

Word Embeddings

Spring 2024 2024-01-22

Adapted from slides from Dan Jurafsky, Chris Manning, Danqi Chen and Karthik Narasimhan

CMPT 413/713: Natural Language Processing

Neural Networks: Brief history

NN "dark ages"

- Rosenblatt's Perceptron (1958)
 - Minsky and Papert (1969) perceptrons are severely limited
- Neural network algorithms (including backpropagation) date from the 80s
- ConvNets: applied to MNIST by LeCun in 1998

- Long Short-term Memory Networks (LSTMs): Hochreiter and Schmidhuber 1997
- Henderson 2003: neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light

- Collobert and Weston 2011: "NLP (almost) from Scratch"
 - Feedforward NNs can replace "feature" engineering"
 - 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al, 2012: AlexNet for ImageNet Classification
- Socher 2011-2014: tree-structured RNNs working okay

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al, 2014: sentence classification
 - ConvNets work for NLP!
- Sutskever et al, 2014: sequence-to-sequence for neural MT
 - LSTMs work for NLP!
- Chen and Manning 2014: dependency parsing
 - Even feedforward networks work well for NLP!

• 2015: explosion of neural networks for everything under the sun

Why didn't they work before?

• **Datasets too small**: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)

- - Regularization: dropout is pretty helpful
 - Computers not big enough: can't run for enough iterations

• **Optimization not well understood**: good initialization, per-feature scaling + momentum (Adagrad/Adam) work best out-of-the-box

• Inputs: need word embeddings to represent continuous semantics

Representation learning

• Most NLP works in the past focused on human-designed representations and input features

Var	Definition	Value in Fig. 5.2
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(64) = 4.15$

- **Representation learning** attempts to automatically learn good features and representations
- **Deep learning** attempts to learn multiple levels of representation on increasing complexity/abstraction

One example: word embeddings

How to represent words?

In traditional NLP, we regard words as discrete symbols: hotel, conference, motel – a localist representation

Words can be represented by one-hot vectors:

one 1, the rest o's

Each word is one dimension!

- Vector dimension = number of words in vocabulary (e.g., 500,000)

There is no way to encode similarity of words in these vectors!

(Meaning not isolated to one dimension)

Word vectors

Continuous space for words: Similar words closer to each other

Neural Networks with Word Embeddings

Feedforward Neural LMs

• N-gram models: P(mat|the cat sat on the)

(Bengio et 2003): A Neural Probabilistic Language Model

Feedforward Neural LMs

• P(mat | the cat sat on the) = ?

• Input layer (context size n = 5):

$$\mathbf{x} = [\mathbf{e}_{\text{the}}; \mathbf{e}_{\text{cat}}; \mathbf{e}_{\text{sat}}; \mathbf{e}_{\text{on}}; \mathbf{e}_{\text{the}}] \in \mathbb{R}^{dn}$$

concatenate word embeddings

Hidden layer

 $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$

• Output layer (softmax)

$$\mathbf{z} = \mathbf{U}\mathbf{h} \in \mathbb{R}^{|V|}$$

 $P(w = i \mid \text{context}) = softmax_i(\mathbf{z})$

(Bengio et 2003): A Neural Probabilistic Language Model

• Deep Averaging Networks (DAN) for Text Classification

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification

Neural Bag-of-Words (NBOW)

Where do these word embeddings come from?

Task specific training

- Assume you have annotated data specific to a task
- Initialize with random vectors
- Lookup table from word to vector
- Train your classifier
 - Classifier parameters are updated during training
 - These parameters include the word vectors!
 - After training, you get word vectors that are good for your task!

Pretraining and task-specific fine-tuning

Pretraining

- Big pile of unlabeled text data!
- Lots of resources to train!

Task-specific fine-tuning

- Annotated data specific to a task (usually small)
- Initialize with pre-trained model

- **Random + train** Initialize with random embeddings and learn them when you train your classifier.
- **Pretrain + fixed** Initialize with pretrained embeddings + keep them fixed
- **Pretrain + fine-tune** Initialize with pretrained embeddings and then allow embedding weights to change as classifier is trained

Summary of three options

How does this pretraining work?

Big pile of unlabeled text data!

Representing words by their context

contexts tend to have similar meanings

J.R.Firth 1957

...government debt problems turning into **banking** crises as happened in 2009... ...saying that Europe needs unified **banking** regulation to replace the hodgepodge... ...India has just given its **banking** system a shot in the arm...

These context words will represent **banking**.

Distributional hypothesis: words that occur in similar

• "You shall know a word by the company it keeps"

One of the most successful ideas of modern statistical NLP!

Distributional hypothesis

"tejuino"

- C1: A bottle of ______ is on the table.
- C2: Everybody likes _____.
- C3: Don't have _____ before you drive.
- C4: We make _____ out of corn.

Distributional hypothesis "words that occur in similar contexts tend to have similar meanings"

C1: A bottle of ______ is on the table.

C2: Everybody likes _____.

C3: Don't have _____ before you drive.

C4: We make _____ out of corn.

Use as context: other words that appear in a span around the target word

	C1	C2	C3	C4
tejuino	1	1	1	1
loud	Ο	Ο	Ο	Ο
motor-oil	1	Ο	0	Ο
tortillas	Ο	1	0	1
choices	0	1	0	Ο
wine	1	1	1	Ο

How are these embeddings learned?

Get embeddings by counting or by predicting (i.e. training a classifier)!

C1: A bottle of _____ is on the table.

C2: Everybody likes _____.

C3: Don't have _____ before you drive.

C4: We make _____ out of corn.

Use as context: other words that appear in a span around the target word "words that occur in similar contexts tend to have similar meanings"

	C1	C2	C3	C4
tejuino	1	1	1	1
loud	Ο	Ο	0	Ο
motor-oil	1	0	0	Ο
tortillas	Ο	1	0	1
choices	0	1	0	0
wine	1	1	1	0

. - - - - - -

How are these embeddings learned?

Get embeddings by counting or by predicting (i.e. training a classifier)!

C1: A bottle of _____ is on the table.

C2: Everybody likes _____.

C3: Don't have _____ before you drive.

C4: We make _____ out of corn.

Use as context: other words that appear in a span around the target word "words that occur in similar contexts tend to have similar meanings"

	C1	C2	C3	C4
tejuino	1	1	1	1
loud	Ο	Ο	0	Ο
motor-oil	1	0	0	Ο
tortillas	Ο	1	0	1
choices	0	1	0	0
wine	1	1	1	0

. - - - - - -.

- What we are aiming for:
 - Each word is a vector
 - Similar words are "nearby in space"
- Our first solution: use context vectors to represent the meaning of words

word-word (term-context) co-occurrence matrix

sugar, a sliced lemon, a tablespoonful of **apricot** their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**. for the purpose of gathering data and **information**

aardvark		compu	ter	data	р	inch	res	ult	sugar	
	0		0	0		1		0	1	
	0		0	0		1		0	1	
	0		2	1		0		1	0	
	0		1	6		0		4	0	

apricot
pineapple
digital
information

Representing words as vectors

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

Example from: Dan Jurafsky

Can measure similarity of words

Problem with raw frequencies

- **Problem:** using raw frequency counts is not always very good.
 - if sugar appears a lot near apricot, that's useful information.
 - But overly frequent words like *the*, *it*, or *they* are not very informative about the context
- **Solution**: let's weight the counts! • TF-IDF = Traditional method used in document retrieval • PPMI = Positive Pointwise Mutual Information

Problem with raw frequencies

- if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like *the*, *it*, or *they* are not very informative about the context

Solution: let's weight the counts!

Problem: using raw frequency counts is not always very good.

• TF-IDF = Traditional method used in document retrieval • PPMI = Positive Pointwise Mutual Information

Term-document matrix count(t, d) = count of times term t occurred in document d

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	1	0	7	13	
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

• Documents are represented by the column vectors

Tf-idf

Term-document matrix count(t, d) = count of times term t occurred in document d

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Words are represented by row vectors

Tf-idf: re-weighing scheme for information retrieval Down-weighs frequent words such as this, that, the

Tf-idf

• Documents are represented by the column vectors

Tf-idf combine two factors

tf: term frequency. frequency count (usually log-transformed):

$$\mathrm{tf}_{t,d} = \begin{cases} 1 + \log_{10} \mathrm{cour}\\ 0 \end{cases}$$

idf: inverse document frequency:

Words like "the" or "it" will have very low idf tf-idf value for word t in document d

$$W_{t,d} =$$

 $\operatorname{nt}(t,d)$ if $\operatorname{count}(t,d) > 0$ otherwise

 $tf_{t,d} \times idf_t$

Raw counts vs tf-idf

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3
		Tf-idf		
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Word	df	idf			
Romeo	1	1.57			
salad	2	1.27			
Falstaff	4	0.967			
forest	12	0.489			
battle	21	0.246			
wit	34	0.037			
fool	36	0.012			
good	37	0			
sweet	37	0			
37 plays total					

Raw Counts

Common words are down weighted

- Tf-idf: term-frequency inverse-document frequency
- Re-weighing scheme originally designed for information retrieval • Down-weighs frequent words such as *this*, *that*, *the*
- Can be used to
 - measure the similarity between a query (mini-document) and a document

 - measure the similarity between words • measure the similarity between documents
 - as features for classifiers
- Useful to know about (good baseline method)
- But not typically used for word embeddings

Tf-idf summary

Problem with raw frequencies

- **Problem:** using raw frequency counts is not always very good.
 - if sugar appears a lot near apricot, that's useful information.
 - But overly frequent words like *the*, *it*, or *they* are not very informative about the context
- **Solution**: let's weight the counts! • TF-IDF = Traditional method used in document retrieval • PPMI = Positive Pointwise Mutual Information

PPMI(w,c) = ma

PMI ranges from $-\infty$ to $+\infty$

Negative if co-occurs less than if independent

PPMI

Do two events co-occur more than if they were independent?

PPMI = Positive Pointwise Mutual Information

Joint probability

$$ax(\log_2 \frac{P(w,c)}{P(w)P(c)},0)$$

Marginals

Negative values are problematic so cap bottom to o

Computing PPMI on a term-context matrix

- Matrix *F* with *W* rows (words) and *C* columns (contexts)
- f_{ij} is # of times w_i occurs in context c_j

	aardvark	computer	data	pinch	result	sugar			
apricot	0	0	0	1	0	1			
pineapple	0	0	0	1	0	1			
digital	0	2	1	0	1	0			
information	0	1	6	0	4	0			if mai (
							nnmi =	pm_{ij}	If $pm_{ij} > 0$
1 . 1 . 1		ЛЛ	•				P rr ij	0	otherwise

Joint probability

$$p_{ij} = \frac{f_{ij}}{\sum_{w \in C} f_{ij}}$$
$$\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}$$

Marginals

$$p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

 $pmi_{ij} = \log_2 \frac{r_{ij}}{p_{i*}p_{*j}}$

Computing PPMI on a term-context matrix

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$
aprico
pinear
digital
inform

p(w = information, c = data) = 6/19 = 0.32

		p(w,context)						
		computer	data	pinch	resul			
	apricot	0.00	0.00	0.05	0.00			
	pineapple	0.00	0.00	0.05	0.00			
W	digital	0.11	0.05	0.00	0.05			
$\sum f_{ij}$	information	0.05	0.32	0.00	0.21			
$p(c_j) = \frac{i=1}{N}$	p(context)	0.16	0.37	0.11	0.26			

p(c = data) = 7/19 = 0.37

	Count(w,context)									
	computer	C	lata	pinch	result	sugar				
ot	0		0	1	0	1				
pple	0		0	1	0	1				
l –	2		1	0	1	0				
nation	1		6	0	4	0				

p(w) **It sugar**0 0.05 0.11
0 0.05 0.11
5 0.00 0.21
1 0.00 0.58 $p(w_i) = \frac{C}{\sum f_{ij}}$ N

6 0.11

p(w = information) = 11/19 = 0.58

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i^*} p_{*j}}$$

pmi(w = infor

								PPMI(w,c	context)		
			n				computer	data	pinch	result	sug
	nmi –	10σ	P_i	ij	арі	ricot	-	-	2.25	-	2.
	pmi _{ij} –	1082	$\frac{2}{n}$	n	pin	eapple	-	_	2.25	-	2.
			P_{i^*}	J_{*j}	dig	jital	1.66	0.00	-	0.00	
				20	info	ormation	0.00	0.57	-	0.47	
ormation,	c = data)	$= \log_2$	$2\frac{0.1}{0.37}$	52 < 0.58	= 0.58		Actua	ally 0.57 u	sing full		
	Ķ	o(w,con	text)			p(w)		precisioi	n		
	computer	data	pinch	result	sugar						
apricot	0.00	0.00	0.05	0.00	0.05	0.11		ſ	•	:f	
pineapple	0.00	0.00	0.05	0.00	0.05	0.11	nn	mi _	pmi _{ij}	II pmi	$z_{ij} > 0$
digital	0.11	0.05	0.00	0.05	0.00	0.21	PP		Ο	othom	
information	0.05 n	0.32	0.00	0.21	0.00	0.58		l	U	ouler	WISC
p(context)	0.16	0.37	0.11	0.26	0.11						

PMI is biased toward infrequent events

Two solutions:

- Weighted PMI: Give rare words slightly higher probabilities

Issues with PMI

• Very rare words have very high PMI values

• Use add-one smoothing (which has a similar effect)

Weighting PMI

 $P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}} \qquad P(c) \text{ is low, so PPMI is high} \\ \text{Higher } P_{\alpha}(c) \to \text{lower PPMI}_{\alpha}$ $\frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$ $\frac{.01^{.75}}{9^{.75} + .01^{.75}} = .03$

Give rare context words slightly higher probability Raise the context probabilities to $\alpha = 0.75$: $PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)},0)$ This helps because $P_{\alpha}(c) > P(c)$ for rare cConsider two events, P(a) = .99 and P(b) = .01

$$P_{\alpha}(a) = \frac{1}{.99}$$

$$P_{\alpha}(b) = \frac{1}{.99}$$

Smoothed PPMI (add-2)

- •Use Laplace smoothing
- •Alternative to using weighted PPMI

com

apricot pineapple digital information

	K	p(w)				
	computer	data	pinch	result	sugar	
apricot	0.03	0.03	0.05	0.03	0.05	0.20
pineapple	0.03	0.03	0.05	0.03	0.05	0.20
digital	0.07	0.05	0.03	0.05	0.03	0.24
information	0.05	0.14	0.03	0.10	0.03	0.36
p(context)	0.19	0.25	0.17	0.22	0.17	

Add-2 Smoothed Count(w,context)

puter	data	pinch	result	sugar
2	2	3	2	3
2	2	3	2	3
4	3	2	3	2
3	8	2	6	2

PPMI versus add-2 smoothed PPMI

		PPMI(w,	context)				
	computer	data	pinch	result	sugar		
apricot	_	_	2.25	-	2.25		
pineapple	_	_	2.25	-	2.25		
digital	1.66	0.00	-	0.00	_		
information	0.00	0.57	-	0.47	-		
	PPMI(w,context) [add-2]						
	computer	data	pinch	result	sugar		
apricot	0.00	0.00	0.56	0.00	0.56		
pineapple	0.00	0.00	0.56	0.00	0.56		
digital	0.62	0.00	0.00	0.00	0.00		
information	0.00	0.58	0.00	0.37	0.00		

data	pinch	result	sugar
-	2.25	-	2.25
-	2.25	-	2.25
0.00	-	0.00	-
0.57	-	0.47	_

Building word vectors by counting

• Build word-word (term-context) co-occurrence matrix

	computer	data	result	pie	sugar	
cherry	2	8	9	442	25	
strawberry	0	0	1	60	19	
digital	1670	1683	85	5	4	
information	3325	3982	378	5	13	
	computer	data	re	sult	pie	sug
cherry	0	0		0	4.38	3.3
strawberry	0	0		0	4.10	5.5
digital	0.18	0.01		0	0	0
information	0.02	0.09	0	.28	0	0

Practically, use smoothed/weighted PPMI to help with rare words having very high PMI values

Vectors are very long, sparse. How to get short dense vectors?

Raw counts

Positive pointwise mutual information

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

- Vectors we get from word-word (term-context) co-occurrence matrix are Iong (length |V| = 20,000 to 50,000)
- **sparse** (most elements are zero) True for both one-hot and PPMI vectors

Alternative: we want to represent words as

- **short** (50-300 dimensional)
- dense (real-valued) vectors

More memory efficient and easier to work with $\begin{pmatrix} 0.271\\ 0.487 \end{pmatrix}$ Capture similarity between words better

Sparse vs dense vectors

Distributed representation

Why dense vectors?

- Dense vectors may generalize better than storing explicit counts
- Short vectors are easier to use as features in ML systems
- They do better at capturing synonymy
 - w_1 co-occurs with "car", w_2 co-occurs with "automobile"

- Different methods for getting dense vectors:
 - Singular value decomposition (SVD)
 - word2vec and friends: "learn" the vectors!

SVD

Count based method (known since the 1990s)

Using SVD for obtaining dense vectors

SVD = Singular value decomposition

 Σ is a diagonal matrix with singular values:

- $\sigma_1, \ldots, \sigma_i, \ldots, \sigma_m$ where *m* is the rank of the matrix **X**
- $\mathbf{U} = \mathbf{W}$ has orthonormal columns, $\mathbf{V}^{\top} = \mathbf{C}$ has orthonormal rows

In our case, **X** is a $|V| \times |V|$ matrix. Assume m = |V|

Truncation:

- Select the first *k* columns of **W** to get *k*-dimensional row vectors
- Note that the singular values are ordered from largest to smallest, which each singular value representing the variance captured by that dimension
- So the first *k* dimensions are the dimensions with the most variance

Finally, we take *i*th row of \mathbf{W}_k as the embedding of word *i*

Note there are variants where the word embedding matrix is taken to be $\mathbf{W}_k \mathbf{\Sigma}^{\lambda}$ (with common values being $\lambda = 1$, 0.5, or 0)

What is wrong with using SVD?

- Computational complexity is high: $O(|V|^3)$
- Cannot be trained as part of a larger model
 - Not a component that can be part of a larger neural network
- Cannot be trained discriminatively for a particular task

Why dense vectors?

- Short vectors are easier to use as features in ML systems
- Dense vectors may generalize better than storing explicit counts
- They do better at capturing synonymy
 - w_1 co-occurs with "car", w_2 co-occurs with "automobile"

- Different methods for getting dense vectors: • Singular value decomposition (SVD) • word2vec and friends: "learn" the vectors!

How are these embeddings learned?

Learn predictor to fill in the blank!

C1: A bottle of _____ is on the table.

- Represent each word as a vector
 Train classifier to predict word using context words.
- During training, the word vector is updated so that it is possible to predict the center word using the context words

Use as context: other words that appear in a span around the target word "words that occur in similar contexts tend to have similar meanings"

	bottle	likes	before	make	corn
tejuino	1	1	1	1	1
loud	0	0	Ο	0	0
motor-oil	1	0	0	0	0
tortillas	0	1	0	1	1
choices	0	1	Ο	0	0
wine	1	1	1	0	0

- Representing words as vectors
 - One-hot vectors vs vectors built using context
 - Cosine similarity for measuring similarity between words
- Using context to represent words
 - Distributional hypothesis: words that occur in similar contexts tend to have similar meanings
- Co-occurrence matrix
 - Raw counts
 - TF-IDF (term-frequency inverse-document-frequency)
 - PPMI (positive pointwise mutual information)
- Dense vectors via SVD or learned by predicting the missing word

Summary