

Grounded Natural Language

Spring 2024 2024-03-24

CMPT 413/713: Natural Language Processing

What is grounding?

Language is used to communicate about the world Things, actions, abstract concepts

What is symbol grounding?

- Connecting linguistic symbols to their meaning
- Connecting words and sentences to what they represent

Linking people in videos with "their" names using coreference resolution [Ramanathan et al, 2014]

Actions

running

Spatial relations

Types of grounding

Perception

- Visual: green = [0,1,0] in RGB
- Auditory: loud = >120 dB
- High-level concepts:

cat

Slide adapted from Danqi Chen and Karthik Narasimhan

Taste: sweet = >some threshold level of sensation on taste buds

dog

Types of grounding

Temporal concepts

- Iate evening = after 6pm
- fast, slow = describing rates of change

Actions

running

Slide adapted from Danqi Chen and Karthik Narasimhan

eating

Some grounding tasks

Vision

- Captioning
- Text to image generation and manipulation
- Visual question answering (VQA)
- Referring Expressions and Spatial reasoning

Interaction

- Instruction following
- Text-based games

the girl is licking the spoon of batter Describe an image in a sentence

Image captioning

(MS COCO Captions, Chen et al., 2015)

the girl is licking the spoon of batter

Image captioning

- Describe an image in a sentence
 - Requires recognizing objects, attributes, relations in image
 - Caption must be fluent

(MS COCO Captions, Chen et al., 2015)

Captioning as multi-modal translation

Text encoder (e.g. RNN)

(Donahue et al., 2015, Vinyals et al., 2015)

Learning to connect linguistic symbols to the physical world

- Children do not learn language from raw text or passively watching TV
- Natural way to learn language in the context of its use in the physical and social world
 - This requires inferring the meaning of utterances from their perceptual context

Children learn from multimodal sensory input and experience

Learning from multimodal information

Bill Martin Jr / Eric Carle

Learn more about how children learn from Linda Smith: https://www.youtube.com/watch?v=dxli8qWJHLU

Choices in what to ground to

Connecting linguistic symbols to

- perceptual experiences and actions
 - *One hundred* \rightarrow 100
- other symbols

The Big Bang Theory \rightarrow https://en.wikipedia.org/wiki/ The Big Bang Theory

• to executable programs

Circular definitions

``Sleep" means ``be asleep"

sleep(n): ``a natural and periodic state of rest during which consciousness of the world is suspended"

Create a key `key` if it does not exist in dict `dic` and append element `value` to value

dic.setdefault(key, []).append(value)

Meaning representations

How do we represent the meaning of something?

cat: a small domesticated carnivore, Felis domestica or F. catus, bred in a number of varieties.

```
cat \rightarrow {
 isMammal: true
 hasFur: true
 hasLegs: true
 meows: true
 barks: false
 height: 9.1 – 9.8 in
 weight: 7.9 – 9.9 lbs
```


Representations

Similar words closer to each other

Representing meaning as vectors

- common representation space
- enables information sharing
- can be learned from data

Embeddings in continuous vector space

cat = [0.04 1.79 -1.79 1.07 0.48] dog = [0.61 1.84 -1.12 0.52 0.53]

Multimodal Embeddings

(a) Colors

Figure 5: PCA projection of the 300-dimension colors and (b) weather and temperature.

"<u>Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models</u>" [Kiros, Salakhutdinov, Zemel TACL 2015]

(b) Weather

Figure 5: PCA projection of the 300-dimensional word and image representations for (a) cars and

Cross-modal models

Image credits: Qi Wu

Use transformer to fuse modalities using attention More flexible, but lots of weights!

parameters so the embeddings align

Cross-modal Embeddings

Common representation for language and vision: vectors!

(a) Colors

Figure 5: PCA projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the 300-dimensional word and image representations for (a) cars and colority and the projection of the second second

(b) Weather

Cross-modal Embeddings

Images and **class labels** are embedded into the same space

Image Embedding

 $\Psi(I_i) = \mathbf{W} \cdot CNN(I_i; \boldsymbol{\Theta}) \colon \mathbb{R}^D \to \mathbb{R}^d$

Label Embedding 🗢 🗢 👄

 $\Psi_L(word_i) = \mathbf{u}_i : \{1, ..., L\} \to \mathbb{R}^d$

Similarity in Embedding Space $S(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \frac{\mathbf{u}'}{\|\mathbf{u}'\|}$

Adapted from slide by Leonid Sigal

Adapted from slide by Leonid Sigal

PR2 robot

https://robots.ieee.org/robots/pr2

<u>Deep Multimodal Embedding: Manipulating Novel Objects with Point-clouds, Language and Trajectories</u> [Sung et al, 2015]

Contrastive pretraining **OpenAl CLIP**

<u>Learning transferable visual models from natural from natural language supervision</u> [Radford et al, 2020]

- Train on large amount of data
 - WebImageText: 400M textimage pairs
- Contrastive pretraining: does the text-image pair match?
 - Batch size N=32K
 - *N* positive pairs
 - $N^2 N$ negative pairs
- Transformer based model for both vision and language

Contrastive pretraining **OpenAl CLIP**

<u>Learning transferable visual models from natural from natural language supervision</u> [Radford et al, 2020]

Contrastive Loss

NT-Xent loss (images and text) $l_j^{I \to T} = -\log \frac{\exp(\operatorname{sim}(I_j, T_j)/\tau)}{\sum_{k=1}^N \exp(\operatorname{sim}(I_j, T_k)/\tau)}$

Symmetric Bimodal loss $L(I,T) = \frac{1}{N} \sum_{i=1}^{N} (\alpha l_j^{I \to T} + (1-\alpha) l_j^{T \to I})$

Contrastive pretraining OpenAl CLIP

Learning transferable visual models from natural from natural language supervision [Radford et al, 2020]

<pre># image_encoder - ResNet or Vision Transformer # text_encoder - CBOW or Text Transformer # I[n, h, w, c] - minibatch of aligned images # T[n, 1] - minibatch of aligned texts # W_i[d_i, d_e] - learned proj of image to emb # W_t[d_t, d_e] - learned proj of text to embe # t - learned temperature paramete</pre>
<pre># extract feature representations of each mode I_f = image_encoder(I) #[n, d_i] T_f = text_encoder(T) #[n, d_t]</pre>
<pre># joint multimodal embedding [n, d_e] I_e = l2_normalize(np.dot(I_f, W_i), axis=1) T_e = l2_normalize(np.dot(T_f, W_t), axis=1)</pre>
<pre># scaled pairwise cosine similarities [n, n] logits = np.dot(I_e, T_e.T) * np.exp(t)</pre>
<pre># symmetric loss function labels = np.arange(n) loss_i = cross_entropy_loss(logits, labels, ax loss_t = cross_entropy_loss(logits, labels, ax loss = (loss_i + loss_t)/2</pre>

Aligned embeddings can be used for a variety of tasks

- Text to image/video retrieval
- Image/video to text retrieval

"Learning Deep Representations of Fine-Grained Visual Descriptions" (Reed et al, CVPR 2016)

Retrieval

"This is a large black bird with a pointy black beak." Char-CNN RNN Word-LSTM Bag of words

	Top-1 Acc (%)		AP@50(%)	
Embedding	DA-SJE	DS-SJE	DA-SJE	DS-SJE
ATTRIBUTES	50.9	50.4	20.4	50.0
WORD2VEC	38.7	38.6	7.5	33.5
BAG-OF-WORDS	43.4	44.1	24.6	39.6
CHAR CNN	47.2	48.2	2.9	42.7
CHAR LSTM	22.6	21.6	11.6	22.3
CHAR CNN-RNN	54.0	54.0	6.9	45.6
WORD CNN	50.5	51.0	3.4	43.3
WORD LSTM	52.2	53.0	36.8	46.8
WORD CNN-RNN	54.3	56.8	4.8	48.7

CUB Birds

Grounding

Match image region to language

Natural Language Object Retrieval (Hu et al, CVPR 2016)

Match video frames to language

Localizing moments in video with temporal language (Hendricks et al, EMNLP, 2018)

Grounding

Phrase Localization

A group of eight campers sit around a fire pit trying to roast marshmallows on their sticks.

X: regions

Y: "a fire pit"

Learning Two-Branch Neural Networks for Image-Text Matching Tasks (Wang et al, TPAMI 2018)

Language Driven Semantic Segmentation

Use CLIP as text encoder

Use dense prediction transformers architecture

Language Driven Semantic Segmentation [Li et al, ICLR 2022]

Upsamples to obtain final output

Used in DALL-E

DALL-E (2021): 12B parameter version of GPT-3 trained to generate images from text descriptions

CLIP used to score and re-rank generated images

a teapot in the shape of a pikachu. a teapot imitating a pikachu

Encoder

Zero-shot Text-to-Image Generation [Ramesh et al, 2021] (https://openai.com/blog/dall-e/)

Images are represented as sequence of tokens (each image is encoded as 32x32 grid of tokens using discrete VAE to 8192 codewords)

DALLE-2: Text-to-Image generation with diffusion models

CLIP text and image encoder

"a corgi playing a flame throwing trumpet"

Diffusion models to produce

- latent image embedding z from text embedding y,
- image x from latent image embedding z

Hierarchical Text-Conditional Image Generation with CLIP Latents https://arxiv.org/pdf/2204.06125.pdf [Ramesh et al, arXiv 2022] https://openai.com/dall-e-2/

Text-to-Image Generation with Diffusion Models **Google** Imagen

a painting of a fox sitting in a field at sunrise in the style of Claude Monet

https://openai.com/dall-e-2/

Try it out yourself: <u>https://huggingface.co/spaces/stabilityai/stable-</u> <u>diffusion</u>, <u>https://www.craiyon.com/</u>, <u>https://www.midjourney.com/home/</u>

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

https://imagen.research.google/

Text-to-3D generation

Optimize differentiable 3D representations with text-image models

Aligned text to image embeddings

Text-to-image diffusion model

Text-to-3D with diffusion models

DreamFusion: Text-to-3D using 2D Diffusion https://arxiv.org/abs/2209.14988 [Poole et al, 2022] https://dreamfusion3d.github.io/

a DSLR photo of a squirrel wearing a purple hoodie

Beyond contrastive loss for multi-modal models

Pretrained representations for vision and language

Image represented as

- series of image region features (extracted from pre-trained object detection network)
- Region position encoded as 5d vector

VILBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks [Lu et al 2019, <u>https://arxiv.org/pdf/1908.02265.pdf</u>]

Pretrained representations for vision and language Predict semantic class distribution

Trained on

- Conceptual captions (~3.3M images with captions cleaned from alt-text labels)
- Two tasks to predict:
 - masked out words and semantic class \bullet distribution for masked out image regions
 - Is the image/description aligned?

VILBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks [Lu et al 2019, <u>https://arxiv.org/pdf/1908.02265.pdf</u>]

(a) Masked multi-modal learning

(b) Multi-modal alignment prediction

Pretrained representations for vision and language

		VQA [3]	VCR [25]		Ref	RefCOCO+ [32]		Image Retrieval [26]			ZS Image Retriev			
	Method	test-dev (test-std)	Q→A	$QA \rightarrow R$	Q→AR	val	testA	testB	R 1	R5	R10	R 1	R5	R
	DFAF [36]	70.22 (70.34)	-	-	-	-	-	-	-	-	-	-	-	
ΤA	R2C [25]	-	63.8 (65.1)	67.2 (67.3)	43.1 (44.0)	-	-	-	-	-	-	-	-	
SO	MAttNet [33]	-	-	-	-	65.33	71.62	56.02	-	-	-	-	-	
	SCAN [35]	-	-	-	-	-	-	-	48.60	77.70	85.20	-	-	
	Single-Stream [†]	65.90	68.15	68.89	47.27	65.64	72.02	56.04	-	-	-	-	-	
JIS	Single-Stream	68.85	71.09	73.93	52.73	69.21	75.32	61.02	-	-	-	-	-	
õ	ViLBERT [†]	68.93	69.26	71.01	49.48	68.61	75.97	58.44	45.50	76.78	85.02	0.00	0.00	0.
	ViLBERT	70.55 (70.92)	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	72.34	78.52	62.61	58.20	84.90	91.52	31.86	61.12	72

Pretraining improves performance on variety of vision+language tasks!

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks [Lu et al 2019, <u>https://arxiv.org/pdf/1908.02265.pdf</u>]

Masked modelling for video and language

<u>VideoBERT: A Joint Model for Video and Language Representation Learning</u> [Sun et al, ICCV 2019]

Combining masked modelling with contrastive learning Use image patches, no need for object detectors

<u>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</u> [Kim et al, ICML 2021]

FLAVA: A Foundational Language and Vision Alignment Model [Singh et al, CVPR 2022]

FLAVA: A Foundational Language and Vision Alignment Model [Singh et al, CVPR 2022]

- Pretrain unimodal encoders on unpaired image and text data Joint unimodal and multi-modal training
- Multi-modal training with paired image-text pairs

	#Image-Text Pairs	Avg
COCO [<mark>66</mark>]	0.9M	
SBU Captions [77]	1.0M	
Localized Narratives [82]	1.9M	
Conceptual Captions [92]	3.1M	
Visual Genome [57]	5.4M	
Wikipedia Image Text [99]	4.8M	
Conceptual Captions 12M [14]	11.0M	
Red Caps [27]	11.6M	
YFCC100M [103], filtered	30.3M	
Total	70M	

FLAVA: A Foundational Language and Vision Alignment Model [Singh et al, CVPR 2022]

COCO

g. text length

12.4	
12.1	
13.8	
10.3	
5.1	
12.8	
17.3	
9.5	
12.7	
12.1	

A close up view of a pizza sitting on a table with a soda in the back.

CC12M

Jumping girl in a green summer dress stock illustration

- Pretrain unimodal encoders on unpaired image and text data Joint unimodal and multi-modal training
- Multi-modal training with paired image-text pairs
- Training details
 - Hyperparameters important for pretraining: Large batch size (8K), large weight decay (0.1) with learning rate (1e-3), long warm up (10K) with AdamW
 - Noted again the importance of having the layer-norm before the MHA

FLAVA: A Foundational Language and Vision Alignment Model [Singh et al, CVPR 2022]

FLAVA model performance on variety of tasks

	public data		Mult VQAv2	imodal Ta SNLI-VI	asks E HM	CoLA	SST-2	RTE	Lang MRPC	uage Tasks QQP	MNLI	QNLI	STS-B	Imag linea
1	\checkmark	BERT _{base} [28]	<u> </u>	_	_	54.6	92.5	62.5	81.9/87.6	90.6/87.4	84.4	91.0	88.1	
2 3	X X	CLIP-ViT-B/16 [83] SimVLM _{base} [109]	55.3 <u>77.9</u>	74.0 <u>84.2</u>	63.4 _	25.4 46.7	88.2 90.9	55.2 <u>63.9</u>	74.9/65.0 75.2/84.4	76.8/53.9 <u>90.4/87.2</u>	33.5 <u>83.4</u>	50.5 <u>88.6</u>	16.0 _	8
4	\checkmark	VisualBERT [63]	70.8	77.3 [†]	74.1 [‡]	38.6	89.4	56.6	71.9/82.1	89.4/86.0	81.6	87.0	81.8	
5	\checkmark	UNITER _{base} [16]	72.7	78.3	_	37.4	89.7	55.6	69.3/80.3	89.2/85.7	80.9	86.0	75.3	
6	\checkmark	VL-BERT _{base} [101]	71.2	_	_	38.7	89.8	55.7	70.6/81.8	89.0/85.4	81.2	86.3	82.9	
7	\checkmark	ViLBERT [70]	70.6	75.7 [†]	74.1 [‡]	36.1	90.4	53.7	69.0/79.4	88.6/85.0	79.9	83.8	77.9	
8	\checkmark	LXMERT [102]	72.4	_	_	39.0	90.2	57.2	69.7/80.4	75.3/75.3	80.4	84.2	75.3	
9	\checkmark	UniT [43]	67.0	73.1	_	_	89.3	_	_	90.6/ –	81.5	88.0	_	
10	\checkmark	CLIP-ViT-B/16 (PMD)	59.8	73.5	56.6	11.0	83.5	53.1	63.5/68.7	75.4/43.0	32.9	49.5	13.7	7
11	\checkmark	FLAVA (ours)	72.8	79.0	<u>76.7</u>	<u>50.7</u>	<u>90.9</u>	57.8	<u>81.4/86.9</u>	<u>90.4/87.2</u>	80.3	87.3	<u>85.7</u>	7:

FLAVA: A Foundational Language and Vision Alignment Model [Singh et al, CVPR 2022]

Large multi-modal, multi-lingual models: Florence

Florence: A New Foundation Model for Computer Vision [Yuan et al, CVPR 2022]

Modality

Video Reasoning

Playing Socce

Action Recognition

Object Tracking

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] <u>https://arxiv.org/abs/2202.03052</u>

Large multi-modal models: OFA **EZAlibaba**

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] <u>https://arxiv.org/abs/2202.03052</u>

- Unified framework using transformers
 - Encoder-decoder architecture
- Treat all tasks as sequence-to-sequence
- Represent text, image patches, and objects as token sequences
 - Use BPE for text tokens
 - encoded as location tokens (x1,y1,x2,y2) and BPE token (label)
 - Use ResNet to obtain image patch features coded as tokens • Objects are represented as image region bounding box with label and
- Pretrain on mix of vision, language, vision+language data

[Wang, et al. ICML 2022] <u>https://arxiv.org/abs/2202.03052</u>

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Pretrain on mix of vision, language, vision+language data

Туре	Pretraining Task	Source	#Image	#Label
	Image Captioning Image-Text Matching	CC12M, CC3M, SBU, COCO, VG-Cap	14.78M	15.25M
Vision&Language	Visual Question Answering	VQAv2, VG-QA, GQA	178K	2.92M
	Visual Grounding Grounded Captioning	RefCOCO, RefCOCO+, RefCOCOg, VG-Cap	131K	3.20M
Vision	Detection	OpenImages, Object365, VG, COCO	2.98M	3.00M
VIBIOII	Image Infilling	OpenImages, YFCC100M, ImageNet-21K	36.27M	-
Language	Masked Language Modeling	Pile (Filter)	-	140G*

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] <u>https://arxiv.org/abs/2202.03052</u>

Instructions for task

Task	Dataset	Instruction	Target	
Image Captioning	COCO	[Image] What does the image describe?	{Caption}	
Visual Question Answering	VQA	[Image] {Question}	{Answer}	
Visual Entailment	SNLI-VE	[Image] Can image and text1 "{Text1}" imply text2 "{Text2}"?	Yes/No/Maybe	
Referring Expression Comprehension	RefCOCO, RefCOCO+, RefCOCOg	[Image] Which region does the text "{Text}" describe?	{Location}	
Image Generation	Image Generation COCO What is the complete image? caption: {Caption}			
Image Classification	ImageNet-1K	[Image] What does the image describe?	{Label}	
Single-Sentence Classification	SST-2	Is the sentiment of text "{Text}" positive or negative?	Positive/Negative	
Sentence-Pair Classification	RTE MRPC QQP MNLI QNLI	Can text1 "{Text1}" imply text2 "{Text2}"? Does text1 "{Text1}" and text2 "{Text2}" have the same semantics? Is question "{Question1}" and question "{Question2}" equivalent? Can text1 "{Text1}" imply text2 "{Text2}"? Does "{Text}" contain the answer to question "{Question}"?	Yes/No Yes/No Yes/No Yes/No/Maybe Yes/No	
Text Summarization	Gigaword	What is the summary of article "{Article}"?	{Summary}	

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] <u>https://arxiv.org/abs/2202.03052</u>

OFA model sizes

Model	#Param.	Backbone	Hidden size	Intermediate Size	#Head	#Enc. Layers	#Dec. La
OFA_{Tiny}	33M	ResNet50	256	1024	4	4	4
OFA_{Medium}	93M	ResNet101	512	2048	8	4	4
OFA_{Base}	182M	ResNet101	768	3072	12	6	6
OFA_{Large}	472M	ResNet152	1024	4096	16	12	12
OFA _{Huge}	930M	ResNet152	1280	5120	16	24	12

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] <u>https://arxiv.org/abs/2202.03052</u>

OFA model performance on variety of tasks

Model	V	QA	SNL	J-VE									
	test-dev	test-std	dev	test		1	RefCOC	С	R	efCOCC)+	RefC	DC
UNITER [14]	73.8	74.0	79.4	79.4	Model	val	testA	testB	val	testA	testB	val-u	te
OSCAR [15]	73.6	73.8	-	-	111 112 126 (1								
VILLA [16]	74.7	74.9	80.2	80.0	VL-15 [56]	-	-	-	-	-	-	-	7
VL-T5 [56]	-	70.3	-	-	UNITER [14]	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75
VinVL [17]	76.5	76.6	-	-	VILLA [16]	82.39	87.48	74.84	76.17	81.54	66.84	76.18	76
UNIMO [46]	75.0	75.3	81.1	80.6	MDETR [72]	86.75	89.58	81.41	79.52	84.09	70.62	81.64	80
ALBEF [69]	75.8	76.0	80.8	80.9	UNICORN [57]	88.29	90.42	83.06	80.30	85.05	71.88	83.44	83
METER [70]	77.7	77.6	80.9	81.2	OEA	80.20	84.07	75.00	60.00	75 12	57 66	72.02	60
VLMo [48]	79.9	80.0	-	-	OFATiny	80.20	84.07	75.00	08.22	/5.15	57.00	72.02	02
SimVLM [22]	80.0	80.3	86.2	86.3	OFA _{Medium}	85.34	87.68	77.92	76.09	83.04	66.25	78.76	78
Florence [23]	80.2	80.4	-	-	OFA _{Base}	88.48	90.67	83.30	81.39	87.15	74.29	82.29	82
OFATinu	70.3	70.4	85.3	85.2	OFA _{Large}	90.05	92.93	85.26	85.80	89.87	79.22	85.89	80
OFA _{Medium}	75.4	75.5	86.6	87.0	OFA	92.04	94.03	88.44	87.86	91.70	80.71	88.07	8
OFA _{Base}	78.0	78.1	89.3	89.2									
OFA _{Large}	80.3	80.5	90.3	90.2									
OFA	82.0	82.0	91.0	91.2									

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] https://arxiv.org/abs/2202.03052

Image captioning

M - 1-1	Cros	ss-Entropy Op	otimizatio	n	CIDEr Optimization				
Model	BLEU@4	METEOR	CIDEr	SPICE	BLEU@4	METEÔR	CIDEr	SPICE	
VL-T5 [56]	34.5	28.7	116.5	21.9	-	-	-	-	
OSCAR [15]	37.4	30.7	127.8	23.5	41.7	30.6	140.0	24.5	
UNICORN [57]	35.8	28.4	119.1	21.5	-	-	-	-	
VinVL [17]	38.5	30.4	130.8	23.4	41.0	31.1	140.9	25.2	
UNIMO [46]	39.6	-	127.7	-	-	-	-	-	
LEMON [71]	41.5	30.8	139.1	24.1	42.6	31.4	145.5	25.5	
SimVLM [22]	40.6	33.7	143.3	25.4	-	-	-	-	
OFA _{Tiny}	35.9	28.1	119.0	21.6	38.1	29.2	128.7	23.1	
OFA _{Medium}	39.1	30.0	130.4	23.2	41.4	30.8	140.7	24.8	
OFA _{Base}	41.0	30.9	138.2	24.2	42.8	31.7	146.7	25.8	
OFALarge	42.4	31.5	142.2	24.5	43.6	32.2	150.7	26.2	
OFA	43.9	31.8	145.3	24.8	44.9	32.5	154.9	26.6	

OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework [Wang, et al. ICML 2022] https://arxiv.org/abs/2202.03052

Text to Image Generation

Model	FID↓	CLIPSIM↑
DALLE [50]	27.5	-
CogView [51]	27.1	33.3
GLIDE [77]	12.2	-
Unifying [78]	29.9	30.9
NÜWA [52]	12.9	34.3
OFA	10.5	34.4

Instruction following

Instruction Following

- Want to be able to follow instructions in a virtual environment
- Go along the blue hall, then turn left away from the fish painting and walk to the end of the hallway"

(MacMahon et al., 2006)

(slide adapted from Greg Durrett)

Instruction Following

- Instruction: "Go away from the lamp to the intersection of the red brick and wood" Basic: Turn (), Travel (steps: 1) Landmarks: Turn (), Verify (left: WALL , back: LAMP , back: HATRACK , front: BRICK HALL), Travel (steps: 1), Verify (side: WOOD HALL)
- Train semantic parser on (utterance, action) pairs
- Language is grounded in actions in the world (Chen and Mooney, 2011)

(slide adapted from Greg Durrett)

Put the Toyota block in the same row as the SRI block, in the first open space to the right of the SRI block Move Toyota to the immediate right of SRI, evenly aligned and slightly separated Move the Toyota block around the pile and place it just to the right of the SRI block Place Toyota block just to the right of The SRI Block Toyota, right side of SRI

Robotic Manipulation

(Bisk et al., 2016, Misra et al., 2017)

Reach the cell above the westernmost rock

Autonomous navigation

(Janner et al., 2017)

Frameworks for understanding grounded language (with perception and actions)

BabyAl

- Grid Environment
- Generated (synthetic language) using grammar
- Easy to hard levels
- Studies grounding and compositionality

(a) GoToObj: "go to the blue ball"

(b) PutNextLocal:"put the blue key next to the green ball"

BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning [Chevalier-Boisvert et al 2018, https://arxiv.org/pdf/1810.08272.pdf]

(c) BossLevel: "pick up the grey box behind you, then go to the grey key and open a door". Note that the green door near the bottom left needs to be unlocked with a green key, but this is not explicitly stated in the instruction.

Vision-and-language Navigation

- More realistic houses
- Human instructions navigation
- Discrete action space
- Navigation graph

Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments [Anderson et al 2018, <u>https://bringmeaspoon.org/</u>]

a_t

 a_{t+1}

Vision-and-language Navigation

Sequence of words to sequence of actions!

Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments [Anderson et al 2018, <u>https://bringmeaspoon.org/</u>]

Input Images at each time step

Vision-and-language Navigation

Leave the bedroom, and enter the kitchen. Walk forward, and take a left at the couch. Stop in front of the window.

- More realistic houses
- Sequence of human instructions for common household tasks
- Study embodied language understanding

ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks [Shridhar et al 2019, <u>https://askforalfred.com/]</u>

ALFRED

"Rinse off a mug and place it in the coffee maker"

ALFRED

A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

- Seq2seq model (CNN vision, LSTM language)
- Predicts action + binary mask of object from concatenated input
 - 13 actions (5 navigation + 7 interaction + stop)

ALFRED agent model

Concatenated input Vision

Toward multimodal agents

Mobile Manipulation

Human: Bring me the rice chips from the drawer. Robot: 1. Go to the drawers, 2. Open top drawer. I see . 3. Pick the green rice chip bag from the drawer and place it on the counter.

Visual Q&A, Captioning ...

Given ****. Q: What's in the image? Answer in emojis. A: 🍏 🍌 🍻 為 🍑 🐃 🚣.

hurdle at a dog show.

Haiku about embodied LLMs. A: Embodied language. Models learn to understand. The world around them.

<u>An Embodied Multimodal Language Model</u> [Dreiss et al, Google, 2023] https://palm-e.github.io/ 72

- ViT (22B parameters) + PaLM (562B parameters)
- Decoder only LLM
- Multimodal information injected as continuous vectors into PaLM

PaLM-E

PaLM-E: An Embodied Multimodal Language Model [Dreiss et al, Google, 2023] https://palm-e.github.io/ 73

• Train on mixture of data

PaLM-E

PaLM-E: An Embodied Multimodal Language Model [Dreiss et al, Google, 2023] https://palm-e.github.io/ 74

PaLM-E

CMPT 839 / CMPT 983

Advanced NLP / Grounded Natural Language Understanding