®
%
PO N

EilINatLangLab

CMPT 413/713: Natural Language Processing

Language Models

Spring 2024
2024-01-10

Adapted from slides from Anoop Sarkar, Danqi Chen and Karthik Narasimhan

1

Consider

Today, in Vancouver, it is 31 F and red
VS

Today, in Vancouver, it is 31 F and snowing

e Both are grammatical

e But which is more likely?

What is Language Modeling!?

e We want to be able to estimate the probability of a sequence of words
- How likely is a given phrase / sentence / paragraph / document?

+ We want to be able to compute P(s) = P(wy,ws,...,wr)
T

P(s) = P(wy,...,wr) = | | P(wijwey)

t=1

Why is this useful?

Applications

Gofigle
* Predicting words is important in many situations
» Autocomplete

 Machine translation

P(a smooth finish) > P(a flat finish)

» Speech recognition/Spell checking

P(high school principal) > P(high school principle)

 Information extraction, Question answering

how is the weather in new|

how is the weather in new york

how is the weather in new orleans

how is the weather in new orleans in october
how is the weather in new jersey

how is the weather in new york in october

how is the weather in new orleans in november
how is the weather in new orleans in december
how is the weather in new orleans in september
how is the weather in new mexico

how is the weather in new york in september

Hypothesis scores for speech recognition

From acoustic siinal to candidate transcriitions

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station s signs are in deep in english -14740
the station signs are in deep in the english -14741

the station signs are indeed in english -14757
the station s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807

the stations signs are indians and english -14815

Hypothesis scores for machine translation

From source Ianiuaie to tariet Ianiuaie candidates

we must also discuss a vision . -29.63
we must also discuss on a vision . -31.58
It 1s also discuss a vision . -31.96

we must discuss on greater vision . -36.09

Why is language model important!?

e Much of the current successes in NLP comes from large pre-
trained language models (BERT, GPT, T5, ...)

e By training neural language models, we can obtain useful
representations for words and sentences.

e Can take the pre-trained language fine tune for specific tasks or
use in zero-shot setting oy

\.w W
\
matte painting of a bonsai tree;
painting aace S |
trending on artstation. . N -
o~

Zero-Shot Text-Guided Object Generation with Dream Fields, Jain et al., CVPR 2022

Language Modeling

Predict probability of sequence of words with neural networks
T
P(s) = P(wy,...,wp) = HP(wt\w<t) p(we | wer) = p(w | p(wy, ..., wi—1))
t=1
with Nn-grams with fixed window
P(wi|wet) = P(we|wWe—n+t1,t-1) Pwi|w<y) =~ P(we|p(ws—ni1,6-1))
with HMMs with RNNs

P(wt‘w<t) ~ P(wt‘ht)P(ht‘ht—n—l—l,t—l) P(’wt|w<t) ~ P(wt‘ht>aht — f(ht—laxt)

What to know about LMs!

What is a language model?
e Statistical language model using ngrams

How to build a language model? Training the model from data
Learning/estimating model parameters
e MLE and smoothing

How to use the language model? Generation

How to tell if our language model is working well? Evaluation

What is a language model?

Probabilistic model of a sequence of words

Setup: Assume a finite vocabulary of words V

V = {cat, clown, crazy, killer, mat, on, sat, the }

V' can be used to construct a infinite set of sentences (sequences of words)

V™ = {clown, cat sat, killer clown, crazy clown, crazy cat,

crazy killer clown, killer crazy clown, ...}

where a sentence is defined as s € V™ where s = {w,, ..., w, }

10

Q

Given a training data set of example sentences

What is a language model?

Probabilistic model of a sequence of words

S={s,8,....,5,},5 €V

Estimate a probability model

> P(s)—ZP(wl,...

s€V+

Language Model

= 1.0

11

* p(clown) = 1e-5

* p(killer) = 1e-6

* p(killer clown) = 1e-12

* p(crazy killer clown) = 1e-21
* p(crazy killer clown Killer) = 1e-110

®* p(crazy slow Killer killer) = 1e-127

Where do we get the vocabulary?

Common Setup: Assume a finite vocabulary of words V

e Get from a list of words (say a dictionary)
e Build from training data

e Decide on vocabulary size (say |V| = 50K) and then pick
most frequent words

o Take words that occur more than T times.

12

Learning language models

How to estimate the probability of a sentence?

» We can directly count using a training data set of sentences

Problem: does not generalize to
new sentences unseen In the
N training data

Cwg, ..., w,
. P(WI,,Wn)= (1)

- (' is a function that counts how many times each sentence occurs

- N is the sum over all possible C(-) values

13

Estimating joint probabilities with the chain rule

P(wy,ws,...,w,) = P(wi)P(ws|w)P(ws|wy,ws) X ... X Plwy|wy,ws, ..., W,_1)
— HP(wz\wl, “ . ,wi_l)
i=1
Example Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
xP(on|the cat sat) x P(the|the cat sat on)
X P(mat|the cat sat on the)

14

Markov assumption

e Use only the recent past to predict the next word

e Reduces the number of estimated parameters in exchange
for modeling capacity

Unigram * Othorder P(mat|the cat sat on the) ~ P(mat)

Bigram e 1storder P(mat|the cat sat on the) ~ P(mat|the)
Trigram e 2nd order P(mat|the cat sat on the) ~ P(mat|on the)

e kthorder P(w, lww,...w._)=Pw, Iw_ ..w.)

e Probability of sequence: Plww,...w)= HP(Wi | W, oo W, ;)

15

Estimating n-gram probabilities

e Maximum likelihood estimate (MLE): Use counts from text corpus

. v Clw) Clwy)
Unlgl‘am P(wl) — Zwigv C’(w@) — N
Bigram Plwilw;_y) = & (gz;u;)

i—1

C(wi—27 Wi—1, wz)

Trigram P(w;|w;_1,w;_o) = Clwr a0 1)
1—2y We—1

Can reuse counts for multiple estimations

16

Maximum Likelihood Estimation

We want to find the set of parameters f that maximize

the probability of the training data

Parameters
0 = argrgleaécll(@ D) 0 : {p(wi|w,...,wi—1)}
Likelihood
P(w§j>,... <9> HHP (‘7)|w ,,%))
j=1 7=11=1

Log-Likelihood

— ZlogP wy),...,wm

m Ty

1=1 1=1

Easier to work with (products to sums)

Numeric underflow less of a issue
17

LLlogP (])\w(J)

Corpus of N sentences

Using our model, we can estimate the
probabilities of these sentences

Likelihood function

* How likely it is to see the examples in the
training data

* Function of the parameters you are using
to model the probability

* Probability density over data samples
(sentences)

W)

Typical assumptions

- Samples are iid (independently and
identically distributed)

Maximum Likelihood Estimation
(for categorical distributions)

Unigram: P(w)

Probability: P(w) >0, » P(uw

wevV

MLE is the sample mean

N nj
Optimize Py (w) = arg I}{l(?;};f%dl ;T log P(w (9> = arg I]_gl(?fsc; C'(w)log P(w)
Solve using Lagrange Multipliers 9\ ;/C w) log P(w A(;/P(w) -1
C'(w) Clw) C(w)

Plw)=—— =7 Plw) = >y Clw) N

18

Using Language Models

How to use n-gram LMs!

e Computing probability
P(high school principal) > P(high school principle)
e Completion
arg max P(w|where, is, SFU)

weV

e (Generating text

20

Computing the probability of a sentence

Apply the Chain Rule: the trigram model

P(wi, ..., W)

P(wo | wi)P(ws | wy, wo) ... P(W, | Wy_2, Wp_1)

n
O(wy | wa) || P(wi | wiza, wisr)
I=3 Not proper
distribution unless we
add a stop symbol

(or </s> end of
sentence marker)

N

Not trigrams!

Pad our sentence
with <s>

(start of sentence
markers)

P(wy) = P(wi]| < s><s>)
ID(W2|W1):ID(W2‘ < 5§ > Wl) 5

Sample from distribution, generating tokens from left to right

Generating text from n-grams

generative model
How do you generate text from an n-gram model?

Use the last n — 1 words for context

Select from multinomial over the vocabulary that include a

STOP token. Repeat until STOP is generated.

0.06 -
0.04 -
0.02-

0.00 -

a amézing bad

best

good

Ilke

Iove mowe

22

sword

worst

contextl context2 ge\r/]veorradtGd
START START The
START The dog
Ul dog walked
dog walked in

Generalization

23

Number of Parameters

How many probabilities in each n-gram model

V = {cat, crazy, mat, sat }

Question

How many unigram probabilities: P(x) for x € V7

24

Number of Parameters

How many probabilities in each n-gram model

V = {cat, crazy, mat, sat }

Question

How many bigram probabilities: P(y|x) for x,y € V7

25

Number of Parameters

How many probabilities in each n-gram model

V = {cat, crazy, mat, sat }

Question

How many trigram probabilities: P(z|x,y) for x,y,z € V7

20

Number of parameters

» Assume | V | = 50,000 (a realistic vocabulary size for English)

» What is the minimum size of training data in tokens?

» |f you wanted to observe all unigrams at least once.
» |f you wanted to observe all trigrams at least once.

27

Generalization of n-grams

 Not all n-grams will be observed in training data!
e There can be unknown words in the test set!

* Jest corpus might have some that have zero probability under our
model

e Training set: Google news
e Test set: Shakespeare

e P (affray | voice doth us) = 0 = P(test corpus) = 0

28

Frequency

Sparsity in language

¢ the

14000
|

10000
|

- 1
freq o<

6000
|

rank

Zipf’'s Law

0 2000

0 20 40 60 80 100

Rank

e | ong tail of infrequent words

e Most finite-size corpora will have this problem.

29

Unknown words

Typically assume closed vocabulary

What about words not in the vocabulary?

e Known as OOV (out-of-vocabulary) words.

 |ntroduce <UNK> token to represent the unknown words

If we never see these words in the training data, any sentence with these words will get a
probability of 0!

Can handle these unknown words by:

e Estimate the probability of unknown word as: Punk(w) = Vol Van = V U{< UNK >}
a

e Or modify training data so rare words (words that appear < T times) are treated as <UNK>

30

Smoothing n-gram Models

Smoothing intuition

Taking from the rich and giving to the poor

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

()
. -
S < S
-t m -S " B N
e
@ & O
c
O O
g 5 S
SIS mmmm S c 8
— = - |
e g g "('6 E e " m
S|| 8
] el L] | |

30 (Credits: Dan Klein)

Smoothing

e Smoothing deals with events that have been observed zero or very few
times

e Handle sparsity by making sure all probabilities are non-zero in our model
e Additive: Add a small amount to all probabillities

 Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

e |nterpolation: Use a combination of different n-grams

e Back-off: Use lower order n-grams if higher ones are too sparse

. Ensure proper probability distribution

Add-one (Laplace) smoothing

Why add 1? 1 is an overestimate for unobserved events

C(wi—1, w;)

Max likelihood estimate for bigrams: Py (w;|w;_1) =
C(W,'_l)

Let V| be the number of words in our vocabulary. Assign
count of 1 to unseen bigrams

After smoothing:

1 + C(W,'_l, W,‘)
V] + C(wiq)

——

PAdd1(Wilwi—1) =

34

Additive smoothing
(Lidstone 1920, |effreys |1948)

e Why add 1? 1 is an overestimate for unobserved events

1 C(Wl—lv Wl)
|\/| + C(W,'_l)

" ——

Padd1(Wilwi—1) =

e Additive smoothing (0 < 6 < 1):

6 -+ C(W,'_l, W,')
0 X ‘\/| + C(W,'_l)

" ——

Padds (Wilwi—1) =

e Also known as add-alpha (the symbol a is used instead of 0)

35

Raw bigram counts
(Berkeley restaurant corpus)

C(wi_1, W,
'DI\/IL(W/"W/—l) __ (I—1 I)
e Out of 9222 sentences C(wi-1)
1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 | 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

36

(Credits: Dan Jurafsky)

Smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 | 609 | 2 7 7 6 2
to 3 5 687 | 3 1 7 212
eat 1 3 1 17 3 43 1
chinese 2 1 1 1 83 2 1
food 16 16 1 2 5 1 1
lunch 3 1 1 1 2 1 1
spend 2 2 1 1 1 1 1

37

(Credits: Dan Jurafsky)

Smoothed bigram probabilities
(Laplace Add-1 smoothing)

" ——

Padd1(Wj|wi_1) =

1 -+ C(W,'_l, W,‘)

V] + C(w-1)

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025] 0.00025| 0.00025| 0.00075
want 0.0013 0.00042 | 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 [0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062(0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039(0.0063 0.00039| 0.00079(0.002 0.00039| 0.00039
lunch 0.0017 0.00056(0.00056| 0.00056| 0.00056| 0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058 | 0.00058| 0.00058| 0.00058

38

(Credits: Dan Jurafsky)

The problem with Laplace smoothing

Too much discounted

f | ds! 1 want | to eat chinese | food | lunch | spend
rom popuiar Woras: i 5 0 9 0 0 0 >
want 2 0 608 | 1 6 6 5 1
Raw to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
counts chinese 1 0 0 0 0 82 1 0
food 15| 0O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
1 want to eat chinese | food| Ilunch| spend
i 3.8 0.64 | 64 0.64 0.64] 0.64] 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
Reconst|tuted eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
counts food 69 | 043 | 69 | 043 | 086 22 | 043 | 043
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

C(wy—1wy) + 1] X C(wy—1)
Cwp—1)+V

39

c’ (wn—lwn) —
(Credits: Dan Jurafsky)

Linear Interpolation (Jelinek-Mercer Smoothing)

Pterp(WjlWi—1, Wi—2) = M P(wj|wi_1, wj_>)
‘|‘>\2 P(W,‘ W,'_l)

—|—>\3 P(W,)

1
A =1 + A4
2. Vi

]

e Use a combination of models to estimate probability

e Strong empirical performance

Jelinek and Mercer (1980)

40

Linear Interpolation (Jelinek-Mercer Smoothing)

e |t’s also possible to formulate the interpolation in a recursive manner:

Pim(ngram) = X,PuL(ngram) + (1 — X\,)Pym(n — 1gram)

Pim(wilw,) = AnPuL(w;|w; n—l—l) + (1 - n)PJM(W/|W/_I}I)

5
Vi

Pim(wi) = A1 PuL(w;) + (1 — Aq)

Brown et al (1992)

41

Linear Interpolation: Finding lambda

Pim(ngram) = APy (ngram) + (1 — A)Pym(n — 1gram)

 Interpolation parameters (\) are hyper parameters. Tune
them on the *held-out” set.

» Improved JM smoothing, a different A for each w;

Pim(wilwi—1) = Mwi—1) P (wilwi—1) + (1 — A(wj—1))!

42

. Held-Out Test

Pim(w;)

Discounting

Bigram count | Bigram count in _ N .

in training | heldout set e Determine some “mass” to remove

0 .0000270 from probability estimates

1 0.448

2 1.25 -

3 > 4 e Redistribute mass among unseen n-

4 3.23 grams

5 4.21

6 5.23

- T e Just choose an absolute value (D) to

3 791 discount

S 8.26 more properly

max(c(w,_{, w;) — D,0) a is set so the resulting
i probability values sums to one
Very similar to

Interpolated ~ C(W,'_l, W,‘)—D | / - Interpolated
absolute Papsdis-i(Wi|Wi—1) = C(w,_1) - ot (Wj—1) Papsdis-i(W;) Knesser-Ney
discounting =1 t

43 With interpolation, can also be with “backoff” as we will see

Interpolated Knesser-Ney

Popular state of the art n-gram smoothing

Cleverer count (based Modified Knesser-Ney:
on number of contexts) different discounting values

\\ /

max(CKN(W,-_l, W,‘)—D)
ZW/ CKN(W/—L W’)

'DKN—i(Wi|Wi—1) — | O‘(Wi—l)’DKN—i(Wi)

more properly

max(c(w;_;, w;) — D,0) a is set so the resulting
i probability values sums to one
Very similar to
Interpolated ~ C(W;_1, W,‘) —D | / - Interpolated
absolute Papsdis-i(Wi|Wi—1) = C(w,_1) - ot(Wi—1) Papsdis-i(W;) Knesser-Ney
discounting =1 t

44 With interpolation, can also be with “backoff” as we will see

Back-off

e Use n-gram if enough evidence, else back off to (n-1)-gram

'Dbo(Wi‘W/i_g: 1)

d ,' C(W/I.—nJrl) I_|: C(Wi/_n_l_l) > O

; 1—1
Wi-n+1 C(VVi—n—l—l

| Jw!—1 '
Oyt Poo(wilw,— . ,) otherwise

e d = amount of discounting (Katz back-off, 1987)

e & = back-off weight

45

Backoff Smoothing with Discounting

e Absolute Discounting with backoff (Ney, Essen, Knesser)

Pabsdis—bo(Wi‘Wi—l) — {

C(Wi—l W/)—D

C(Wi—l)

a(Wi—1) Pabsdis-bo (W)

it C(W,'_l W,‘) > (

otherwise

e Where a(wi-1) is chosen to ensure that FPas(Wilwi-1) is a

proper probability

OC(W,'_l) =1 — Z

Wi

/

Different value of o for
each context word wi-1

C(wj_1w;) — D

46

C(w;)

Similar to
Backoftf
Knesser-Ney,
1994

Backoff Smoothing with Discounting

e LetD=0.5

 Missing probability mass:

(i) =1 3 S)=

Wi

a(the) = 10 x 0.5/48 =5/48

e Divide this mass between words w
for which the counts: C(the, w) =0

47

X c(x) | c(x) = D | Ghy
the 43

the,dog 15 14.5 14.5/48
the,woman 11 10.5 10.4/48
the,man 10 9.5 9.5/48
the,park 5 4.5 4.5/48
the,job 2 1.5 1.5/48
the,telescope | 1 0.5 0.5/48
the,manual 1 0.5 0.5/48
the,afternoon | 1 0.5 0.5/48
the,country 1 0.5 0.5/48
the,street 1 0.5 0.5/48
TOTAL 0.8958
the, UNK 0 0.1042

Web-scale N-grams Smoothing

Keeping track of everything gets complicated

Not even a proper distribution!
e “Stupid backoff” (Brants et al, 2007)

EEZ :J:) i C(Wi/—n%—l) > ()
S = Score S(wilw;Zpi) =
0.4S(w;|w!~; ,) otherwise
- C(w;) Other challenges
S(w;) = Y N
Vi o Efficient storage

https://www.aclweb.org/anthology/D07-1090.pdf Eficient lookup

48

Beyond n-grams

Other types of language models
Discriminative models:

e train n-gram probabillities to directly maximize performance on end task (e.qg.
as feature weights)

Parsing-based models
e handle syntactic/grammatical dependencies
Topic models

Neural Language Models

49

Summary: Estimating language models

» Predict probability of sequence of words

» Need to handle data sparsity
use Markov assumption and smoothing
Independence assumptions

Reallocate probability mass

Ensure proper probability

» Later: Neural language models

Use Chain rule and approximate using a neural network

p(wi,...,wn) = | | p(wii1 | dwi,...,we))
L

N —— —

capture history with vector s(t)

How well do these models perform!?

51

Evaluating Language Models

Evaluation

e Extrinsic: measure how useful the language model is at
some task (MT, ASR, etc).

e |ntrinsic: measure how good we are at modeling language

53

Extrinsic evaluation

Train LM -> apply to task -> observe accuracy

Language Machine
> . > Eval
model Translation
\ /
refine

Directly optimized for downstream tasks

* higher task accuracy -> better model

Expensive, time consuming

Hard to optimize downstream objective (indirect feedback)

54

Evaluating language models

A good language model should assign higher probability to typical,
grammatically correct sentences

e Research process:
e [rain parameters on a suitable training corpus
e Assumption: observed sentences ~ good sentences
e [est on different, unseen corpus
e Training on any part of test set not acceptable!

e Evaluation metric

55

Evaluation of language models
Computing the average probability of the test corpus

o Given atestcorpus I = sy, ..., s, ofindependent sentences,
the probability of P(7) is:

py=T[Ps) higher P(T) = better LM
=1

e But 7 can be any size and P(7') will be lower if T is larger.

e So let’s compute the average probability. Let M be the total m
number of tokens in the test corpus T. M =) length(s))
i=1

e The average log probability of the test corpus 1'is:
1 & 1 &
= b logng(sl-) = lzzl log, P(s;)

56

M =
Nl =

total

Evaluation of language models
of words Perplexity

¥ of sentences

4

 The average log probability of the test corpus 1 is:

1 m
C = MZ log, P(s;) higher £ = better LM Note that 7 is
i=1 a negative number

e | anguage models are evaluated using perplexity
ppl(7T) is
opl(T) = 27 lower ppl = better LM a positive number

Note that the exponent (—7) can be regarded as the
cross entropy between the empirical distribution of test

corpus and the language model

Intuition: Measure of model’s uncertainty about next word

57

Perplexity summary

e Measure of how well a probability distribution (or model)
predicts a sample

e Foracorpus T with sentences S1,52,-..,5m cross entropy
1™ / between the
ppl(T) = 27 where — ¢ = Z log, P(s;) empirical
M 4 distribution of test

corpus and the

where M is the total number of words in test corpus language model
e Unigram model: — ZZlog Clw) log, P(w)
1=1 7=1 2 weV M 2

e Minimizing perplexity ~ maximizing probability

Intuition: Measure of model’s uncertainty about next word
o branching factor

Pros and cons of perplexity

Pros Cons
Easy to compute Domain match between train and test
standardized Limited to sequence models
directly useful, easy to use to correct might not correspond to end task
sentences optimization

..

nice theoretical interpretation - matching
distributions

can be cheated by predicting common
tokens

..

..

can be sensitive to low prob tokens/
sentences

59

Perplexity values for different language models

Progress on the 1B Word Benchmark

Model Params Perplexity Citation

unigram 775K 955 Chelba+ 2013
bigram 1B 137 Chelba+ 2013
trigram 1B 74 Chelba+ 2013
interpolated 5-gram 1.76B 67.6 Chelba+ 2013
10skip-gram+SNM 33B 52.9 Shazeer+ 2014
RNN-256 + 9-grams 20B 58.3 Chelba+ 2013
RNN-1024 + 9-grams 20B 51.3 Chelba+ 2013
Big LSTM+CNN 1.04B 30 Jozefowicz+ 2016
10 LSTMs+10skip-SNM 43B 23.7 Jozefowicz+ 2016
GPT2 1.54B 42.16 Radford+ 2019
Transformer XL 1.04B 21.8 Dai+ 2019

OmniNet 100M 21.5 Tay+ 2021

60

Perplexity of current LMs

Language Modelling on One Billion Word

Leaderboard Dataset

PPL

60

50

40

30

20

10

View PPL v by Date v for All models
RNN-1024 + 9 Gram
10 LSTM+CNN inputs.+ SNM10-SKIP (ensemble) Adaptive Input Very Lar
i mdakbald: el b OmniNetT (Large)
— o ® g
2014 2015 2016 2017 2018 2019 2020 2021

Other models - Models with lowest PPL

https://paperswithcode.com/sota/language-modelling-on-one-billion-word

For other datasets: see https://paperswithcode.com/task/language-modelling
61

2022

Where are we now!

Neural models with lots of datal

300 Billion tokens Training data: mix of web + books + Wikipedia
Model Name Nparams] . .
Quantity Weight in Epochs elapsed when
GPT-3 Small 125M Dataset P (tokens) training mix training for 300B tokens
GPT-3 Medium 350M & &
GPT-3 Large 760M Common Crawl (filtered) 410 billion 60% 0.44
GPT-3 XL 1.3B WebText2 19 billion 22 % 2.9
GPT-3 2.7B 2.7B Books1 12 billion 8% 1.9
gg?g ?-37];3 163-7(33 Books2 55 billion 8% 0.43
GPT-3 1758 or “GPT.3" 175.0B Wikipedia 3 billion 3% 3.4
Open Al’'s GPT 3 Setting PTB

Language Models are Few-Shot Learners

(Brown et al, 2020) SOTA (Zero-Shot) 35.8¢
https://arxiv.org/pdf/2005.14165.pdf GPT-3 Zero-Shot ~ 20.5

62

Why the stop symbol is important!?

Computing the probability of a sentence

Apply the Chain Rule: the trigram model

~ P(W]_)P(W2 | W]_)P(W3 ‘ W1, WQ) C .. P(Wn ‘ Wph—o, Wn—l)

~ P(wy)P(ws | Wl)H'D(W/ | Wiz, Wj-1)
=3

 Notice that the length of the sentence 7 is variable

e What is size of the event space (e.g. the total number of possible events/
sentences)?

64

Variable length sequences

Let V = {a, b} and the language L be V*
Consider a unigram model: P(a) = P(b) = 0.5

So strings in this language L are:

a 0.5
b 0.5
aa 0.5°
bb 0.5°

The sum over all strings in L should be equal to 1

But P(a) + P(b) + P(aa) + P(bb) = 1.3

65

The stop symbol

What went wrong? We need to model variable length sentences

Add an explicit probability for the stop symbol
P(a) = P(b) = 0.25 P(stop) = 0.5
Now strings have the following probabilities:

stop 0.5
astop 0.25x0.5=0.125
bstop 0.25x0.5=0.125
aa stop 0.25% x 0.5 = 0.03125
bb stop 0.25% x 0.5 = 0.03125

The sum is no longer greater than one!

66

The stop symbol

e With this new stop symbol, we can show that Z P(u) =1

e Let ps = P(stop), the probability of the stop symbuSIL
e Then, we can show that the probability of all sequences of length n is
p(n) = ps(1 — ps)"

p(n) = Z p(wa, ..., Wp) X ps Where w; # stop

— ps Y p(w1)... Y p(wy) > P(w)=1-ps
h . / wstop
- ps [D p(w)

67

The stop symbol

e With this new stop symbol, we can show that) _P(u) =1

uel

e Let ps = P(stop), the probability of the stop symbol

e Using that the probability of all sequences of length n is p(7) = ps(1 — ps)”

Z P(u) = ZP(”) — Zps(l — Ps)”

uel
= Ps Z(l — ps)n
n=0

1 1

1_(1_,05) Sps

= Ps

63

Summary

Language models estimates the probability of a sentence

C(wi_l, wz)
C’(wi_l)

Statistical LMs: N-grams: P (w;|w;_1) =
Smoothing to handle data sparsity
Perplexity for evaluating language models

Modern NLP powered by neural-based language models

69

Reminders

e HW-0 due next Wednesday 11/17
e Submit via gradescope and coursys
e Next week:

e (Classification for NLP

70

