EdNatLanglLab

CMPT 413/713: Natural Language Processing

Dependency Parsing

Spring 2024
2024-03-06

Adapted from slides from Dangi Chen and Karthik Narasimhan
(with some content from slides from Chris Manning and Graham Neubig)

Overview

e What is dependency parsing?
e Two families of algorithms
e Transition-based dependency parsing

e Graph-based dependency parsing

Dependency and constituency

e Dependency Trees focus on relations between words

ROOT

/\ l A\/—\ Words directly linked

to each other
a girl with a telescope

¢ Phrase Structure models the structure of a sentence

S VP Nested constituents
T pp Constituency Parse
NP / \‘NP generated from
—
PRP VBD DT NN NN Context Free Grammars
| | | | l 1 | (CFGs)

I saw a girl with a telescope

3 (figure credit: CMU CS 11-747, Graham Neubig)

Constituency vs dependency structure

/S\ @(dob] ™

NP VP det nmod
‘ /\ nsubj j{nmod
Pro Verb NP v | | |
‘ | /\ I prefer the morning flight through Denver

I prefer Det Nom

| /\ prefer

the Nom PP /\
/\ /\ / flight
Nom Noun P NP ﬂ\

‘ ‘ ‘ ‘ the morning Denver

Noun flight through Pro

morning Denver

through

Panini’s grammar of Sanskrit (c. 5th century BCE)

,-A 4_’ V . ‘ : A«‘.ﬁ"
al. ;73’- 43 ;}/%5?&* - (Eh
g A ¥
W~ N

2 27 3T

.“6- 1’—’ » ;§

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.htmi
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg

5 (slide credit: Stanford CS224N, Chris Manning)

Dependency Grammar/Parsing History

e The idea of dependency structure goes back a long way
e To Panini’s grammar (c. 5th century BCE)
eBasic approach of 1st millennium Arabic grammarians
eConstituency/context-free grammars is a new-fangled invention
e20th century invention (R.S. Wells, 1947; then Chomsky)
Modern dependency work often sourced to L. Tesniere (1959)
e\Was dominant approach in “East” in 20th Century (Russia, China, ...)
eGood for free-er word order languages
e Among the earliest kinds of parsers in NLP, even in the US:
eDavid Hays, one of the founders of U.S. computational linguistics, built early

(first?) dependency parser (Hays 1962)

6 (slide credit: Stanford CS224N, Chris Manning)

Dependency structure

SN

@ (mod
(nsub;] [‘[[nmodﬂ [X
»[\ \A v

I prefer the morning flight through Denver

Consists of relations between lexical items, normally binary,
asymmetric relations (“arrows”) called dependencies

The arrows are commonly typed with the name of grammatical
relations (subject, prepositional object, apposition, etc)

The arrow connects a head (governor) and a dependent (modifier)
Usually, dependencies form a tree (single-head, connected, acyclic)

v

Dependency relations

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

[OBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

CC Coordinating conjunction

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

8

Dependency relations

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
[OBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

9

https://universaldependencies.org/

Advantages of dependency structure

e More suitable for free word order languages

/S .
VP
. | ™~
sbj vg obj NlP / NlP
L

H l PFIRP VIB VBN PFIQP
hon har sett honom hon har sett honom
(she) (has) (seen) (him) (she) (has) (seen) (him)

obj S

\

Vg /VP\NP

sbj NP

: I \

‘ J PFIQP VB PRP VI|3N
hor:om har hon sétt honom har hon sett
(him) (has) (she) (seen) (him) (has) (she) (seen)

10

Advantages of dependency structure

e More suitable for free word order languages

e The predicate-argument structure is more useful for many applications

Relation: per:city of death Relation: per:employee of Relation: org:founded by

Benoit B. Mandelbrot, a maverick In a career that spanned seven decades, Ginzburg Anil Kumar, a former director at the consulting
mathematician who developed an innovative authored several groundbreaking studies in various firm McKinsey & Co, pleaded guilty on

theory of roughness and applied it to physics, fields -- such as quantum theory, astrophysics, Thursday to providing inside information to Raj
biology, finance and many other fields, died radio-astronomy and diffusion of cosmic radiation Rajaratnam, the founder of the Galleon Group,
Thursday in Cambridge, Mass. in the Earth's atmosphere -- that were of “Nobel in exchange for payments of at least § 175

Prize caliber,” said Gennady Mesyats, the director million from 2004 through 2009.
of the Lebedev Physics Institute 1n Moscow, where

Rel ation died Ginzburg worked . o Rajaratnam

. . 4%\
Extraction /N‘ 4%1”“”””\’ to Raj founder

Mandelbrot Thursday Cambridge N

/\ /\ of the Lebedev Physics Mos%ked the Group

Benoit B. in Mass where Ginzburg of the Galleon

11

Dependency parsing

I root '
Output: - (dobj) D
det
I prefer the morning flight ,
b d
through Denver ¢

I preter the morning flight through Denver

e A sentence is parsed by choosing for each word what other word
is 1t a dependent of (and also the relation type)

¢ We usually add a fake ROOT at the beginning so every word has
one head

e Usually some constraints:
¢ Only one word 1s a dependent of ROOT
e Nocycles:A—>B,B—>C,C—> A

Learning from data: treebanks!

12

Dependency Conditioning Preferences

What are the sources of information for dependency parsing?
1. Bilexical affinities [discussion — issues] is plausible

2. Dependency distance mostly with nearby words
3. Intervening material

Dependencies rarely span intervening verbs or punctuation
4. Valency of heads

How many dependents on which side are usual for a head?

C N\ /\A

ROOT Discussion of the outstanding issues was completed .

13 (slide credit: Stanford CS224N, Chris Manning)

Dependency treebanks

e The major English dependency treebank: converting
from Penn Treebank using rule-based algorithms

Stanford e (De Marneffe et al, 2006): Generating typed dependency parses from
Dependencies phrase structure parses
(English) e (Johansson and Nugues, 2007): Extended Constituent-to-dependency

Conversion for English

¢ Universal Dependencies: more than 100 treebanks in
70 languages were collected since 2016

Universal
Dependencies
(Multilingual)

2~ Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort with over 200 contributors producing more than 100 treebanks in
over 70 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation

guidelines.

https://universaldependencies.org/

e (De Marneffe et al, CL, 2021): Universal Dependencies

14

https://universaldependencies.org/

Universal Dependencies

https://universaldependencies.org/

b Afrikaans 1 49K 4.0 IE, Germanic
» [Akkadian 1 1K Afro-Asiatic, Semitic
» [=B= Ambharic 1 10K &8 /=68 Afro-Asiatic, Semitic
» [E= Ancient Greek v 416K Y=l IE, Greek
» A Arabic 3 1,042K EIW Afro-Asiatic, Semitic
» [l Armenian 1 36K 8/7E1 IE, Armenian
» [2X] Assyrian 1 <1K CH i Afro-Asiatic, Semitic
» | Bambara 1 13K CH i Mande
b Basque 1 121K Basque
» [Belarusian 1 13K S4E56 IE, Slavic
» E= Breton 1 10K 8760 W IE, Celtic
» |mml Bulgarian 1 156K /=L ACH IE, Slavic
» [Buryat 1 10K 8/7E Mongolic
» |3 Cantonese 1 13K o Sino-Tibetan
228 treeban ks Over » E= Catalan 1 531K IE, Romance
» [Chinese 5 161K LEEOOW Sino-Tibetan
1 30 |an g u ag eS b Classical Chinese 1 55K (i) Sino-Tibetan
» [§ Coptic 1 25K L ¥=li] Afro-Asiatic, Egyptian
aS Of 2 02 2 b Croatian 1 199K EAW IE, Slavic
» wa Czech 5 2,222K S&2E00W IE, Slavic
b Danish 2 100K =EH il IE, Germanic
» [omm Dutch 2 307K EENW IE, Germanic
> English 6 603K EmE A EANOQ W IE, Germanic
» | Erzya 1 15K Uralic, Mordvin
» |[=== Estonian 2 461K Uralic, Finnic
» [4=| Faroese 1 10K IE, Germanic
» = Finnish 3 377K e 7/ BT\ Uralic, Finnic
» N French 8 1,156K A2 EGOW IE, Romance
b Galician 2 164K IE, Romance
» | German 4 3,409K EOCAW IE, Germanic
» B8 Gothic 1 55K [IE, Germanic
» [E= Greek 1 63K EOW IE, Greek
y Hebrew 1 161K Afro-Asiatic, Semitic
» am Hindi 2 375K IE, Indic
» |4 Hindi English 1 26K Code switching
» [owmml Hungarian 1 42K Uralic, Ugric
» [@= |ndonesian 2 141K Austronesian, Malayo-Sumbawan
» B Irish 1 23K IE, Celtic
» [lalian 6 781K IE, Romance
» [e] Japanese 5 1,688K Japanese
» | Karelian 1 3K Uralic, Finnic
» [E Kazakh 1 10K Turkic, Northwestern
» [Komi Zyrian 2 3K Uralic, Permic
b Korean 5 446K Korean

Universal Dependencies

» Developing cross-linguistically consistent treebank
annotation for many languages

» Goals:
* Facilitating multilingual parser development
» Cross-lingual learning
» Parsing research from a language typology perspective.

1obl)

[_{ nsubj}— ,(—4% \%

. ’ :
English: the dog chased the cat from the room
Finnish: koira jahtasi kissan huoneesta

Case=Nom Case=Acc Case=Ela

T

p—y *
nsubj 't—@—l j.
(obl]

[l

16

Universal Dependencies

Manning’'s Law:
e UD needs to be satistactory for analysis of individual languages.
e UD needs to be good for linguistic typology.
e UD must be suitable for rapid, consistent annotation.
e UD must be suitable for computer parsing with high accuracy.
¢ UD must be easily comprehended and used by a non-linguist.
¢ UD must provide good support for downstream NLP tasks.

17

Universal POS tags, features, and relations

https://universaldependencies.org/guidelines.html

e Small set of universal POS tags with

e Separate set of universal features to specify lexical and grammatical properties

Features
POS tags Lexical Inflectional features*
features*
Py *
Open class words = Closed class words ~ Other Nominal Verbal
PronType Gender VerbForm
ADJ ADP PUNCT :
NumType Animacy Mood
ADV AUX SYM
Poss NounClass Tense
INTJ CCONJ X
NOUN DET Reflex Number Aspect
PROPN NUM Foreign Case Voice
VERB PART Abbr Definite Evident
PRON Typo Degree Polarity
SCONJ Person
Polite

Clusivity

18

Universal POS tags, features, and relations

https://universaldependencies.org/guidelines.html

e 37 universal syntactic relations
¢ Individual languages may have more specific relations

Structural category of dependent

Functional relation
to head

Other relations

compound reparandum ep

19

Other types of dependency parses

e There can be other types of dependencies
e UD is a Syntactic dependency (designed to be easy to use)

Syntactic Semantic

|ROOT'
TOP (VERB_ARG2]
xcomp| J[OBJ
(VERB.ARG1] (COMP.ARG1) \ TOP
(NSUBJ) (MARK DET ARGD v \ v AR T
¥\ Mary wants to buy a book (() \

Mary wants to buy a book

| ACT-ARG [PAT-AR(\Q g’AT-ARGg
N —(NsuBJ) - - ' [_\ERB_ARG [DET -\RGI /
() UD (with enhanced depen- Mary wants to buy a book . I)J Mary wants to buy a book
dencies dashed) (b) DM (c) PAS (d) PSD

Simpler but More Accurate Semantic Dependency Parsing
https://arxiv.org/pdf/1807.01396.pdf (Dozat and Manning, ACL 2018)

20

Algorithms for dependency parsing

Two families of algorithms

Input buffer

Transition-based dependency parsing LIJJJJJ

e Also called “shift-reduce parsing”
S; }* Parse Relat?: :scy
Oracle

Stack | - []

Graph-based dependency parsing - /\
\\:;\\\\i
N\

Mary

Qﬁ

22

Two families of algorithms

Parser UAS LAS
Chen and Manning (2014) 91.8 89.6
Dyer et al. (2015) 93.1 90.9
Weiss et al. (2015) 93.99 92.05
Ballesteros et al. (2016) 93.56 91.42
Kiperwasser and Goldberg (2016) 939 91.9
Alberti et al. (2015) 9423 92.36
Transition-Based Qi and Manning (2017) 943 922
Fernandez-G and Gémez-R (2018) 94.5 92.4
Andor et al. (2016) 94.61 92.79
Ma et al. (2018)* 95.87 94.19
This work™ 96.04 94.43
Kiperwasser and Goldberg (2016) 93.1 91.0
Wang and Chang (2016) 94.08 91.82
Cheng et al. (2016) 94.10 91.49
Graph-Based Kuncoro et al. (2016) 94.26 92.06
Zhang et al. (2017) 9430 91.95
Ma and Hovy (2017) 94.88 92.96
Dozat and Manning (2016) 95.74 94.08
Ma et al. (2018)™ 95.84 9421

Left-to-Right Dependency Parsing with Pointer Networks
https.//aclanthology.org/N19-1076.pdf (Fernandez-Gonzalez and Gomez-Rodriguez, NAACL 2019)

23

https://aclanthology.org/N19-1076.pdf

Evaluation

e Unlabeled attachment score (UAS)
= percentage of words that have been assigned the correct head
e Labeled attachment score (LAS)
= percentage of words that have been assigned the correct head & label

)
(nmod) nsubj (nmod|
case det case
v \ |

Book me the flight through Houston Book me the flight through Houston
Reference System

UAS=? LAS="?

24

Seq2Seq

Parsing as sequence modelling

[root |

nsubi
aux

punct
F(d()b_]

<ROOT> That has | outraged some fans

R2 R1 L3 R1 L2 L3
X That has outraged some fans ' <EOS>
Encedar hy 1 b | b, hs ---
_

Attention / ‘vir_

Decoder So | S | | S> |
R1 L3

Y R2

RN
T

R1 L2 L3 <EOS>

Seq2seq Dependency Parsing
https://aclanthology.org/C18-1271.pdf (Li et al, ICCL 2018)

25

Constituency parsing as Seq2Seq
(Vinyals et al, 201 5;Vaswani et al, 201 7)

S

|
John has a dog . — NP /VP\ :
| e .
NNP VBZ NP
pd AN
DT NN
John has a dog . — (S (NP NNP)np (VP VBZ (NP DT NN)xp)ve .)s

May not be structural correct
(i.e. unbalanced parenthesis)

38.3 F1
e Linearize parse tree and train LSTM seq2seq model with attention
e With transformers

Parsing as sequence modelling

Sequence labeling

a0t | ‘dohi|
TOOt |— - (dobj |——
[[nsubj \X / det \\
<ROOT> Alice ate an apple
N Vv D N
1 2 3 4
Naive positional: | (2,nsubj) | (O,root) | (4, det)| | (2,dobj)
Rel. positional: | (+1,nsubj) (-2,root) (+1,det)| [(-2,dobj) |
Rel. PoS-based: | (V,+1,nsubj) | | (ROOT,-1,root) | | (N,+1,det) | | (V;-1,dobj)
Bracketing-based: [({),nsubj) | (<\,root) | (/,det)| [(<\>,dobj) |

Viable Dependency Parsing as Sequence Labeling
https://aclanthology.org/N19-1077.pdf (Strzyz, NAACL 2019)

27

Parsing as sequence modelling

Encoding UAS LAS

Li et al. (2018) (sequence labeling) 87.58 83.81
Li et al. (2018) (seq2seq) 89.16 84.99
Li et al. (2018) (seq2seq+beam+subroot) 93.84 91.86
Naive positional 4541 42.65
Rel. positional Sequence labeling 91.05 88.67
Rel. PoS-based variants 93.99 91.76
Bracketing-based 93.45 91.17

Faster, with lower performance than some

graph based methods

sent/s
Model CPU GPU UAS LAS
P2,25o 267:t1 777i24 92.95 90.96
P5 100 16541 70045 93.34 91.34
P00 10140 648120 93.67 91.72
32,250 310j:30 730i53 92.64 90.59
KG (transition-based) 76+, 93.90 91.90
KG (graph-based) 80+0 93.10 91.00
CM 654° 91.80 89.60
DM 411° 95.74 94.08
Ma et al. (2018) 100 95.87 94.19

Viable Dependency Parsing as Sequence Labeling
https://aclanthology.org/N19-1077.pdf (Strzyz, NAACL 2019)

28

Projectivity

e Definition: there are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

(root) — Crossing
T (oot (mod) /
et 4)

nmod }

nsubj (dobj) — mod)
v I T S

I prefer the morning flight through Denver JetBlue canceled our flight this morning which was already late

projective non-projective

Non-projectivity arises due to long distance

. . : : Dataset | # Sent %) Projecti
dependencies or in languages with flexible Ea l'Seh 3€9n863n20es (%) 9;]:0 ive
word order. nglis , .

Chinese 16,091 100.0
Czech 72,319 76.9
This class: focuses on projective parsing German | 38,845 72.2

29

Transition-based dependency parsing

e The parsing process is modeled as a sequence of transitions

e A configuration consists of a stack s, a buffer b and a set of
dependency arcs A: ¢ = (s,b,A)

Stack: Can add arcs to 1st two words on stack
Buffer: Unprocessed words

Current graph:

Book me the morning flight

30

Transition-based dependency parsing

e The parsing process is modeled as a sequence of transitions

e A configuration consists of a stack s, a buffer b and a set of
dependency arcs A: ¢ = (s,b,A)

e Initially, s = [ROOT], b = [w;,wy, ..., w, |, A =

e Three types of transitions (s;, s,: the top 2 words on the stack; b;: the first word in the
buffer)

e LEFT-ARC (7): add an arc (s, 5 s,) to A, remove s, from the stack
e RIGHT-ARC (r): add an arc (s, 5 s;) to A, remove s, from the stack
e SHIFT: move b, from the buffer to the stack

e A configuration is terminal if s = [ROOT] and b = &

This is called “Arc-standard”;;There are other transition schemes...

'I’OO '

(dobj) “Book me the morning flight”

= A running example

Book me the morning flight

stack buffer action added arc

O [ROOT]? 'Book, me, the, morning, flight] SHIFT

1 [ROOTBook [me, the, morning, flight] SHIFT
EI [ROOT, Book, me] [the, morning, flight] ~ RIGHT-ARC(iobj) ~ (Book, iobj, me)
'3 [ROOTBook] [the, morning, flight] SHIFT
4 ROOT, Book, the] [morning, flight] SHIFT
5 ROOT, Book, the, morning] [flight] SHIFT
6 [ROOT,Book, themomingightt 1 LEFT-ARC(nmod) (flight,nmod, morning)
7 [ROOT, Book, the, fight) T LEFT-ARC(det) (flightdetthe)
s [ROOT, Book, flightl [1 RIGHT-ARC(dobj) = (Book,dobj,flight)
9 [ROOT,BookI[] =~ RIGHT-ARC(root) = (ROOT,root,Book)
BT ROOTI[T

32

Transition-based dependency parsing

4 \ / / \\\
I booked a

//
/

ticket to Google

https://ai.googleblog.com/2016/05/ anélsouncing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Transition-based dependency parsing

How many transitions are needed? How many times of SHIFT?

Correctness:

e For every complete transition sequence, the

resulting graph is a projective dependency - o] —
forest (soundness) =N
JetBlue canceled our flight this morning which was already late
¢ For every projective dependency forest G,
there is a transition sequence that
generates G (completeness)
e However, one parse tree can have multiple valid transition sequences. Why?

e “He likes dogs”
e Stack = [ROOT He likes]
e Buffer = [dogs]
e Action =7??

34

Train a classifier to predict actions!

e Given{x; y,} where x; is a sentence and y, is a dependency parse

e For each x; with n words, we can construct a transition sequence of
length 2n which generates y;, so we can generate 2n training
examples: {(Ck, Clk)} ¢;: configuration, a,: action

e “shortest stack” strategy: preter LEFT-ARC over SHIFT.

Given this information, the oracle chooses transitions as follows:

LEFTARC(r): if (S1 7 $2) €R,

RIGHTARC(r): if (S2 7 S1) € R, and Vr',w s.t.(S1 ' w) € R, then (S ' w) €
R,

SHIFT: otherwise

e The goal becomes how to learn a classifier from ¢, to ¢,

How many training examples? How many classes?
35

Train a classifier to predict actions!

¢ During testing, we use the classifier to repeat predicting the action, until
we reach a terminal configuration

function DEPENDENCYPARSE(words) returns dependency tree

state <— {[root], [words], [] } ; initial configuration

while state not final
t < Classifier (state) ; choose a transition operator to apply
state <— APPLY(?, state) ; apply it, creating a new state

return state

e This is also called “greedy transition-based parsing” because we
always make a local decision at each step

e Itisvery fast (linear time!) but less accurate

e Can easily do beam search

36

MaltParser

punct

o > Stack Buffer
= S e |
f—\ m i ROOT has_VBZ gOOd_JJ E E control NN o E
ROOT He has good control . | ‘-------- rosserereansid s
nsub]
PRP VBZ JJ NN . e PRP

e Extract features from the configuration

e Use your favorite classifier: logistic regression, SVM...

Source Feature templates

One word s;.w 1.t s1.wt
57.W 57.1 Sy .wi
bi.w bi.w bo.wt

Two word s;.wos>.w S1.1057.1 si.toby.w
S1.[0852.wi S1.WOSs2.WOs2.I S1.WOS81.10857.1
S1.WOS81.[0857.1 S1.wos.t

w: word, t: part-of-speech tag

(Nivre 2008): Algorithms for Determin#tic Incremental Dependency Parsing

https://universaldependencies.org/

MaltParser

Stack Buffer
i ROOT has.VBZ good_JJ ’ control_NN
/nsubj
He_PRP
Feature templates Features
S,.WoS,.1 S,.w =hases,.r=VBZ
S .Wwos .tob .w s;.w=goodes;.t=JJeob, .w = control
lc(sy) . tosy. tos.t Ic(s,) .t =PRPos,.t =VBZos, .t =JJ

lC(Sz) . W o lC(Sz) . l o S2 . W lC(Sz) w = He o lC(Sz) | = nsubj °o 8y . W = has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

(Nivre 2008): Algorithms for Determintic Incremental Dependency Parsing

https://universaldependencies.org/

From

Single Words

More feature templates

pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }

pair { input(l).tag input(l).word }

input(l) { word tag }

pair { input(2).tag input(2).word }

input(2) { word tag }

From
quad {
triple
triple
triple
triple
pair {
pair {
pair {

From
triple
triple
triple
triple
triple
triple

word pairs

stack.tag stack.word input.tag input.word }
{ stack.tag stack.word input.word }
{ stack.word input.tag input.word }
{ stack.tag stack.word input.tag }
{ stack.tag input.tag input.word }

stack.word input.word }
stack.tag input.tag }
input.tag input(1l).tag }

word triples

{ input.tag input(l).tag input(2).tag }

{ stack.tag input.tag input(l).tag }
stack.head(1l).tag stack.tag input.tag }
stack.tag stack.child(-1).tag input.tag }
stack.tag stack.child(1l).tag input.tag }
stack.tag input.tag input.child(-1).tag }

e B et B et Bt

Distance

pair {
pair {
pair {
pair {

triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }

stack.distance
stack.distance
stack.distance
stack.distance

stack.word }
stack.tag }
input.word }
input.tag }

valency

pair {
pair {
pair {
pair {
pair {
pair {

unigrams

stack.head(1l) {word tag}
stack.label

stack.child(-1) {word tag label}
stack.child(1l) {word tag label}
input.child(-1) {word tag label}

third order

stack.head(1l).head(1l) {word tag}
stack.head(1l).label
stack.child(-1).sibling(1l) {word tag label}
stack.child(1l).sibling(-1l) {word tag label}
input.child(-1).sibling(1l) {word tag label}

triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1)
triple { stack.tag stack.child(1l).tag stack.child(1l).sibling(-1).
triple { stack.tag stack.head(l).tag stack.head(1l).head(1l).tag }

triple { input.tag input.child(-1).tag input.child(-1).sibling(1)
label set

pair { stack.tag stack.child(-1).label }

triple
quad {
pair {
triple
quad {
pair {
triple
quad {

39

stack.word stack.valence(-1) }
stack.word stack.valence(l) }
stack.tag stack.valence(-1) }
stack.tag stack.valence(l) }

input.word input.valence(-1) }
input.tag input.valence(-1) }

{ stack.tag stack.child(-1).label stack.child(-1).sibling
stack.tag stack.child(-1).label stack.child(-1).sibling(1
stack.tag stack.child(1l).label }

{ stack.tag stack.child(1l).label stack.child(1l).sibling(-1]
stack.tag stack.child(1l).label stack.child(1l).sibling(-1).
input.tag input.child(-1).label }

{ input.tag input.child(-1).label input.child(-l).sibling1

input.tag input.child(-1).label input.child(-1).sibling(1l

Parsing with neural networks

[Chen & Manning, 2014]

Representation for
configuration:

e Embeddings for words/POS
tags on top of stack

e Embeddings for words/POS
tags at front of buffer

e Embeddings for existing arc
labels at specific positions

|
e Feed-forward neural network Q00000000000) / ¢——— buffero-word = “to”

Classifier:
O00000000000 stacko-word = “ticket”
(anut r.epres.entat.ion has a 00000 stacko-label = “det”
fixed dlmenS|onaI|ty) 00000000 buffero-POS = “IN”

(Chen and Manning, 2014): A Fast and Accur&®e Dependency Parser using Neural Networks

Parsing with neural networks

¢ Used pre-trained word embeddings

600

I. ' |)
e Part-of-speech tags and dependency ves L ,]
labels are also represented as vectors ,, " we| wen PR : =
o = e 1) 3 .m POS @a‘s:‘" NN.PNNﬁsj -
SYM '2 ? .VBN .?W
PR A -
e No feature template any more! CA -
) PD] o
Stack Buffer | o #E):

TmmTTTmmmmmmmmmsmsmmmmmmmme gmmmmmmmmsssssmses VBZ/BD cDe®

* ROOT has.VBZ good_JJ ! ' control_ NN . Vep ?

""""" P anhiiiielie g TEEmTEsEssssEEEEs 600 ‘MD

+~ mnsubj o
He PRP
WO r d PO S d e p . - J—’[_; 00 —-400 —-200 U 2 (J-) 0 4(1-) 0 6 '}J 0
3 good 1) 1) Parser UAS LAS sent. /s
S2 has VBZ @
b control NN @ MaltParser 89.8 87.2 469
Ic(s1) —p 0 + 0 + ¢ MSTParser 91.4 88.1 10
rc(si) 1) @ 1)
lc(s2) He PRP nsubj TurboParser 92.3 89.6 8
rc(s2) 1) 1) @
C&M2014 92.0 89.7 654

e A simple feedforward NN: what is left is backpropagation!

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

Further improvements

e Bigger, deeper networks with better tuned hyperparameters
¢ Beam search
e Global normalization

Method _________|UAS_____|LAS(PTBWsJSD3.3)

Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

Google’s SyntaxNet and the Parsey McParseFace (English) model

Announcing SyntaxNet: The World’'s Most Accurate Parser

Goes Open Source
Thursday, May 12, 2016

42

Handling non-projectivity

¢ The arc-standard algorithm we presented only builds
projective dependency trees
e Possible directions:
e Give up!
e Post-processing
¢ Add new transition types (e.g., SWAP)
e Switch to a different algorithm (e.g., graph-based parsers

such as MSTParser)
Dataset | # Sentences | (%) Projective
English 39,832 99.9
Chinese 16,091 100.0
Czech 72,319 76.9

German 38,845 72.2

43

Graph-based dependency parsing

e Basicidea: let’s predict the dependency tree directly

Y* = arg max score(X,Y)
Yed(X)

X: sentence, Y: any possible dependency tree

e Factorization: Assign scores/weights

to all possible edges
score(X,Y) = Z score(e) = Z wlf(e)

Train a model to compute
ecY ecY

these scores

e Inference: finding maximum spanning tree (MST) for
weighted, directed graph

44

MST Parsing Inference

* \We start out
with a fully

connectead 0 o

graph with a

score for each

edge @ \ // tall
who

* N2 edges total

IS

45 (slide credit: Berkeley Info 159/259, David Bamman)

MST Parsing Inference

e From this graph G we want to 0
find a spannin (tree that

spans G [meludes all the \

vertices in G))

* |f the edges have wel g nts, the ‘ =

best parse IS the maximal

* (the spannrng
tree wrth the highest total
weight).

46 (slide credit: Berkeley Info 159/259, David Bamman)

Graph-based dependency parsing

e Training learn parameters so the score for the gold
tree is higher than for all other trees

47

Graph-based dependency parsing

e Training learn parameters so the score for the gold
tree is higher than ferall-ethertrees- a single best tree

Train using structured
margin loss: structured
perceptron

48

Structured Perceptron

e Simple way to train (non-probabilistic) global models

e Find the one-best, and if it’s score 1s better than the correct
answer, adjust parameters to fix this

A

YV — argmaxf,#YS(f/ | X;0) <+——Find one best

if S(Y | X:60)> S(Y | X;6) then . If score better
than reference

0S(Y|X:60 0S(Y|X ;6
9 0+ a(2SYIXH) _ 9S(VIX:0),

end if

49 (slide credit: CMU CS 11-747, Graham Neubig)

Structured Perceptron and Hinge Loss

e Loss functions for structured perceptron
’ Note: hinge loss can be used
'eerce X,Y — O,SY X;H _SY X;H .
percept) = max(0, 5(Y" |) =S|) instead of cross-entropy loss

e Penalize when incorrect answer is within margin m in other places as well

Uhinge(2,Y;0) = max(0,m + S(§ | z;0) — S(y | x;0))

4
3

2

N T I N

0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Perceptron Hinge

lca-hinge(Z, y; 0) = max(0, cost(9,y) + S(4 | z;0) — S(y | z;0))

>0 (slide credit: CMU CS 11-747, Graham Neubig)

Graph-based dependency parsing

e Training learn parameters so the score for the gold
tree is higher than fer-all-ethertrees- a single best tree

e To get a good tree
e Compute a score for every possible dependency for each word
e With neural networks, leverage good “contexual” representations of each word token

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”
51 (figure credit: Stanford CS224N, Chris Manning)

Graph-based dependency parsing

¢ Training learn parameters so the score for the gold
tree is higher than fer-all-ethertrees- a single best tree

e To get a good tree
e Compute a score for every possible dependency for each word
e With neural networks, leverage good “contexual” representations of each word token

0.5 0.8
e Add edge from each word to its
highest-scoring candidate head
e Repeat process for each word 0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”
52 (figure credit: Stanford CS224N, Chris Manning)

Neural Networks for
Graph-based Dependency Parsing

® Pre-neural networks
® MSTParser - use hard crafted features (McDonald et al, 2005)

® Neural networks - leverage better representation (“‘contextual” embeddings)
® Phrase Embeddings (Pe1 et al, 2015)

e B1LSTM fteature extractors (Kipperwasser and Goldberg 2016)
e BiAtfine Classifier (Dozat and Manning 2017)

53

Neural graph-based dependency parser
(Dozat and Manning 2017)

e Great result!
e But slower than simple neural transition-based parsers

e There are n” possible dependencies in a sentence of length n

Method _________|UAS_____|LAS(PTBWS)SD3.3

Chen & Manning 2014 92.0 89.7

Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79
Dozat & Manning 2017 95.74 94.08

54 (slide credit: Stanford CS224N, Chris Manning)

Summary

e Dependency parsing: labeled edges between words
e Two families of algorithms
e Transition-based dependency parsing
e Build graph incrementally:
e train classifier to predict action based on current configuration
e Linear time
e Graph-based dependency parsing
e Score graph edges

¢ Get maximum spanning tree

55

