
Dependency Parsing

Spring 2024

2024-03-06

CMPT 413/713: Natural Language Processing

SFUNatLangLab

Adapted from slides from Danqi Chen and Karthik Narasimhan

(with some content from slides from Chris Manning and Graham Neubig)

1

Overview

• What is dependency parsing?

• Two families of algorithms

• Transition-based dependency parsing

• Graph-based dependency parsing

2

Dependency and constituency

• Dependency Trees focus on relations between words

(figure credit: CMU CS 11-747, Graham Neubig)

• Phrase Structure models the structure of a sentence

Constituency Parse
generated from

Context Free Grammars
(CFGs)

Nested constituents

Words directly linked
to each other

3

Constituency vs dependency structure

4

Pāṇini’s grammar of Sanskrit (c. 5th century BCE)

(slide credit: Stanford CS224N, Chris Manning)5

Dependency Grammar/Parsing History

•The idea of dependency structure goes back a long way

•To Pāṇini’s grammar (c. 5th century BCE)

•Basic approach of 1st millennium Arabic grammarians

•Constituency/context-free grammars is a new-fangled invention

•20th century invention (R.S. Wells, 1947; then Chomsky)

•Modern dependency work often sourced to L. Tesnière (1959)

•Was dominant approach in “East” in 20th Century (Russia, China, …)

•Good for free-er word order languages

•Among the earliest kinds of parsers in NLP, even in the US:

•David Hays, one of the founders of U.S. computational linguistics, built early
(first?) dependency parser (Hays 1962)

(slide credit: Stanford CS224N, Chris Manning)6

Dependency structure

• Consists of relations between lexical items, normally binary,
asymmetric relations (“arrows”) called dependencies

• The arrows are commonly typed with the name of grammatical
relations (subject, prepositional object, apposition, etc)

• The arrow connects a head (governor) and a dependent (modifier)
• Usually, dependencies form a tree (single-head, connected, acyclic)

7

Dependency relations

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

8

Dependency relations

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

9

https://universaldependencies.org/

Advantages of dependency structure

• More suitable for free word order languages

10

Advantages of dependency structure

• More suitable for free word order languages

• The predicate-argument structure is more useful for many applications

Relation
Extraction

11

Dependency parsing

Input: Output:

I prefer the morning flight
through Denver

Learning from data: treebanks!

• A sentence is parsed by choosing for each word what other word
is it a dependent of (and also the relation type)

• We usually add a fake ROOT at the beginning so every word has
one head

• Usually some constraints:
• Only one word is a dependent of ROOT
• No cycles: A —> B, B —> C, C —> A

12

Dependency Conditioning Preferences

What are the sources of information for dependency parsing?

1. Bilexical affinities [discussion → issues] is plausible

2. Dependency distance mostly with nearby words

3. Intervening material

Dependencies rarely span intervening verbs or punctuation

4. Valency of heads

How many dependents on which side are usual for a head?

(slide credit: Stanford CS224N, Chris Manning)13

Dependency treebanks

• The major English dependency treebank: converting
from Penn Treebank using rule-based algorithms

• (De Marneffe et al, 2006): Generating typed dependency parses from
phrase structure parses

• (Johansson and Nugues, 2007): Extended Constituent-to-dependency
Conversion for English

• Universal Dependencies: more than 100 treebanks in
70 languages were collected since 2016

https://universaldependencies.org/

Stanford
Dependencies

(English)

Universal
Dependencies
(Multilingual)

14

• (De Marneffe et al, CL, 2021): Universal Dependencies

https://universaldependencies.org/

Universal Dependencies

15

https://universaldependencies.org/

228 treebanks over

130 languages

as of 2022

Universal Dependencies

• Developing cross-linguistically consistent treebank
annotation for many languages

• Goals:

• Facilitating multilingual parser development

• Cross-lingual learning

• Parsing research from a language typology perspective.

16

Universal Dependencies

Manning’s Law:
• UD needs to be satisfactory for analysis of individual languages.
• UD needs to be good for linguistic typology.
• UD must be suitable for rapid, consistent annotation.
• UD must be suitable for computer parsing with high accuracy.
• UD must be easily comprehended and used by a non-linguist.
• UD must provide good support for downstream NLP tasks.

17

Universal POS tags, features, and relations

• Small set of universal POS tags with
• Separate set of universal features to specify lexical and grammatical properties

18

https://universaldependencies.org/guidelines.html

POS tags
Features

Universal POS tags, features, and relations

• 37 universal syntactic relations
• Individual languages may have more specific relations

19

https://universaldependencies.org/guidelines.html

Functional relation

to head

Structural category of dependent

Other relations

Other types of dependency parses

• There can be other types of dependencies
• UD is a Syntactic dependency (designed to be easy to use)

20

Syntactic Semantic

Simpler but More Accurate Semantic Dependency Parsing
https://arxiv.org/pdf/1807.01396.pdf (Dozat and Manning, ACL 2018)

Algorithms for dependency parsing

21

Two families of algorithms

Transition-based dependency parsing
• Also called “shift-reduce parsing”

Graph-based dependency parsing

22

Two families of algorithms

Transition-Based

Graph-Based

23

Left-to-Right Dependency Parsing with Pointer Networks
https://aclanthology.org/N19-1076.pdf (Fernandez-Gonzalez and Gomez-Rodriguez, NAACL 2019)

https://aclanthology.org/N19-1076.pdf

Evaluation

• Unlabeled attachment score (UAS)
 = percentage of words that have been assigned the correct head
• Labeled attachment score (LAS)
 = percentage of words that have been assigned the correct head & label

UAS = ? LAS = ?
24

Parsing as sequence modelling

25

Seq2seq Dependency Parsing 
https://aclanthology.org/C18-1271.pdf (Li et al, ICCL 2018)

Seq2Seq

Constituency parsing as Seq2Seq
(Vinyals et al, 2015; Vaswani et al, 2017)

88.3 F1
• Linearize parse tree and train LSTM seq2seq model with attention

May not be structural correct
(i.e. unbalanced parenthesis)

26

91.3 F1 • With transformers

27

Viable Dependency Parsing as Sequence Labeling 
https://aclanthology.org/N19-1077.pdf (Strzyz, NAACL 2019)

Sequence labeling

Parsing as sequence modelling

28

Viable Dependency Parsing as Sequence Labeling 
https://aclanthology.org/N19-1077.pdf (Strzyz, NAACL 2019)

Parsing as sequence modelling

Sequence labeling
variants

Faster, with lower performance than some
graph based methods

projective non-projective

Projectivity

• Definition: there are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

Non-projectivity arises due to long distance
dependencies or in languages with flexible
word order.

This class: focuses on projective parsing

Crossing

29

Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer and a set of
dependency arcs :

s b
A c = (s, b, A)

Stack:

Buffer:

Current graph:

Unprocessed words

Can add arcs to 1st two words on stack

30

Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer and a set of
dependency arcs :

s b
A c = (s, b, A)

• Initially, , , s = [ROOT] b = [w1, w2, …, wn] A = ∅

• Three types of transitions (: the top 2 words on the stack; : the first word in the
buffer)

• LEFT-ARC (): add an arc () to , remove from the stack

• RIGHT-ARC (): add an arc () to , remove from the stack

• SHIFT: move from the buffer to the stack

s1, s2 b1

r s1
r s2 A s2

r s2
r s1 A s1

b1

• A configuration is terminal if and s = [ROOT] b = ∅

This is called “Arc-standard”; There are other transition schemes…31

A running example

0 [ROOT] [Book, me, the, morning, flight] SHIFT

1 [ROOT, Book] [me, the, morning, flight] SHIFT

2 [ROOT, Book, me] [the, morning, flight] RIGHT-ARC(iobj) (Book, iobj, me)

3 [ROOT, Book] [the, morning, flight] SHIFT

4 [ROOT, Book, the] [morning, flight] SHIFT

5 [ROOT, Book, the, morning] [flight] SHIFT

6 [ROOT, Book, the,morning,flight] [] LEFT-ARC(nmod) (flight,nmod,morning)

7 [ROOT, Book, the, flight] [] LEFT-ARC(det) (flight,det,the)

8 [ROOT, Book, flight] [] RIGHT-ARC(dobj) (Book,dobj,flight)

9 [ROOT, Book] [] RIGHT-ARC(root) (ROOT,root,Book)

10 [ROOT] []

“Book me the morning flight”

stack buffer action added arc

32

Transition-based dependency parsing

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
33

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Transition-based dependency parsing

• For every projective dependency forest G,
there is a transition sequence that
generates G (completeness)

• However, one parse tree can have multiple valid transition sequences. Why?

• “He likes dogs”
• Stack = [ROOT He likes]
• Buffer = [dogs]
• Action = ??

Correctness:

• For every complete transition sequence, the
resulting graph is a projective dependency
forest (soundness)

How many transitions are needed? How many times of SHIFT?

34

Train a classifier to predict actions!

• Given where is a sentence and is a dependency parse{xi, yi} xi yi

• For each with words, we can construct a transition sequence of
length which generates , so we can generate training
examples:

xi n
2n yi 2n

{(ck, ak)}
• “shortest stack” strategy: prefer LEFT-ARC over SHIFT.

• The goal becomes how to learn a classifier from to ci ai

How many training examples? How many classes?

: configuration, : actionck ak

35

Train a classifier to predict actions!

• During testing, we use the classifier to repeat predicting the action, until
we reach a terminal configuration

• This is also called “greedy transition-based parsing” because we
always make a local decision at each step

• It is very fast (linear time!) but less accurate

• Can easily do beam search

Classifier

36

MaltParser

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

• Extract features from the configuration

• Use your favorite classifier: logistic regression, SVM…

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

w: word, t: part-of-speech tag

37

https://universaldependencies.org/

MaltParser

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Feature templates

s2 . w ∘ s2 . t
s1 . w ∘ s1 . t ∘ b1 . w
lc(s2) . t ∘ s2 . t ∘ s1 . t

lc(s2) . w ∘ lc(s2) . l ∘ s2 . w

Features
s2 . w = has ∘ s2 . t = VBZ

s1 . w = good ∘ s1 . t = JJ ∘ b1 . w = control

lc(s2) . t = PRP ∘ s2 . t = VBZ ∘ s1 . t = JJ

lc(s2) . w = He ∘ lc(s2) . l = nsubj ∘ s2 . w = has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

38

https://universaldependencies.org/

More feature templates

39

Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks40

Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

• Used pre-trained word embeddings

• Part-of-speech tags and dependency
labels are also represented as vectors

• A simple feedforward NN: what is left is backpropagation!

• No feature template any more!

41

Further improvements

• Bigger, deeper networks with better tuned hyperparameters
• Beam search
• Global normalization

Google’s SyntaxNet and the Parsey McParseFace (English) model

42

Handling non-projectivity

• The arc-standard algorithm we presented only builds
projective dependency trees

• Possible directions:
• Give up!
• Post-processing
• Add new transition types (e.g., SWAP)
• Switch to a different algorithm (e.g., graph-based parsers

such as MSTParser)

43

Graph-based dependency parsing

• Basic idea: let’s predict the dependency tree directly
Y* = arg max

Y∈Φ(X)
score(X, Y)

X: sentence, Y: any possible dependency tree

• Factorization:

score(X, Y) = ∑
e∈Y

score(e) = ∑
e∈Y

w⊺f(e)

• Inference: finding maximum spanning tree (MST) for
weighted, directed graph

Assign scores/weights
to all possible edges

Train a model to compute
these scores

44

MST Parsing Inference

(slide credit: Berkeley Info 159/259, David Bamman)45

MST Parsing Inference

(slide credit: Berkeley Info 159/259, David Bamman)46

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees

47

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees a single best tree

Train using structured
margin loss: structured
perceptron

48

Structured Perceptron

• Simple way to train (non-probabilistic) global models
• Find the one-best, and if it’s score is better than the correct

answer, adjust parameters to fix this

(slide credit: CMU CS 11-747, Graham Neubig)49

Structured Perceptron and Hinge Loss

(slide credit: CMU CS 11-747, Graham Neubig)

• Penalize when incorrect answer is within margin m

• Loss functions for structured perceptron
Note: hinge loss can be used
instead of cross-entropy loss
in other places as well

50

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees a single best tree

• To get a good tree
• Compute a score for every possible dependency for each word
• With neural networks, leverage good “contexual” representations of each word token

(figure credit: Stanford CS224N, Chris Manning)51

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees a single best tree

(figure credit: Stanford CS224N, Chris Manning)

• Add edge from each word to its
highest-scoring candidate head

• Repeat process for each word

• To get a good tree
• Compute a score for every possible dependency for each word
• With neural networks, leverage good “contexual” representations of each word token

52

Neural Networks for
Graph-based Dependency Parsing

• Pre-neural networks
• MSTParser - use hard crafted features (McDonald et al, 2005)

• Neural networks - leverage better representation (“contextual” embeddings)
• Phrase Embeddings (Pei et al, 2015)
• BiLSTM feature extractors (Kipperwasser and Goldberg 2016)
• BiAffine Classifier (Dozat and Manning 2017)

53

Neural graph-based dependency parser
(Dozat and Manning 2017)

• Great result!
• But slower than simple neural transition-based parsers

• There are possible dependencies in a sentence of length n2 n

(slide credit: Stanford CS224N, Chris Manning)54

Summary

• Dependency parsing: labeled edges between words

• Two families of algorithms

• Transition-based dependency parsing

• Build graph incrementally:

• train classifier to predict action based on current configuration

• Linear time

• Graph-based dependency parsing

• Score graph edges

• Get maximum spanning tree

55

