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Overview

• What is dependency parsing? 

• Two families of algorithms 

• Transition-based dependency parsing 

• Graph-based dependency parsing
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Dependency and constituency

• Dependency Trees focus on relations between words

(figure credit: CMU CS 11-747, Graham Neubig)

• Phrase Structure models the structure of a sentence 

Constituency Parse 
generated from 

Context Free Grammars 
(CFGs)

Nested constituents

Words directly linked  
to each other
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Constituency vs dependency structure
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Pāṇini’s grammar of Sanskrit (c. 5th century BCE)

(slide credit: Stanford CS224N, Chris Manning)5



Dependency Grammar/Parsing History

•The idea of dependency structure goes back a long way


•To Pāṇini’s grammar (c. 5th century BCE)


•Basic approach of 1st millennium Arabic grammarians


•Constituency/context-free grammars is a new-fangled invention


•20th century invention (R.S. Wells, 1947; then Chomsky)


•Modern dependency work often sourced to L. Tesnière (1959)


•Was dominant approach in “East” in 20th Century (Russia, China, …)


•Good for free-er word order languages


•Among the earliest kinds of parsers in NLP, even in the US:


•David Hays, one of the founders of U.S. computational linguistics, built early 
(first?) dependency parser (Hays 1962)

(slide credit: Stanford CS224N, Chris Manning)6



Dependency structure

• Consists of relations between lexical items, normally binary, 
asymmetric relations (“arrows”) called dependencies 

• The arrows are commonly typed with the name of grammatical 
relations (subject, prepositional object, apposition, etc) 

• The arrow connects a head (governor) and a dependent (modifier) 
• Usually, dependencies form a tree (single-head, connected, acyclic)
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Dependency relations

(de Marneffe and Manning, 2008): Stanford typed dependencies manual
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Dependency relations

 
(de Marneffe and Manning, 2008): Stanford typed dependencies manual
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https://universaldependencies.org/


Advantages of dependency structure

• More suitable for free word order languages
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Advantages of dependency structure

• More suitable for free word order languages

• The predicate-argument structure is more useful for many applications

Relation 
Extraction
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Dependency parsing

Input: Output:

I prefer the morning flight 
through Denver

Learning from data: treebanks!

• A sentence is parsed by choosing for each word what other word 
is it a dependent of (and also the relation type) 

• We usually add a fake ROOT at the beginning so every word has 
one head

• Usually some constraints: 
• Only one word is a dependent of ROOT 
• No cycles: A —> B, B —> C, C —> A
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Dependency Conditioning Preferences

What are the sources of information for dependency parsing?

1. Bilexical affinities [discussion → issues] is plausible

2. Dependency distance mostly with nearby words

3. Intervening material

Dependencies rarely span intervening verbs or punctuation

4. Valency of heads

How many dependents on which side are usual for a head?

(slide credit: Stanford CS224N, Chris Manning)13



Dependency treebanks

• The major English dependency treebank: converting 
from Penn Treebank using rule-based algorithms 

• (De Marneffe et al, 2006): Generating typed dependency parses from 
phrase structure parses 

• (Johansson and Nugues, 2007): Extended Constituent-to-dependency 
Conversion for English

• Universal Dependencies: more than 100 treebanks in 
70 languages were collected since 2016 

https://universaldependencies.org/

Stanford 
Dependencies 

(English)

Universal 
Dependencies 
(Multilingual)
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• (De Marneffe et al, CL, 2021): Universal Dependencies

https://universaldependencies.org/


Universal Dependencies
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https://universaldependencies.org/

228 treebanks over

130 languages 


as of 2022 



Universal Dependencies

• Developing cross-linguistically consistent treebank 
annotation for many languages


• Goals:

• Facilitating multilingual parser development

• Cross-lingual learning

• Parsing research from a language typology perspective.
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Universal Dependencies

Manning’s Law: 
• UD needs to be satisfactory for analysis of individual languages.  
• UD needs to be good for linguistic typology.  
• UD must be suitable for rapid, consistent annotation.  
• UD must be suitable for computer parsing with high accuracy.  
• UD must be easily comprehended and used by a non-linguist.  
• UD must provide good support for downstream NLP tasks.
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Universal POS tags, features, and relations

• Small set of universal POS tags with  
• Separate set of universal features to specify lexical and grammatical properties
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https://universaldependencies.org/guidelines.html

POS tags
Features



Universal POS tags, features, and relations

• 37 universal syntactic relations 
• Individual languages may have more specific relations
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https://universaldependencies.org/guidelines.html

Functional relation 

to head

Structural category of dependent

Other relations



Other types of dependency parses

• There can be other types of dependencies 
• UD is a Syntactic dependency (designed to be easy to use)
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Syntactic Semantic

Simpler but More Accurate Semantic Dependency Parsing 
https://arxiv.org/pdf/1807.01396.pdf (Dozat and Manning, ACL 2018)



Algorithms for dependency parsing
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Two families of algorithms

Transition-based dependency parsing 
• Also called “shift-reduce parsing”

Graph-based dependency parsing
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Two families of algorithms

Transition-Based

Graph-Based
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Left-to-Right Dependency Parsing with Pointer Networks 
https://aclanthology.org/N19-1076.pdf (Fernandez-Gonzalez and Gomez-Rodriguez, NAACL 2019)

https://aclanthology.org/N19-1076.pdf


Evaluation

• Unlabeled attachment score (UAS) 
         = percentage of words that have been assigned the correct head 
• Labeled attachment score (LAS)   
         = percentage of words that have been assigned the correct head & label

UAS = ?       LAS = ?
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Parsing as sequence modelling
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Seq2seq Dependency Parsing 
https://aclanthology.org/C18-1271.pdf (Li et al, ICCL 2018)

Seq2Seq



Constituency parsing as Seq2Seq
(Vinyals et al, 2015; Vaswani et al, 2017)

88.3 F1
• Linearize parse tree and train LSTM seq2seq model with attention 

May not be structural correct 
(i.e. unbalanced parenthesis)
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91.3 F1 • With transformers
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Viable Dependency Parsing as Sequence Labeling 
https://aclanthology.org/N19-1077.pdf (Strzyz, NAACL 2019)

Sequence labeling 

Parsing as sequence modelling
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Viable Dependency Parsing as Sequence Labeling 
https://aclanthology.org/N19-1077.pdf (Strzyz, NAACL 2019)

Parsing as sequence modelling

Sequence labeling 
variants

Faster, with lower performance than some 
graph based methods



projective non-projective

Projectivity

• Definition: there are no crossing dependency arcs when the 
words are laid out in their linear order, with all arcs above the words

Non-projectivity arises due to long distance 
dependencies or in languages with flexible 
word order.

This class: focuses on projective parsing

Crossing
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Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer  and a set of 
dependency arcs : 

s b
A c = (s, b, A)

Stack: 

Buffer: 

Current graph: 

Unprocessed words

Can add arcs to 1st two words on stack
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Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer  and a set of 
dependency arcs : 

s b
A c = (s, b, A)

• Initially, , , s = [ROOT] b = [w1, w2, …, wn] A = ∅

• Three types of transitions ( : the top 2 words on the stack; : the first word in the 
buffer) 

• LEFT-ARC ( ): add an arc ( ) to , remove  from the stack 

• RIGHT-ARC ( ): add an arc ( ) to , remove  from the stack 

• SHIFT: move  from the buffer to the stack

s1, s2 b1

r s1
r s2 A s2

r s2
r s1 A s1

b1

• A configuration is terminal if  and s = [ROOT] b = ∅

This is called “Arc-standard”; There are other transition schemes…31



A running example

0 [ROOT] [Book, me, the, morning, flight] SHIFT

1 [ROOT, Book] [me, the, morning, flight] SHIFT

2 [ROOT, Book, me] [the, morning, flight] RIGHT-ARC(iobj) (Book, iobj, me)

3 [ROOT, Book] [the, morning, flight] SHIFT

4 [ROOT, Book, the] [morning, flight] SHIFT

5 [ROOT, Book, the, morning] [flight] SHIFT

6 [ROOT, Book, the,morning,flight] [] LEFT-ARC(nmod) (flight,nmod,morning)

7 [ROOT, Book, the, flight] [] LEFT-ARC(det) (flight,det,the)

8 [ROOT, Book, flight] [] RIGHT-ARC(dobj) (Book,dobj,flight)

9 [ROOT, Book] [] RIGHT-ARC(root) (ROOT,root,Book)

10 [ROOT] []

“Book me the morning flight”

stack buffer    action added arc

32



Transition-based dependency parsing

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
33
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Transition-based dependency parsing

• For every projective dependency forest G, 
there is a transition sequence that 
generates G (completeness)

• However, one parse tree can have multiple valid transition sequences. Why?

• “He likes dogs” 
• Stack = [ROOT He likes] 
• Buffer = [dogs] 
• Action = ??

Correctness:

• For every complete transition sequence, the 
resulting graph is a projective dependency 
forest (soundness)

How many transitions are needed? How many times of SHIFT?
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Train a classifier to predict actions!

• Given  where  is a sentence and  is a dependency parse{xi, yi} xi yi

• For each  with  words, we can construct a transition sequence of 
length  which generates , so we can generate  training 
examples: 

xi n
2n yi 2n

{(ck, ak)}
• “shortest stack” strategy: prefer LEFT-ARC over SHIFT.

• The goal becomes how to learn a classifier from  to ci ai

How many training examples? How many classes?

: configuration, : actionck ak
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Train a classifier to predict actions!

• During testing, we use the classifier to repeat predicting the action, until 
we reach a terminal configuration

• This is also called “greedy transition-based parsing” because we 
always make a local decision at each step

• It is very fast (linear time!) but less accurate

• Can easily do beam search

Classifier
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MaltParser 

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

• Extract features from the configuration

• Use your favorite classifier: logistic regression, SVM…

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

w: word, t: part-of-speech tag

37

https://universaldependencies.org/


MaltParser 

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Feature templates

s2 . w ∘ s2 . t
s1 . w ∘ s1 . t ∘ b1 . w
lc(s2) . t ∘ s2 . t ∘ s1 . t

lc(s2) . w ∘ lc(s2) . l ∘ s2 . w

Features
s2 . w = has ∘ s2 . t = VBZ

s1 . w = good ∘ s1 . t = JJ ∘ b1 . w = control

lc(s2) . t = PRP ∘ s2 . t = VBZ ∘ s1 . t = JJ

lc(s2) . w = He ∘ lc(s2) . l = nsubj ∘ s2 . w = has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

38
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More feature templates
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Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks40



Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

• Used pre-trained word embeddings

• Part-of-speech tags and dependency 
labels are also represented as vectors

• A simple feedforward NN: what is left is backpropagation!

• No feature template any more!
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Further improvements

• Bigger, deeper networks with better tuned hyperparameters 
• Beam search 
• Global normalization

Google’s SyntaxNet and the Parsey McParseFace (English) model
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Handling non-projectivity

• The arc-standard algorithm we presented only builds 
projective dependency trees

• Possible directions: 
• Give up! 
• Post-processing 
• Add new transition types (e.g., SWAP) 
• Switch to a different algorithm (e.g., graph-based parsers 

such as MSTParser)
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Graph-based dependency parsing

• Basic idea: let’s predict the dependency tree directly
Y* = arg max

Y∈Φ(X)
score(X, Y)

X: sentence, Y: any possible dependency tree

• Factorization: 

score(X, Y) = ∑
e∈Y

score(e) = ∑
e∈Y

w⊺f(e)

• Inference: finding maximum spanning tree (MST) for 
weighted, directed graph

Assign scores/weights 
to all possible edges 

Train a model to compute 
these scores

44



MST Parsing Inference

(slide credit: Berkeley Info 159/259, David Bamman)45



MST Parsing Inference

(slide credit: Berkeley Info 159/259, David Bamman)46



Graph-based dependency parsing

• Training learn parameters so the score for the gold 
tree is higher than for all other trees  
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Graph-based dependency parsing

• Training learn parameters so the score for the gold 
tree is higher than for all other trees  a single best tree

Train using structured 
margin loss: structured 
perceptron

48



Structured Perceptron

• Simple way to train (non-probabilistic) global models 
• Find the one-best, and if it’s score is better than the correct 

answer, adjust parameters to fix this

(slide credit: CMU CS 11-747, Graham Neubig)49



Structured Perceptron and Hinge Loss

(slide credit: CMU CS 11-747, Graham Neubig)

• Penalize when incorrect answer is within margin m

• Loss functions for structured perceptron
Note: hinge loss can be used 
instead of cross-entropy loss 
in other places as well
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Graph-based dependency parsing

• Training learn parameters so the score for the gold 
tree is higher than for all other trees  a single best tree

• To get a good tree  
• Compute a score for every possible dependency for each word  
• With neural networks, leverage good “contexual” representations of each word token

(figure credit: Stanford CS224N, Chris Manning)51



Graph-based dependency parsing

• Training learn parameters so the score for the gold 
tree is higher than for all other trees  a single best tree

(figure credit: Stanford CS224N, Chris Manning)

• Add edge from each word to its 
highest-scoring candidate head 

• Repeat process for each word

• To get a good tree  
• Compute a score for every possible dependency for each word  
• With neural networks, leverage good “contexual” representations of each word token
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Neural Networks for 
Graph-based Dependency Parsing

• Pre-neural networks
• MSTParser - use hard crafted features (McDonald et al, 2005)

• Neural networks - leverage better representation (“contextual” embeddings)
• Phrase Embeddings (Pei et al, 2015)
• BiLSTM feature extractors (Kipperwasser and Goldberg 2016)
• BiAffine Classifier (Dozat and Manning 2017)
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Neural graph-based dependency parser
(Dozat and Manning 2017)

• Great result! 
• But slower than simple neural transition-based parsers 

• There are  possible dependencies in a sentence of length n2 n

(slide credit: Stanford CS224N, Chris Manning)54



Summary

• Dependency parsing: labeled edges between words   

• Two families of algorithms 

• Transition-based dependency parsing 

• Build graph incrementally:  

• train classifier to predict action based on current configuration 

• Linear time 

• Graph-based dependency parsing 

• Score graph edges 

• Get maximum spanning tree
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