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Neural Networks: Brief history
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NN “dark ages”

• ConvNets: applied to MNIST by LeCun in 1998

• Long Short-term Memory Networks (LSTMs): Hochreiter 
and Schmidhuber 1997

• Henderson 2003: neural shift-reduce parser, not SOTA

• Neural network algorithms (including backpropagation) date from the 80s
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• Rosenblatt’s Perceptron (1958)

• Minsky and Papert (1969) - perceptrons are severely limited

Credits: Greg Durrett



2008-2013: A glimmer of light

• Collobert and Weston 2011: “NLP (almost) 
from Scratch” 

• Feedforward NNs can replace “feature 

engineering”

• 2008 version was marred by bad experiments, 

claimed SOTA but wasn’t, 2011 version tied SOTA

Credits: Greg Durrett

• Krizhevskey et al, 2012: AlexNet for ImageNet 
Classification

• Socher 2011-2014: tree-structured RNNs 
working okay
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2014: Stuff starts working

• Kim (2014) + Kalchbrenner et al, 2014: sentence classification 

• ConvNets work for NLP!

Credits: Greg Durrett

• Sutskever et al, 2014: sequence-to-sequence for neural MT

• LSTMs work for NLP!

• Chen and Manning 2014: dependency parsing

• Even feedforward networks work well for NLP!

• 2015: explosion of neural networks for everything under the sun
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Why didn’t they work before?

• Datasets too small: for MT, not really better until you have 
1M+ parallel sentences (and really need a lot more)

Credits: Greg Durrett

• Optimization not well understood: good initialization, per-feature 
scaling + momentum (Adagrad/Adam) work best out-of-the-box

• Regularization: dropout is pretty helpful

• Computers not big enough: can’t run for enough iterations

• Inputs: need word embeddings to represent continuous semantics
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Representation learning

• Most NLP works in the past focused on human-designed 
representations and input features

• Representation learning attempts to automatically learn 
good features and representations

• Deep learning attempts to learn multiple levels of 
representation on increasing complexity/abstraction
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One example:

word embeddings



How to represent words?

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel — a localist representation


Words can be represented by one-hot vectors:

one 1, the rest 0’s

Vector dimension = number of words in vocabulary (e.g., 500,000)

hotel  = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

motel = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

There is no way to encode similarity of words in these vectors!

Each word is one 
dimension!



Word vectors

employees =

0

BBBBBBBBBBBB@

0.286
0.792
�0.177
�0.107
10.109
�0.542
0.349
0.271
0.487

1

CCCCCCCCCCCCA
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Distributed representation

(Meaning not isolated to one dimension)

Continuous space for words:

Similar words closer to each other



Neural Networks with
Word Embeddings
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Feedforward Neural LMs

• N-gram models:

(Bengio et 2003): A Neural Probabilistic Language Model

P (mat|the cat sat on the) ⇡ P (mat|the)
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Feedforward Neural LMs
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(Bengio et 2003): A Neural Probabilistic Language Model

• Input layer (context size n = 5):

x = [ethe; ecat; esat; eon; ethe] 2 Rdn
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concatenate word embeddings

• Hidden layer

h = tanh(Wx+ b) 2 Rh
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• Output layer (softmax)

z = Uh 2 R|V |
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P (w = i | context) = softmaxi(z)
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Neural Bag-of-Words (NBOW)

• Deep Averaging Networks (DAN) for Text Classification

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification

word embeddings

averaging
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Where do these word embeddings 
come from?
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Task specific training

• Assume you have annotated data specific 
to a task


• Initialize with random vectors

• Lookup table from word to vector

• Train your classifier 


• Classifier parameters are updated during 
training


• These parameters include the word 
vectors!


• After training, you get word vectors that 
are good for your task!



Pretraining and task-specific fine-tuning

Task-specific fine-tuning

• Annotated data specific to a task 

(usually small)

• Initialize with pre-trained model

Pretraining

• Big pile of unlabeled text data!

• Lots of resources to train!



Summary of three options
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• Random + train - Initialize with 
random embeddings and learn them 
when you train your classifier. 


• Pretrain + fixed - Initialize with 
pretrained embeddings + keep them 
fixed 


• Pretrain + fine-tune - Initialize with 
pretrained embeddings and then allow 
embedding weights to change as 
classifier is trained



How does this pretraining work?
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Big pile of unlabeled text data!




Representing words by their context

Distributional hypothesis: words that occur in similar 
contexts tend to have similar meanings

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking.



Distributional hypothesis

“tejuino” C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: We make ___ out of corn.



Distributional hypothesis

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: We make ___ out of corn.

“words that occur in similar contexts tend to have similar meanings”

Use as context:  other words that appear in a span around the target word



How are these embeddings learned?

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: We make ___ out of corn.

“words that occur in similar contexts tend to have similar meanings”
Use as context:  other words that appear in a span around the target word

Get embeddings by counting or by 
predicting (i.e. training a classifier)!



How are these embeddings learned?

C1 C2 C3 C4

tejuino 1 1 1 1

loud 0 0 0 0

motor-oil 1 0 0 0

tortillas 0 1 0 1

choices 0 1 0 0

wine 1 1 1 0

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: We make ___ out of corn.

“words that occur in similar contexts tend to have similar meanings”
Use as context:  other words that appear in a span around the target word

Get embeddings by counting or by 
predicting (i.e. training a classifier)!



word-word (term-context) co-occurrence matrix 


• Our first solution: use context vectors to represent the 
meaning of words

Representing words as vectors

• What we are aiming for:

• Each word is a vector

• Similar words are “nearby in space”

10 CHAPTER 6 • VECTOR SEMANTICS

tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 6.5 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 6.5 Co-occurrence vectors for four words, computed from the Brown corpus, show-
ing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the
word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Note in Fig. 6.5 that the two words apricot and pineapple are more similar to
each other (both pinch and sugar tend to occur in their window) than they are to
other words like digital; conversely, digital and information are more similar to each
other than, say, to apricot. Fig. 6.6 shows a spatial visualization.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

Example from: Dan Jurafsky



Can measure similarity of words

cos(u,v) =
u · v

kukkvk
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cos(u,v) =

PV
i=1 uiviqPV

i=1 u
2
i

qPV
i=1 v

2
i
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Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

• if sugar appears a lot near apricot, that's useful information. 


• But overly frequent words like the, it, or they are not very 
informative about the context 


Solution: let’s weight the counts! 

• TF-IDF = Traditional method used in document retrieval  

• PPMI = Positive Pointwise Mutual Information



Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

• if sugar appears a lot near apricot, that's useful information. 


• But overly frequent words like the, it, or they are not very 
informative about the context 


Solution: let’s weight the counts! 

• TF-IDF = Traditional method used in document retrieval  

• PPMI = Positive Pointwise Mutual Information



Tf-idf 
                         Term-document matrix


 = count of times term  occurred in document count(t, d) t d

• Documents are represented by the column vectors




Tf-idf 
                         Term-document matrix


 = count of times term  occurred in document count(t, d) t d

• Documents are represented by the column vectors

• Words are represented by row vectors

Tf-idf: re-weighing scheme for information retrieval

• Down-weighs frequent words such as this, that, the



Tf-idf combine two factors

 tf: term frequency. frequency count (usually log-transformed):

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13
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Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:

Words like “the” or “it” will have very low idf

14 CHAPTER 6 • VECTOR SEMANTICS

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

tf-idf value for word t in document d

There are variations on the exact 

formulation of tf and idf

+1 (avoid 0 in denominator)
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Figure 6.7 A graphical demonstration of the cosine measure of similarity, showing vectors
for three words (apricot, digital, and information) in the two dimensional space defined by
counts of the words data and large in the neighborhood. Note that the angle between digital
and information is smaller than the angle between apricot and information. When two vectors
are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1)
when the angle between two vectors is smallest (0�); the cosine of all other angles is less than
1.

once or twice. Yet words that are too frequent—ubiquitous, like the— are unimpor-
tant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): simply the frequency of theterm frequency

word in the document, although we may also use functions of this frequency
like the log frequency.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The inverse
document frequency or IDF term weight (Sparck Jones, 1972) is one way of

inverse
document
frequency

IDF assigning higher weights to these more discriminative words. IDF is defined
using the fraction N/dfi, where N is the total number of documents in the
collection, and dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight. The lowest
weight of 1 is assigned to terms that occur in all the documents. Because of
the large number of documents in many collections, this measure is usually
squashed with a log function.

It’s usually clear what counts as a document: when processing a collection
of encyclopedia articles like Wikipedia, the document is a Wikipedia page; in
processing newspaper articles, the document is a single article. Occasionally
your corpus might not have appropriate document divisions and you might
need to break up the corpus into documents yourself.

The resulting definition for inverse document frequency (IDF) is thus

idfi = log
✓

N
dfi

◆
(6.12)

The tf-idf weighting of the value for word i in document j, wi j thus combinestf-idf

Total # of  docs in collection

# of  docs that have word i

  idf: inverse document frequency: 



Raw counts vs tf-idf

                         Raw Counts

                         Tf-idf 

Common words 

are down weighted

37 plays total



Tf-idf summary

• Tf-idf: term-frequency inverse-document frequency


• Re-weighing scheme originally designed for information retrieval

• Down-weighs frequent words such as this, that, the


• Can be used to

• measure the similarity between words

• measure the similarity between documents

• measure the similarity between a query (mini-document) and a document

• as features for classifiers


• Useful to know about (good baseline method)

• But not typically used for word embeddings



Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

• if sugar appears a lot near apricot, that's useful information. 


• But overly frequent words like the, it, or they are not very 
informative about the context 


Solution: let’s weight the counts! 

• TF-IDF = Traditional method used in document retrieval  

• PPMI = Positive Pointwise Mutual Information



PPMI

PPMI = Positive Pointwise Mutual Information

Do two events co-occur more than if they were independent?

PMI ranges from 
 to  −∞ +∞

Negative values are 
problematic so cap 
bottom to 0

Joint probability

Marginals

Negative if co-occurs 
less than if independent



Computing PPMI on a term-context matrix

• Matrix  with  rows (words) and  columns (contexts)


•  is # of times  occurs in context 
F W C

fij wi cj

pij =
fij

fij
j=1

C

∑
i=1

W

∑ pi* =
fij

j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

ppmiij =
pmiij if  pmiij > 0

0 otherwise

!
"
#

$#Joint probability Marginals

pmiij = log2
pij

pi*p* j



p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

Np(cj ) =
fij

i=1

W

∑

N

Computing PPMI on a term-context matrix

count(wi, contextj)

Total count N

p(w = information, c = data) = 6/19 = 0.32

p(w = information) = 11/19 = 0.58
p(c = data) = 7/19 = 0.37



PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

pmiij = log2
pij

pi*p* j

ppmiij =
pmiij if  pmiij > 0

0 otherwise

!
"
#

$#

pmi(w = information, c = data) = log2
0.32

0.37 × 0.58
= 0.58 Actually 0.57 using full 

precision



Issues with PMI

PMI is biased toward infrequent events

• Very rare words have very high PMI values


Two solutions:

• Weighted PMI: Give rare words slightly higher 

probabilities

• Use add-one smoothing (which has a similar effect)



Weighting PMI

Give rare context words slightly higher probability 

Raise the context probabilities to :α = 0.75
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p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.
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the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w count(w)a (6.23)

Setting a = .75 gives better performance because it gives rare noise words
slightly higher probability: for rare words, Pa(w) > P(w). To visualize this intu-
ition, it might help to work out the probabilities for an example with two events,
P(a) = .99 and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.24)

Given the set of positive and negative training instances, and an initial set of
embeddings, the goal of the learning algorithm is to adjust those embeddings such
that we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.

We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.25)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.26)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix

 This helps because  for rare 
 Consider two events,  and 

Pα(c) > P(c) c
P(a) = .99 P(b) = .01

 is low, so PPMI is high

Higher   lower 
P(c)

Pα(c) → PPMIα



Smoothed PPMI (add-2)

Add#2%Smoothed%Count(w,context)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

p(w,context),[add02] p(w)
computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 0.03 0.03 0.05 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17

•Use Laplace smoothing

•Alternative to using 
weighted PPMI



PPMI versus add-2 smoothed PPMI

PPMI(w,context).[add22]
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00
information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1



Building word vectors by counting

• Build word-word (term-context) co-occurrence matrix 

Raw counts

Positive pointwise 

mutual information

Practically, use smoothed/weighted PPMI to help 
with rare words having very high PMI values

Vectors are very long, sparse.  How to get short 
dense vectors?



Sparse vs dense vectors

43

Vectors we get from word-word (term-context) co-occurrence matrix are
• long (length |V|= 20,000 to 50,000)
• sparse (most elements are zero)

True for both one-hot and PPMI vectors


Alternative: we want to represent words as 

•  short (50-300 dimensional) 

•  dense (real-valued) vectors employees =

0

BBBBBBBBBBBB@

0.286
0.792
�0.177
�0.107
10.109
�0.542
0.349
0.271
0.487

1

CCCCCCCCCCCCA
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More memory efficient and easier to work with

Capture similarity between words better

Distributed representation



Why dense vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than storing explicit counts

• They do better at capturing synonymy


•  co-occurs with “car”,  co-occurs with “automobile”w1 w2

• Different methods for getting dense vectors:

• Singular value decomposition (SVD)

• word2vec and friends: “learn” the vectors!

44

Count based method 

(known since the 1990s)



Wk

1.....k

 w × k

Using SVD for obtaining dense vectors

In our case,  is a matrix.  Assume X |V | × |V | m = |V |

45

SVD = Singular value decomposition

W

 w × m

Σ
 m × m

C

 m × c

W
C

 m × c
k

 m × m
kk

k
 w × m

Σ

X

 w × c

word-word

PPMI matrix

1) SVD

2) Truncation

3) Embeddings CΣ

embedding for word i

1

2

.

.

i

.

w

=

≈

 is a diagonal matrix with singular values:

                      where  is the rank of the matrix 


 has orthonormal columns,   has orthonormal rows

Σ
σ1, …, σi, …, σm m X
U = W V⊤ = C

X = UΣV⊤

Finally, we take th row of  as the embedding of word   i Wk i

Truncation: 


• Select the first  columns of  to get -dimensional row vectors


• Note that the singular values are ordered from largest to smallest, which 
each singular value representing the variance captured by that dimension


• So the first  dimensions are the dimensions with the most variance

k W k

k

Note there are variants where the word embedding matrix is taken to be

  (with common values being ) WkΣλ λ = 1, 0.5, or 0

traditional



What is wrong with using SVD?

• Computational complexity is high: 


• Cannot be trained as part of a larger model


• Not a component that can be part of a larger neural network


• Cannot be trained discriminatively for a particular task

O( |V |3 )
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Why dense vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than storing explicit counts

• They do better at capturing synonymy


•  co-occurs with “car”,  co-occurs with “automobile”w1 w2

• Different methods for getting dense vectors:

• Singular value decomposition (SVD)

• word2vec and friends: “learn” the vectors!
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bottle likes before make corn

tejuino 1 1 1 1 1

loud 0 0 0 0 0

motor-oil 1 0 0 0 0

tortillas 0 1 0 1 1

choices 0 1 0 0 0

wine 1 1 1 0 0

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: We make ___ out of corn.

“words that occur in similar contexts tend to have similar meanings”
Use as context:  other words that appear in a span around the target word

How are these embeddings learned?

Learn predictor to fill in the blank!

• Represent each word as a vector

• Train classifier to predict word using 

context words.

• During training, the word vector is 
updated so that it is possible to predict 
the center word using the context words 



Summary

• Representing words as vectors


• One-hot vectors vs vectors built using context


• Cosine similarity for measuring similarity between words


• Using context to represent words


• Distributional hypothesis: 


words that occur in similar contexts tend to have similar meanings


• Co-occurrence matrix


• Raw counts


• TF-IDF (term-frequency inverse-document-frequency)


• PPMI (positive pointwise mutual information)


• Dense vectors via SVD or learned by predicting the missing word


