®
%
PO N

EdINatLangLab

CMPT 413/713: Natural Language Processing

Classification

Spring 2024
2024-01-17

Adapted from slides from Danqgi Chen, Karthik Narasimhan, and Anoop Sarkar

1

Logistic regression

Discriminative Model

e Logistic Regression: model p(y | x) directly

Logistic Regression

e Powerful supervised model

P(y|[X) os
e Baseline approach to most NLP tasks

e Connections with neural networks

w-X+0b

e Binary (two classes) or multinomial (>2 classes)

Discriminative Model

discriminative model . foc;qs 0?
* Logistic Regression: C = dI'g I11dX P (C | d) 'S]?;;TJCSS'HQ
C

» Naive Bayes: ¢ = arg max P(c)P(d|c) °*" be used to
generative model C

generate the cat
and the dog

cats have
whiskers

Classification function

Given: Input feature vector |x;, x5, ..., x|
Output: P(y = 1|x) and P(y = 0| x) (binary classification)

Use a function, F : RY — [0,1] to model the probability P(y | x)

Sigmoid:) ﬁ
! P

(y|)

Why the sigmoid!? !

y_1+e—Z J

e Binary logistic regression uses the log-odds to determine
the probability.

° LOg-Odds: = ; — exp(f) 6Xp(€>
p —
¢ = log £ (1+ exp(£))
/ L=p p = exp(£)(1 —p) N 1 _
Value is also known B (1 + eXp(—ﬁ)) B

as logit (logistic unit)

p(1 + exp(f)) = exp(¥)

d
e ZIs a linear estimate of the log-odds: =z = Z wWiT; + b
1=1

o (£)

VWVeights and bias

Which features are important and how much??

Learn a vector of weights and a bias

d
Z = Zwl-xi+ b
i=1

Weights: Vector of real numbers, w = [w;,w,, ..., w/| Vector form
r=w-X+b=wix+1b

Bias: Scalar intercept, b

Putting it together

Given x, compute 7z =W - X + b

Compute probabilities: P(y = 1 |x) = o6(z) =

l +e%
Ply=0)=1—0o(w-x+)
Ply=1)=o(w-x+b) 1
1 =1 1+ e— (W-x+b)
6—(W-X—|—b)

1 4 e~ (wx+d)

~ 1 + e—(w-x+Dd)

Decision boundary: 3 i
otherwise

- {1 if P(y =1]|x) > 0.5

Decision boundary

Threshold can be set as

hyperparameter that is tuned
Decision boundary: /

1 ifP(y=1]|x)>0.5 w-X+b>0

= 0 otherwise w-x+b<(

2.9
2.0 4.
10— — | T :
1.'5 \\\\\\ vf':’
\\“ tle
P(y ‘ X) 0.8 104 RN % 5,
L ,%°° e o oy
’~ ®ge , o%"’ L S~
° ‘: Q;oo “\\
0.6 0.5 - y '.:‘r 0{??3.3 el T T
22 "a?“"' ~~~~~
% 80 - \:7 o JI “s\
”o? @ © &0009 \\\\\
04 0'0 7 3 .o::o%oo ~
—0.5
0.2
_1.0 ! I I T T v
—1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Decision boundary is linear
function of features

What do we use as features!?

11

Example: Sentiment classification

_ - - X3:1 ~~~~~~~~
It's @okewyThere are virtually @surprises , and the writing is@cond-rat .
So why was it so@njoyableY For one thing , the cast is

~7 . . .
. Another(nicedtouch is the music (Dwas overcome with the urge to get off
the couch and start,dancing . It sucked @R.in"~and it'll do the same to_§oD).

b |/ ~2 0 Y -

~
-~

N ~ -
— -

N S, _g-"
X1=3 x5=0 Xe=4.15 4
Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
o { 1 if “no” € doc |
0 otherwise

x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0

: 0 otherwise
x¢ log(word count of doc) In(64) =4.15

(Credits: Dan Jurafsky)

Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

p(+lx) =PY =1jx) = o(w-x+Db)
— 6([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.15] +0.1)
— (.805)
= 0.69

p(=x)=PY =0|x) = 1—oc(w-x+Db)

= 0.31

e Most important rule: Data is key!

Feature design

e Linguistic intuition (e.g. part of
speech tags, parse trees)

e Complex combinations

(1
0
(1
0
(1
0

if “Case(w;) = Lower”
otherwise
if “w; € AcronymDict”
otherwise

if “w; = St. & Case(w;_1) = Cap”

otherwise

e Feature templates

e Sparse representations, hash only seen
features into index

e EX. Trigram(/ogistic regression classifier)
= Feature #78

e Advanced: Representation learning (we will
see this with neural networks!)

Multinomial Logistic Regression

15

Multinomial Logistic Regression

e What if we have more than 2 classes? (e.g. Part of speech
tagging, named entity recognition)

e Needtomodel P(y =c|x)Vc e C

e (Generalize sigmoid function to softmax

softmax(z;) = |l <i<k

Zf:l e’ o
& \\] 0 3\W\0\\ \SO\+\Oﬂ

Softmax

e Similar to sigmoid, softmax squashes values towards 0 or 1
e Ifz=10,1,2,3.4], then

o softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

w. « Xx+b

C

P(y =c|x) =

j=1

Features in multinomial LR

e Features need to include both input (x) and class (c)
e |mplicit in binary case

Var Definition Wt

1 1f “!” € doc
f1(0,x) otherwise —4.

0
1 if “I” € doc

filHX) 9 0 otherwise 2.6
1
0

it “!” € doc

otherwise 1.3

fl(_vx)

Learning

* (Generalize binary loss to multinomial CE loss:

A k Binary CE loss
Leg(y,y) = — Z H{y = k}log P(y = k| x)

C;l _— — Z [y 1()gj> + (1 — y)lOg(l o j\})]
=~ Y 1{y = k}log -
k Wi b,
c=1 j=1
* Gradient:
dL
CE = — (l{y — C} —P(y — C‘X))XC
dw,
ewc-x+bc
— = l{y — C} T k er'x+bc XC

j=1

Logistic Regression: what’s good and
what’s not

e More freedom in designing features
e No strong independence assumptions like Naive Bayes

e More robust to correlated features (“San Francisco” vs “Boston”) —LR is
likely to work better than NB

e Can even have the same feature twice! (why?)
e However: not as good on small datasets (compared to Naive Bayes)

e |nterpreting learned weights can be challenging

Relationship to neural networks

21

Feed-forward NNs

o Input:x;,...,x;

e Output: y € {0,1}

\

»
%
STOSH0

% ; .
LSS ’I‘\“_/
/,“z'// ‘\\ : output layer

N
hidden layer 1 hidden layer 2

Input layer

An artificial neuron

e A neuron is a computational unit that has scalar inputs and an output
e Each input has an associated weight.

¢ The neuron multiples each input by its weight, sums them, applied a
nonlinear function to the result, and passes it to its output.

L) wy)

*® synapse
axon from a neuron
woxo

cell body

Z’LU,‘CB,‘, -1 b

w1

| (Z w;T; + b)

output axon

activation

Wo X9 function

23

Neural networks

e The neurons are connected to each other, forming a network
e The output of a neuron may feed into the inputs of other neurons

»
D % 6‘_’
/"\‘."//‘\\ : output layer

iInput layer

e Feed forward network (FFN) hidden layer 1 hidden layer 2

e Fully connected network (FCN)

A neuron can be a binary logistic regression unit

L Wy

*@® synapse
axon from a neuron
W

cell body

f (Z wW;T; + b)

4 >
output axon
activation | 1—

i
WoTo function /

O

25

A neural network
= running several logistic regressions at the same time

X
Va

‘ output layer

hidden layer 1 hidden layer 2

OO
/"‘«o
S

Input layer

e If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs...

e which we can feed into another logistic regression function

20

NN has other activation functions

sigmoid

B 1
14 ez

Zero centered

tanh
e?? — 1
f(2) = 57—
e~ + 1
1.0
(.5
0.U
0.5
1.0
6H -4 -2 0 2 4 6
.i..'
1.0 A
() S -A
()0
-0.5
-1.0
! 2 0 2 4 ¢

Advantages of ReLU?

ReLLU
(rectified linear unit)

f(z) = max(0, z)

1.4 /
0. '
0.1 /
1),
1.0 _
-6 -4 -2 0 2 4 6
o
1.0
0.5
00
-0
-1.0 |
-6 -4 -2 0 2 4 6
(2) 1 2>0
0 2<0

Advantages of neural networks

e Learn feature representations (no longer have to hand craft features)

Hand-crafted features Learned representations

dhistory

dreligion
dliberal
Var Definition Value in Fig. 5.2 Cecades Coonservati
: 4 . N Qsoclal = @ gitician
X1 count(positive lexicon) € doc) 3 e spolitics "
. . (’actlvism -
X2 count(negative lexicon) € doc) 2 o e T ™
| if “no” € doc R N
x N 1 Udebate @ 'Iisgue. (economics‘ education
3 O OtherWISe drevolution @ Umorality ¢ {science
@partisanship lideology ® _
x4 count(lst and 2nd pronouns € doc) 3 T wvaves
1 .f “'” d @ Iliberalis.rrb ® Gtalk
X 1 . 6 OC O §matters ® &topic dlife &focus
S O Otherwise ke fadministration geonser Va:ETch -
X6 lOg(WOrd COunt Of dOC) ln(64) — 4. 15 @matter @focused gfperspective

¢mind

28

fideas

Advantages of neural networks

e Learn feature representations (no longer have to hand code features)

e Multiple layers allow for more complex functions with non-linear decision boundaries

0.5F

_inear decision boundary

|
I
I
|
| y 4+ A4 ") S | y 4
0.5
|
!
|
|
’.‘ 4+ ¢ + 4
|
!

05} \ |] /
-1 »_1 1 " n 1 i A I A
=] 0.5 0 0.5

Linear classifier

Non-linear decision boundary

0.5 | \ /

Neural Networks

Linear decision boundary
_in transformed space

— e

o5t A /

osHUAA N\

AAAAAAAAAAA

Hidden representations
are linearly separable!

Advantages of neural networks

Learn feature representations (no longer have to hand code features)
Multiple layers allow for more complex functions with non-linear decision boundaries

Can build up complex models by connecting “neurons” into building blocks, and by
connecting these building blocks together

Optimization is mostly taken care of by auto-differentiation libraries

Development of flexible deep learning libraries allow researchers and developers to focus
more on modelling the problem

30

Back to Logistic Regression
How to learn the parameters?

31

Learning

 We have our classification function - how to assign
weights and bias?

e Goal: predicted label y as close as possible to actual label y

» Distance metric/Loss function between y and y :
L(y,y)

 Optimization algorithm for updating weights

Loss function
e Assume y = o(W : X + D)
e [(y,y) = Measure of difference between y and y. But what form?
e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true labels y paired

with input x
e Similar to language models!

e maxlog P(w,|w,_,,...,w,_;) given a corpus

Cross Entropy loss

Assume a single data point (x, y) and two classes
Classifier probability: P(y|x) = $ (1 —)17

Log probability: log P(y|x) = log[$ (1 — $)! 7]
= ylogy + (1 —y)log(1 - y)

Loss: —log P(v|x) = —[ylogy+ (1 — y)log(l — y)]

y=1= —logy y=0=> —log(l — V)

Example: Computing CE Loss

Var Definition Vi
x;1 count(positive lexicon) € doc) 3
X7 count(negative lexicon) € doc) 2
- <’ 1 if “no” € doc ,

) | 0 otherwise
x4 count(lst and 2nd pronouns € doc) 3
. <’ 1 if “!” € doc 0

| 0 otherwise

x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1
e Ify =1 (positive sentiment), L = —10g(0.69) = 0.37

o If y =0 (negative sentiment), L = —log(0.31) = 1.17

Cross Entropy loss

e Assume n data points (x(i),y(i))

n

+ Classifier probability: | | P(@[x®) = [[371 — $)'=
=1 =1

e | OSS: _logH P(yD | x®) = — 2 log P(y® | x®)
=1 =1

Log=—) [ylog9+ (1 — y)log(l - $)]
=1

Maximizing likelihood = Minimizing cross entropy

Properties of CE Loss

Lep=— Y, [y?1log3® + (1 — yD)log(l — $)]
=1

Ranges from O (perfect predictions) to oo

L ower the value, better the classifier

Cross-entropy between the true distribution P(y | x) and
predicted distribution P(y | x)

n n

1
:1 A :O A A
Leg=———log§———log(1 =§) =) p(y[0logp(1)

y=0

Optimization
e \We have our classification function and loss function - how do we find the best w and b?

0 = [w; D]

n | N
6 = arg min — Z LCE(y(’), xW: 0)
o N

* No close form solution: need to numerically determine optimal solution

e Gradient descent:
 Find direction of steepest slope

* Move in the opposite direction

Gradient descent (1-D)

Cost

Learning step

Minimum

Random W W
initial value

1+1 A d
0" =0 —n—L(f(x;0),y)

dHT

Loss function we are optimizing

Gradient descent for LR

 Cross entropy loss for logistic regression is convex (i.e.
has only one global minimum)

e No local minima to get stuck In

e Deep neural networks are not so easy

Local Maxima

® NOn—COnveX LocalMaxima

Local Maxima
Local Minima

Local Minima

Learning Rate

. Updates: '7! = ¢’ —@j—@L(f(x; 0),y)
L(6) L(0)

e Magnitude of movement along gradient

e Higher/faster learning rate = larger
updates to parameters

9* 0 9* 0
Too small: converge Too big: overshoot and
very slowly even diverge

Gradient descent with vector weights

e |In LR: weight w is a vector

e EXpress slope as a partial derivative of loss w.r.t
each weight:

S5-L(f(x:6),y)
O L(f(x:0),)

dwn

VoL(f(x;0),y)) =

G2 L(f(x:8),y)

e Updates: 0"t = 0" — y VL(f(x;0), y)

Gradient for logistic regression

Loy =— Z [y?log o(w - x + b) + (1 — yDlog(1 — o(w - xV + b))]
=1

dL p(w, D) L

Gradient, — 2 lo(w - x® + b) — ya)],%(i)
aw; =1 —~
pf% bmw\wa
o “NQ“«J\@"\ /
dL . (w.b) & T
eV) _ () N0
7 —Z[G(W x4+ b) — y\] ?LKW

=1

Properties of the logistic function

e Relationship to 6(—2z)

e’ l+ec—1
U(Z) — — - =1 — 0(_2)
] + e el + 1 1 + ez
=>|0(—2) =1 — o(2)
e Derivative do(2) = o0(2)(1 — 0(2))
dz
do(z) e 1

1
I (e Ttecerl Pz oai=ol)

Taking the gradient

Loy =— Z [y P log o(w - x4+ b) + (1 — yDlog(1 — o(w - xP + b))]
=1

Consider cross-entropy loss for the ith instance / data point with z = w - x4+ b

dL{}y |dL¢} dz dLyy |dL{)|dz
dw; | dz |dw, db | dz \db
dL¢y [0'(2) =02] do(2)
— _ [y® - (1 = y®) = o(2)(1 — 0(2))
dz Y o(2) =y 1 —o0(z) dz

I c(z)(1 — 0(2)) -0 —o(2)(1 — a(z))]
[y e By
dLéy _ ()
= — [y = 6(2))) + (1 =y (=0(2)| = = |y = 6(2)| = 6(z) — y© 1o o(2) — Y

Taking the gradient

Lop=— Z [y log o(w - x® + b) + (1 — yNlog(1 — 6(w - x© + b))]
=1

dLY | z=w-xY+pb
— = o0(z) -y
dz
(i) (i) d |
ilcp — Wep dz (o(w - x + b) — y@) x — =0
dw;, dz dw, f' dwj
dLg%? dngE dz dz
— _ D 4 p) — O a _
db dz db (00w - x4 b) = y7) b

Stochastic Gradient Descent

e Online optimization function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f 1s a function parameterized by 6

e Compute loss and # x is the set of training inputs x(1), x(z)...., x)
y 18 the set of training outputs (labels) y (2), y(”)

minimize after each

training example 00 |
repeat til done # see caption

For each training tuple (x'?), y{!)) (in random order)

LR 1. Optional (for reportlng) # How are we doing on this tuple?
A HEN R gompute 7@ = f(x);0) # What is our estimated output y? |
L Compute the loss L(() y()) # How far off is $\)) from the true output y(!)?
LoS3S 2. g VoL(f(x\V;0),y)) # How should we move 6 to maximize loss?
3.0<-60 —ng # Go the other way instead

return 6

Stochastic Gradient Descent

e Online optimization

e Compute loss and
minimize after each
training example

Gradient Descent - _—

Regularization

n
Training objective; 0 = arg max Z log P(y(i) \x(i))
0
i=1

This might fit the training set too well! (including noisy features)

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overfitting \/ PQN\\\S}L

n L .. T
6 = arg max Z log P(yW | xV) — aR(6)
O =

L2 regularization
d
« RO)=110]],=) 07
j=1

e Euclidean distance of weight vector @ from origin

e | 2 regularized objective:

n d
) — () | Oy — 2
H—argmglleogP(y | x) agé’j
= Jj=

L1 Regularization

d
« RO)=110]],=)16
j=1

e Manhattan distance of weight vector @ from origin

|1 regularized objective:

n d
0 = are max log P(vV | x) — o 0.
g m: 2:, g P(y@ | x) JZ"J'

L2 vs LI regularization

A L1 regularization B L2 regularization

e | 2 |s easier to optimize - simpler derivation

e L1 is complex since the derivative of | @] is not
continuous at O

e L2 |leads to many small weights (due to 0° term)

e |1 prefers sparse weight vectors with many weights set
to O (i.e. far fewer features used)

