL 2019

SpanBERT

ALBERT
Lan+ 2019

• Factorized embedding parameterization

• Use small embedding size (128) and project to Transformer hidden size
(1024) using a parameter matrix

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942

ALBERT
• Cross-layer parameter sharing

• parameters are shared with hℓ+1 hℓ

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942

ALBERT
• Light on parameters; not necessarily faster than BERT

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942

Discriminative training

Train model to discriminate locally plausible text from real text

25

Loss is on all the training tokens vs just the masked ones, more compute efficient use of the training data

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Clark et al, ICLR 2020

26

Discriminative training

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
Clark et al, ICLR 2020

Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

27

• Language models
• Can’t condition on future

words, good for generation
• GPT-2, GPT-3, LaMDA, PaLM

• Combine benefits of both
• Original Transformer,

UniLM, BART, T5, Meena

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaXered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objec6ves and then transferred.

GPT models

GPT
• Improving language understanding by generative pre-training [Radford et al, 2018]
• Large language model with transformers with supervised fine-tuning

• different model for each task
• Trained on BooksCorpus (800M words), 117M parameters (12 layers)
GPT-2
• Language Models are Unsupervised Multitask Learner [Radford et al, 2019]
• Model all tasks as sequence completion with special tokens indicating task
• Trained on WebText (40B words), 1.5B parameters (48 layers)
• No fine-tuning, demonstrated few-shot learning
GPT-3
• Language Models are Few-Shot Learners [Brown et al, 2020]
• Trained on Web+Books+Wikipedia (300B words), 175B parameters (96 layers)
• Demonstrated zero-shot and few-shot prompting abilities

28

http://www.apple.com
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf

https://openai.com/research/language-unsupervised Jun 2018

GPT1

https://openai.com/research/language-unsupervised

GPT1

Fig from J. Devlin BERT slides See also ULMFit: https://arxiv.org/abs/1801.06146

https://arxiv.org/abs/1801.06146

GPT1
Pre-training an autoregressive language model
• Start with a large amount of unlabeled data

• Pre-training objective: Maximize the likelihood of predicting the next token

•

• This is equivalent to training a Transformer decoder

•

•

•

• Directionality is needed to generate a well-formed probability distribution

𝒰 = {u1, …, un}

Li(𝒰) = ∑
i

log P(ui ∣ ui−k, …, ui−1; Θ)

h0 = UWe + Wp

hℓ = transformer_block(hℓ−1)∀ℓ ∈ [1,n]

P(u) = softmax(hnWT
e)

 is the context
vector of tokens
U = (u−k, …, u−1)

 is the number of Transformer
layers
n

 is the token embedding matrixWe

 is the position embedding matrixWp

BooksCorpus: 7K
unpublished books
(1B words)

https://openai.com/research/language-unsupervised

GPT1

GPT (Generative pretrained transformer)
• Unsupervised retraining: Standard language model loss
• Supervised fine-tuning: Use simple classifier (linear layer + softmax) trained to predict correct class (use

combined loss)

33

Improving language understanding by genera6ve pre-training (Radford et al, 2018)

GPT-2

• Machine Translation

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-gpt2/)

• Express all tasks a a language modelling task
• Training improvements

• Improved initialization / additional layer
normalization

• Increased vocabulary / context /batch size

34Language Models are Unsupervised Mul6task Learner (Radford et al. 2019)

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/

GPT-2

Machine Translation

(figure credit: Jay Alammar
http://jalammar.github.io/illustrated-gpt2/)

How can we use decoders for different tasks?
• Use special token to indicate task

35Language Models are Unsupervised Mul6task Learner (Radford et al. 2019)

Summarization

http://jalammar.github.io/
http://jalammar.github.io/illustrated-gpt2/

GPT-3: Few-shot learning

36Language Models are Few-Shot Learners (Brown et al. OpenAI, 2020)

A few examples are
provided at test 6me

0 training
examples

1 training
examples

GPT-4

37 https://openai.com/research/gpt-4

• Growing
performance for
ChatGPT
versions

• GPT-4 passing standardized tests

• Bar exam:
• GPT-3.5 score in bottom 10%
• GPT-4 score in top 10%

38 https://openai.com/research/gpt-4

GPT-4

GPT models (after GPT-3)

InstructGPT and GPT-3.5 [2022]
• Align responses to human feedback
• Instruction fine-tuning
• Reinforcement learning from human feedback
• Used in initial ChatGPT

GPT-4 [March 2023]
• Multimodal with images and text (GPT-4V)
• Larger, better model

39

https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2303.08774.pdf

Transformer-XL
Dai+ 2019

• Vanilla Model

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

Transformer-XL
Dai+ 2019

• Vanilla Model

https://arxiv.org/abs/1901.02860

Is there a better way to allow for long context?

https://arxiv.org/abs/1901.02860

Transformer-XL
Dai+ 2019

• Autoregressive LM (different from GPT)

• segment level recurrence (reuse states) + relative positional embeddings

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

Transformer-XL
Dai+ 2019

• Autoregressive LM (different from GPT)

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

XLNet
Yang+ 2019

• Autoregressive model for masked language modelling

• Uses permutations (factorization order) to provide context

• Allows for context from both sides through permutation

• Avoid [MASK] token that does not appear in downstream tasks

https://arxiv.org/abs/1906.08237

https://arxiv.org/abs/1906.08237

XLNet
Yang+ 2019

• Relative position embeddings (using auto-regressive TransformerXL)

• Absolute attention: position 4 5; position 128 129

• Relative attention: position

• Mask prediction over all token positions using permutation on factorization
order (sample a factorization order: 3 2 1 4)

• Two stream self-attention: standard and query on [MASK] token

• Permute only factorization order, not sequence order

→ →

t → (t − 1)

→ → →

https://arxiv.org/abs/1906.08237

https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1906.08237

XLNet

XLNet

XLNet

Transformers for pretraining

• Masked language models
• Bidirectional context
• BERT + variants (e.g. RoBERTa)
•

49

• Language models
• Can’t condition on future

words, good for generation
• GPT-2, GPT-3, LaMDA

• Combine benefits of both
• Original Transformer,

UniLM, BART, T5, Meena

Encoder only Decoder only Encoder-Decoder

• Self-supervised Transformer based models shaXered language understanding benchmarks in NLP in 2018.

• Trained on large text corpus with self-supervised objec6ves and then transferred.

Encoder-Decoder pretraining

• Combine advantages of both
encoder and decoder

• Seq2Seq LM with masking
• Next sentence prediction

50

Unified Language Model Pre-training for Natural Language Understanding and Genera6on [Dong et al, NeurIPS 2019]

UniLM v1

• Combine benefits of BERT (encoder) and GPT (decoder)

51

Unified Language Model Pre-training for Natural Language Understanding and Generation
Dong et al, Microsoft, NeurIPS 2019

BART: Denoising seq2seq training

52

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
Lewis et al, Facebook AI, ACL 2020

BERT GPT BART

• Combine benefits of BERT
(encoder) and GPT (decoder)

• More flexibility in noise generation

53

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
Lewis et al, Facebook AI, ACL 2020

Classification Machine Translation

BART: Denoising seq2seq training

T5: Text to Text Transfer Transformer

54
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

• Treat all NLP problems as encoding text and generating text
• Trained on cleaned up version of Common Crawl

https://arxiv.org/abs/1910.10683

https://arxiv.org/abs/1910.10683

T5: Text to Text Transfer Transformer

55
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

Normally: Separate parameters
for encoder/decoder Causal masking only Masking similar to

encoder/decoder

Can force sharing of parameters
for encoder/decoder

Similar performance,
less parameters

T5: Text to Text Transfer Transformer

56
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

57

T5 (use both encoder and decoder)

Slide Credit: Stanford CS224n, John Hewitt

Span corruption works best

T5: Text to Text Transfer Transformer

58
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [Raffel et al, Google, JMLR 2020]

Different corruption type

Different corruption rate

Predict all

Predict
corrupted

T5 (use both encoder and decoder)

59Slide Credit: Stanford CS224n, John Hewitt

T5 summary
Raffel+ 2019
• Ablation study on many aspects of pre-training and fine-tuning

• Model size (bigger is better; 11B parameters)

• Amount of training data (more is better)

• Domain / cleanliness of training data [-ve]

• Pre-training objective (e.g. span length of masked text) [-ve]

• Ensemble models [-ve]

• Fine-tuning recipe (e.g. only allow top k layers to fine-tune) [-ve]

• Multi-task training [-ve]

https://arxiv.org/abs/1910.10683

https://arxiv.org/abs/1910.10683

Using pre-trained LLMs

• So your language model can complete a sentence, but you may
want to do different things

• Classify whether a email is SPAM or NOT SPAM

• Answer a question: when was Albert Einstein born?

• Extract information from text

• If I give it a piece of text, how do I tell it whether I want to
translate it French, summarize it, or make it into a poem?

Using LLMs for tasks

Develop specialized model for your task (with LM as part)

• Hookup appropriate inputs/outputs

• Fine-tuning parameters (include some LM parameters) for task

Try to use the LM network as it is (no extra network training)

• Zero-shot / few-shot prompting (in-context learning)

Try to have smaller LM to allow running on various devices

• Model distillation and pruning

Using LLMs for tasks

• Parameter efficient fine-tuning (PEFT)

• Instruction tuning (fine-tune with instructions)

• Reinforcement learning with human feedback (train with
modified objective that incorporates human preferences)

Different ways to fine-tune

Full finetuning vs parameter efficient fine-tuning
• Finetuning every parameter in a pretrained model works well, but is memory-intensive.
• Lightweight finetuning methods adapt pretrained models in a constrained way.
• Leads to less overfitting and/or more efficient finetuning and inference.

65Slide Credit: Stanford CS224n, John Hewitt [Liu et al., 2019; Joshi et al., 2020]

Parameter-Efficient Finetuning: Adapters

• Add lightweight network with new learnable parameters
• Only these parameters are fine-tuned, rest are frozen

66

https://github.com/adapter-hub/adapter-transformers

[Houlsby et al., 2019] [Pfeiffer et al., 2021]

New learnable parameters

Parameter-Efficient Finetuning: Adapters
• Mixture of adapters - stochastically selected during training
• Average weights of adapters during inference

67 [AdaMix, Wang et al., EMNLP 2022]

[Houlsby et al., 2019]

Performance on GLUE, fine-
tuning of RoBERTa-large

Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

• Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.
• The prefix is processed by the model just like real words would be.
• Advantage: each element of a batch at inference could run a different tuned model.

68Slide Credit: Stanford CS224n, John Hewitt [Li and Liang, 2021; Lester et al., 2021]

Parameter-Efficient Finetuning: Low-Rank Adaptation

• Low-Rank Adaptation learns a low-rank “diff” between the pretrained and
finetuned weight matrices.

• Easier to learn than prefix-tuning

69Slide Credit: Stanford CS224n, John Hewitt [Hu et al., 2021]

https://arxiv.org/pdf/2106.09685.pdf

70

Parameter-Efficient Finetuning: Low-Rank Adaptation

[AdaMix, Wang et al., EMNLP 2022]

Good performance by tuning just a fraction of the weights

Going toward smaller powerful LMs

• Knowledge Distillation
• DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. Sanh et al.

NeurIPS Workshop 2019
• TinyBERT: Distilling BERT for Natural Language Understanding. Jiao et al. Findings of

ACL 2020
• Quantization

• Q8BERT: Quantized 8bit BERT, Zafrir et al, NeurIPS Workshop 2019
• Model Pruning

• Compressing BERT: Studying the effects of weight pruning on transfer learning. Gordon
et al. Workshop of ACL 2020.

71

72

