

CMPT 413/713: Natural Language Processing

Classification

Spring 2024 2024-01-15

Adapted from slides from Danqi Chen, Karthik Narasimhan, and Anoop Sarkar

Review: Basic Machine Learning Terminology

labeled training data

- Supervised vs Unsupervised learning
- Classification vs Regression
- Discriminative vs Generative models

We will do Supervised Text Classification

Why classify?

Spam detection

- Authorship attribution
- Language detection
- News categorization

Sentiment analysis

Movie Reviews

neg: unbelievably disappointing

pos: Full of zany characters and richly applied satire, and some great plot twists

pos: this is the greatest screwball comedy ever filmed

neg: It was pathetic. The worst part about it was the boxing scenes.

Classification as a subtask in NLP

- NLP is all (mostly) about classification
 - Text classification: Spam/Not Spam, Sentiment Analysis
 - Generating sentences: select word to generate at each step (classification over vocabulary!)
 - Building dialog system (identifying intent)
 - Parsing (identifying word to attach to)

Classification as a subtask in NLP

Intent detection

ADDR_CHANGE: I just moved and want to change my address.

ADDR_CHANGE: Please help me update my address

FILE_CLAIM: I just got into a terrible accident and I want to file a claim

CLOSE_ACCOUNT: I'm moving and I want to disconnect my service

Prepositional phrase attachment

noun attach: I bought the shirt with pockets

verb attach: I bought the shirt with my credit card

noun attach: I washed the shirt with mud

verb attach: I washed the shirt with soap

Text classification: the task

Inputs:

sequence of words sentence

- A document d
- A set of classes C = {c₁, c₂, c₃, ..., c_m}
- Output:
 - Predicted class c for document d

Multiple classes: m

Binary: m=2

Rule-based classification

• Look for patterns, and combinations of features on words in document, meta-data

IF there exists word w in document d such that w in [good, great, extra-ordinary, ...], THEN output Positive

IF email address ends in [<u>ithelpdesk.com</u>, <u>makemoney.com</u>, <u>spinthewheel.com</u>, ...]
THEN output SPAM

- Simple, can be very accurate
- But: rules may be hard to define (and some even unknown to us!)
 - Expensive
 - Not easily generalizable

Supervised Learning: Let's use statistics!

- Data-driven approach
 - Let the machine figure out the best patterns to use!
- Inputs:
 - Set of m classes $C = \{c_1, c_2, ..., c_m\}$
 - Set of *n* 'labeled' documents: {(d₁, c₁), (d₂, c₂), ..., (d_n, c_n)}

- What form should F take?
- How to learn F?

Designing machine learning models

general recipe

- Input features: $f(x) \rightarrow [f_1, f_2, ..., f_m]$
 - Need to determine features
- Output: estimate P(y | x) for each class c
- Need to model $P(y \mid x)$ with a family of functions
- Building
 the model

 Train phase: Learn parameters of model to minimize loss function
 - Need training objective and optimization algorithm
 - Test phase: Apply parameters to predict class given a new input

General guidelines for model building

Two steps to building a probability model:

- Define the model
 What form should F take?
 - What independence assumptions do we make?
 - What are the model parameters (probability values)?
- 2. Estimate the model parameters (training/learning)
 - How to learn F? What to optimize? What is the training objective?

Types of supervised classifiers

k-nearest neighbors

Naive Bayes

Naive Bayes Classifier General setting

- Let the input x be represented as r features: f_j , $1 \le j \le r$
- Let y be the output classification
- We can have a simple classification model using Bayes rule

Posterior
$$P(y \mid x) = \frac{P(y) \cdot P(x \mid y)}{P(x)}$$

$$P(x \mid x) = \frac{P(y) \cdot P(x \mid y)}{P(x)}$$
Evidence

Make strong (naive) conditional independence assumptions

$$P(x|y) = \prod_{j=1}^{r} P(f_j|y) \xrightarrow{\text{Bayes rule}} P(y|x) \propto P(y) \cdot \prod_{j=1}^{r} P(f_j|y)$$

Naive Bayes classifier for text classification

- For text classification: input x is document $d = (w_1, ..., w_k)$
- Use as our features the words w_j , $1 \le j \le |V|$ where V is our vocabulary
- c is the output classification
- Predicting the best class:

$$\begin{array}{ll} \mathsf{C}_{\mathsf{MAP}} &= \arg\max_{c \in C} P(c \,|\, d) \\ \\ \mathsf{(MAP) \ estimate} &= \arg\max_{c \in C} \frac{P(c)P(d \,|\, c)}{P(d)} \\ \\ &= \arg\max_{c \in C} \frac{P(c)P(d \,|\, c)}{P(d)} \\ \end{array}$$

 $c \in C$

 $P(d \mid c) \rightarrow$ Conditional probability of generating document d from class c

$$P(c) \rightarrow Prior probability of class $c$$$

Represent P(d | c) as Bag of Words model

 Assume position of each word is irrelevant (both absolute and relative) Order doesn't matter

- $P(w_1, w_2, w_3, ..., w_k | c) = P(w_1 | c)P(w_2 | c)...P(w_k | c)$
- Probability of each word is conditionally independent given class c

Predicting with Naive Bayes

• Once we assume that the position of each word is irrelevant and that the words are conditionally independent given class c, we have:

$$P(d | c) = P(w_1, w_2, w_3, ..., w_k | c) = P(w_1 | c)P(w_2 | c)...P(w_k | c)$$

• The maximum a posteriori (MAP) estimate is now:

 \hat{P} is used to indicate the estimated probability

$$c_{\mathsf{MAP}} = \arg\max_{c \in C} P(c)P(d \mid c) = \arg\max_{c \in C} \hat{P}(c) \prod_{i=1}^{\kappa} \hat{P}(w_i \mid c)$$

Note that k is the number of tokens (words) in the document.

The index i is the position of the token.

Maximum likelihood estimate

Count and take average:

$$\hat{P}(c_j) = \frac{\operatorname{Count}(c_j)}{n}$$

$$\hat{P}(w_i|c_j) = \frac{\text{Count}(w_i, c_j)}{\sum_{w \in V} [\text{Count}(w, c_j)]}$$

Can suffer from sparsity issues!

Solution: Smoothing!

Maximum likelihood estimate

$$\hat{P}(c_j) = \frac{\operatorname{Count}(c_j)}{n}$$

$$\hat{P}(w_i|c_j) = \frac{\text{Count}(w_i, c_j)}{\sum_{w \in V} [\text{Count}(w, c_j)]}$$

Smoothing

$$\hat{P}(w_i|c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} [\text{Count}(w, c_j) + \alpha]}$$

Laplace smoothing

- Simple, easy to use
- Effective in practice

Overall process

- Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$
 - A. Compute vocabulary **V** of all words

B. Calculate
$$\hat{P}(c_j) = \frac{\operatorname{Count}(c_j)}{n}$$

C. Calculate
$$\hat{P}(w_i|c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} [\text{Count}(w, c_j) + \alpha]}$$

D. (Prediction) Given document $d = (w_1, w_2, \dots, w_k)$

$$c_{\text{MAP}} = \arg\max_{c} \hat{P}(c) \prod_{i=1}^{\kappa} \hat{P}(w_i|c)$$

Variants

Name based on the distribution of the features

$$P(f_i | y) \rightarrow P(w_i | c)$$

Multinomial Naive Bayes

Normal counts (0,1,2,...) for each document

$$\hat{P}(c_j) = \frac{\operatorname{Count}(c_j)}{n}$$

Binary Multinomial NB

Binarized counts (0/1) for each document

Multivariate Bernoulli NB

Estimate P(w|c) as fraction of documents of class c with word w

• Explicitly model P(!w|c) = 1 - P(w|c)

Some work show this works better than full counts or the Multivariate Bernoulli NB

Variants

Name based on the distribution of the features

$$P(f_i|y) \rightarrow P(w_i|c)$$

Multinomial Naive Bayes

Normal counts (0,1,2,...) for each document

$$\hat{P}(c_j) = \frac{\operatorname{Count}(c_j)}{n}$$

Binary Multinomial NB

Binarized counts (0/1) for each document

Multivariate Bernoulli NB

Estimate P(w|c) as fraction of documents of class c with word w

• Explicitly model P(!w|c) = 1 - P(w|c)

Naive Bayes Example

$$\hat{P}(c) = \frac{N_c}{N}$$

Smoothing with $\alpha = 1$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c)=$$

$$P(j)=$$

Choosing a class:

$$P(c|d5) \propto$$

Conditional Probabilities:

$$P(Chinese | c) =$$

$$P(Tokyo | c) =$$

$$P(Japan | c) =$$

$$P(Chinese | j) =$$

$$P(Tokyo|j) =$$

$$P(Japan | j) =$$

$$P(j|d5) \propto$$

(Credits: Dan Jurafsky)

Naive Bayes Example

$$\hat{P}(c) = \frac{N_c}{N}$$

Smoothing with $\alpha = 1$ $\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

• Let's compute the priors: what is $\hat{P}(\mathbf{c})$ and $\hat{P}(\mathbf{j})$?

$$\hat{P}(c) = \frac{3}{4}, \hat{P}(j) = \frac{1}{4}$$

• Let's compute $\hat{P}(\operatorname{Japan} | \mathbf{c})$:

$$count(Japan, c) = 0$$
 $count(c) = \sum_{w \in V} count(w, c) = 8$ $|V| = 6$

$$\hat{P}(\mathsf{Japan} \mid \mathsf{c}) = \frac{count(\mathsf{Japan}, \mathsf{c}) + 1}{count(\mathsf{c}) + |V|}$$

Naive Bayes Example

$$\hat{P}(c) = \frac{N_c}{N}$$

Smoothing with $\alpha = 1$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese|c) =
$$(5+1) / (8+6) = 6/14 = 3/7$$

P(Tokyo|c) = $(0+1) / (8+6) = 1/14$
P(Japan|c) = $(0+1) / (8+6) = 1/14$
P(Chinese|j) = $(1+1) / (3+6) = 2/9$
P(Tokyo|j) = $(1+1) / (3+6) = 2/9$
P(Japan|j) = $(1+1) / (3+6) = 2/9$

Choosing a class:

P(c|d5)
$$\propto 3/4 * (3/7)^3 * 1/14 * 1/14$$

 ≈ 0.0003

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

(Credits: Dan Jurafsky)

Some details

- Vocabulary is important
- Tokenization matters: it can affect your vocabulary
 - Tokenization = how you break your sentence up into tokens / words
 - Make sure you are consistent with your tokenization!

- Emails, URLs, phone numbers, dates, emoticons
- Special multi-word tokens: NOT_happy
- Modern NLP system use subword tokens (e.g. byte pair encoding)

Some details

- Vocabulary is important
- Tokenization matters: it can affect your vocabulary
 - Tokenization = how you break your sentence up into tokens / words
 - Make sure you are consistent with your tokenization!
- Handling unknown words in test not in your training vocabulary?
 - Remove them from your test document! Just ignore them.
- Handling stop words (common words like a, the that may not be useful)
 - Remove them from the training data!
 - In practice not that helpful, so use all words!

Better to use

- Modified counts (tf-idf) that down weighs frequent, unimportant words
- Better models!

Features

- In general, Naive Bayes can use any set of features, not just words
 - URLs, email addresses, Capitalization, ...
 - Domain knowledge can be crucial to performance

	Rank	Category	Feature	Rank	Category	Feature
	1	Subject	Number of capitalized words	1	Subject	Min of the compression ratio for the bz2 compressor
	2	Subject	Sum of all the character lengths of words	2	Subject	Min of the compression ratio for the zlib compressor
	3	Subject	Number of words containing letters and numbers	3	Subject	Min of character diversity of each word
	4	Subject	Max of ratio of digit characters to all characters of each word	4	Subject	Min of the compression ratio for the lzw compressor
	5	Header	Hour of day when email was sent	5	Subject	Max of the character lengths of words
Top features			(a)			(b)
for			Spam URLs Fea	tures		
oam detection	1	URL	The number of all URLs in an email	1	Header	Day of week when email was sent
	2	URL	The number of unique URLs in an email	2	Payload	Number of characters
	3	Payload	Number of words containing letters and numbers	3	Payload	Sum of all the character lengths of words
	4	Payload	Min of the compression ratio for the bz2 compressor	4	Header	Minute of hour when email was sent
	5	Payload	Number of words containing only letters	5	Header	Hour of day when email was sent
			27			

Properties of Naive Bayes

- + Simple baseline method
- + Works well for small data sizes
- + Optimal if the independence assumptions hold: if the assumed independence is correct, then it is the Bayes Optimal Classifier for the problem
- But not if the independence assumption is broken
- Does not handle rare classes well will favour more common class
- Also need to design features
- Modern NLP: use pretrained word embeddings with neural networks

Generative vs Discriminative Models

- Naive Bayes is a Generative Model: It models $p(y|x) \propto p(y)p(x|y)$
- It models how the document is generated from words
- You can use this model to sample documents
- Next: Logistic Regression, a Discriminative model that models $p(y \mid x)$ directly.

Evaluation

Evaluation Metrics

Confusion matrix

Irutn

Predicted

	Positive	Negative		
Positive	100 TP	5 FP		
Negative	45 FN	100 TN		

- True positive (TP): Predicted + and actual +
- True negative (TN): Predicted and actual -
- False positive (FP): Predicted + and actual -
- False negative (FN): Predicted and actual +

Actual positives

Predicted positives

(image credit: wikipedia)

Accuracy =
$$\frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Coarse metric

Precision and Recall

Precision: % of selected classes that are correct

$$Precision(+) = \frac{TP}{TP + FP}$$

• Recall: % of correct items selected

Recall(+) =
$$\frac{TP}{TP + FN}$$

Actual positives (relevant)

Predicted positives

(selected/retrieved)

(image credit: wikipedia)

F-Score

- Combined measure
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

• Or more generally,

Use β to control importance of Precision vs Recall

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

Aggregating scores

- How to handle more than 2 classes?
- We have Precision, Recall, F1 for each class

	g	old labels	3	
	urgent	normal	spam	
urgent	8	10	1	$\mathbf{precisionu} = \frac{8}{8+10+1}$
system output normal	5	60	50	$\mathbf{precision} = \frac{60}{5+60+50}$
spam	3	30	200	precisions= $\frac{200}{3+30+200}$
	recallu =	recalln =	recalls =	
	8	60	200	
	8+5+3	10+60+30	1+50+200	

(Credits: Dan Jurafsky)

Aggregating scores

- How to handle more than 2 classes?
- We have Precision, Recall, F1 for each class
- How to combine them for an overall score?
 - Macro-average: Compute for each class, then average
 - Micro-average: Collect predictions for all classes and jointly evaluate

Macro vs Micro average

Micro-averaged score is dominated by score on common classes

Class 1: Urgent							
	true urgent	true not					
system urgent	8	11					
system not	8	340					

 $precision = \frac{8}{8+11} = .42$

Class 2: Normal

precision =
$$\frac{60}{60+55}$$
 = .52

precision =
$$\frac{200}{200+33}$$
 = .8

precision =
$$\frac{200}{200+33}$$
 = .86 $\frac{\text{microaverage}}{\text{precision}} = \frac{268}{268+99}$ = .73

$$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$$

(Credits: Dan Jurafsky)

Precision Recall tradeoff

Tune on validation set

Train, val, test split

- Train model on training set
- Tune hyperparameters on validation set
- Evaluate performance on unseen test set

train validation test	
-----------------------	--

Why do we do this?

Summary

- Evaluation Metrics
 - Accuracy coarse metric
 - Precision, Recall, F1 for each class
- Aggregated scores
 - Macro-average: Compute for each class, then average
 - Micro-average: Collect predictions for all classes and jointly evaluate (dominated by common classes)
- Precision-Recall curve: pick threshold for maximum F1
 - Use validation set to tune hyperparameters, test set should remain "unseen"