®
%
PO N

EdINatLangLab

CMPT 413/713: Natural Language Processing

Word Embeddings

Spring 2024
2024-01-22

Adapted from slides from Dan Jurafsky, Chris Manning, Dangi Chen and Karthik Narasimhan

Neural Networks: Brief history

NN “dark ages”

e Rosenblatt’s Perceptron (1958)
e Minsky and Papert (1969) - perceptrons are severely limited

e Neural network algorithms (including backpropagation) date from the 8os

e ConvNets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
28x28
32x32 5@ ?250 layer F6 layer OUTPUT

LASONN

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection output

block output

LSTM block y

¢ Long Short-term Memory Networks (LSTMs): Hochreiter
and Schmidhuber 1997

peepholes

HHHHHHH

e Henderson 2003: neural shift-reduce parser, not SOTA

input recurrent

3 Credits: Greg Durrett

2008-2013:A glimmer of light

e Collobert and Weston 2011: “NLP (almost)
from Scratch”

e Feedforward NNs can replace “feature
engineering’

e 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

e Krizhevskey et al, 2012: AlexNet for ImageNet
Classification

e Socher 2011-2014: tree-structured RNNs

working okay not very good..
a b C

4 Credits: Greg Durrett

20 14: Stuff starts working

Kim (2014) + Kalchbrenner et al, 2014: sentence classification
e ConvNets work for NLP!

Sutskever et al, 2014: sequence-to-sequence for neural MT
e LSTMs work for NLP!

Chen and Manning 2014: dependency parsing
e Even feedforward networks work well for NLP!

2015: explosion of neural networks for everything under the sun

5 Credits: Greg Durrett

Why didn’t they work before!?

Datasets too small: for MT, not really better until you have
1M+ parallel sentences (and really need a lot more)

Optimization not well understood: good initialization, per-feature
scaling + momentum (Adagrad/Adam) work best out-of-the-box

e Regularization: dropout is pretty helpful
e Computers not big enough: can’t run for enough iterations

Inputs: need word embeddings to represent continuous semantics

5 Credits: Greg Durrett

Representation learning

e Most NLP works in the past focused on human-designed
representations and input features

Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2

{ 1 if “no” € doc 1

0 otherwise

x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!I” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Representation learning attempts to automatically learn
good features and representations

e Deep learning attempts to learn multiple levels of One example:
representation on increasing complexity/abstraction word embeddings

How to represent words!

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — a localist representation

one 1, the rest 0’s

Each word is one
Words can be represented by one-hot vectors:

dimension!

hotel =[000000000001000O0]
motel =[000100000000000 0]

Vector dimension = number of words in vocabulary (e.g., 500,000)

There is no way to encode similarity of words in these vectors!

Word vectors

Continuous space for words:
Similar words closer to each other

dhistory
dreligion
dliberal
¥decades vl (conservativ:
elections
N SBocks . @ lpglitician
“eountry spolitics “**"
@ Ypartisan o dmedia
0.2806 Ustruggle Gactivism - dmainstream
0792 €conflict] . Fai :u ure djournalism
dviolence €nation gelection (QarﬂpaLg'nlng!a airs oo ® =
—0.177 {policies Iconservatives soclety
O .
—O 107 fdebate ¢ iissue. qeconomicgeducatwn
. drevol I- ® dmorality ®
révolution {science
employees = | 10.109 partsanship 466000y @ |
—0.542 tdemocracy _ . . Lthink
. ® ® fcandidate
O . 349 "l Iiberalisrm ® dtalk
O 271 gmatters ® &topic dlife &focus
' {crisis o
O 487 / #administration (conseLvat%m
. @much #&thinking fideas
¢ focused
@matter .
. . . gfiperspective
Distributed representation
. . . . het.' (reality
(Meaning not isolated to one dimension) drnetorie €agends
¢mind

Neural Networks with
VWord Embeddings

Feedforward Neural LMs

e N-gram models: P(mat|the cat sat on the)

i-th output = P(w, = i| context)

softmax
00 % ®0 - - - 000
T 7 ! AN
/ /7 \
’ ’ most| computation here \

/ 7 \

/ ! \
! [\
! I i
" . tanh !

C(Wt—n-’r-
o0 o
)
Table ~..
lOOk—up
in C . B across words r
index for wy—p+1 index for w,_» index for w,_,

(Bengio et 2003): A Neural Probabilistic Language Model

11

Feedforward Neural LMs

® P(mat | the cat sat on the) = ?

e Input layer (context size n = 5):

R d
X = [ethe; €cat; €saty €on; ethe] c R™
the —> concatenate word embeddings

R5d Rh

cat _, g g e Hidden layer
\ 0 O ,

Q O h = tanh(Wx +b) € R
sat»/g_’g — P(w =1)?

O O

8 8 e Output layer (softmax)
o1n _> —/ -

z = Uh € RV
the—>@ P(w =i | context) = softmax;(z)
O

(Bengio et 2003): A Neural Probabilistic Language Model

12

Neural Bag-of-Words (NBOW)

e Deep Averaging Networks (DAN) for Text Classification

softmax

N

. 4
averaging av=) G
word embeddings
Predator 1S a masterpiece
C1 C2 C3 C4

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification
13

VWWhere do these word embeddings
come from!

Task specific training

Email

Assume you have annotated data specific | —
\ / Machine Learning
to a task ~ Model
o, o . . Not Spam
Initialize with random vectors -
@9

Lookup table from word to vector
softmax

Train your classifier

e C(lassifier parameters are updated during
training

e These parameters include the word)
vectors! w= 2, 7

e After training, you get word vectors that //“ ’\\

are good for your task!

Predator 1S a masterpiece
C1 C2 C3 C4

Pretraining and task-specific fine-tuning

Pretraining Task-specific flne—’anlng
e Big pile of unlabeled text data! ° ‘(A:lnslllgﬁ‘l;zig?{[)a specific to a task

e J.ots of resources to train!

e Initialize with pre-trained model

Summary of three options

¢ Random + train - Initialize with coft max
random embeddings and learn them |
when you train your classifier.

e Pretrain + fixed - Initialize with T [Jhi=f(Wi-av+b)
pretrained embeddings + keep them

¢ Pretrain + fine-tune - Initialize with

pretrained embeddings and then allow Predator - - masterpioce
embedding weights to change as cy 2 c3 2
classifier is trained

17

How does this pretraining work!?

Big pile of unlabeled text data!

18

Representing words by their context

Distributional hypothesis: words that occur in similar
contexts tend to have similar meanings

J.R.Firth 1957

¢ “You shall know a word by the company it keeps”

e One of the most successtul ideas of modern statistical NLP!

...government debt problems turning into banking crises as happened in 20089...
...saying that Europe needs unified banking reqgulation to replace the hodgepodge...
...India has just given its banklhg/szstem a shot in the arm...

™~

These context words will represent banking.

Distributional hypothesis

C1: A bottle of 1s on the table.

C2: Everybody likes

C3: Don’t have before you drive.

C4: We make out of corn.

Distributional hypothesis

“words that occur in similar contexts tend to have similar meanings”

tejuino

C1: A bottle of 1s on the table.

C2: Everybody likes

C3: Don’t have before you drive. tortillas 0 1 0 1

..

C4: We make out of corn. choices O 1 O O

Use as context: other words that appear in a span around the target word

How are these embeddings learned?

Get embeddings by counting or by
predicting (1.e. training a classifier)! G Cc G 4

tejuino

C1: A bottle of 1s on the table.

C2: Everybody likes

C3: Don’t have before you drive. tortillas 0 1 0 1

..

C4: We make out of corn. choices O 1 O O

Use as context: other words that appear in a span around the target word

“words that occur 1n similar contexts tend to have similar meanings”

How are these embeddings learned?

Get embeddings by counting

tejuino

C1: A bottle of 1s on the table.

C2: Everybody likes

C3: Don’t have before you drive. tortillas 0 1 0 1

..

C4: We make out of corn. choices O 1 O O

Use as context: other words that appear in a span around the target word

“words that occur 1n similar contexts tend to have similar meanings”

Representing words as vectors

¢ What we are aiming for:
e Fach word is a vector

e Similar words are “nearby in space”

e Our first solution: use context vectors to represent the

meaning of words

word-word (term-context) co-occurrence matrix

sugar, a sliced lemon, a tablespoonful of

their enjoyment. Cautiously she sampled her first
well suited to programming on the digital

for the purpose of gathering data and

apricot
pineapple
digital
iInformation

aardvark computer

apricot jam, a pinch each of,

pineapple and another fruit whose taste she likened
computer. In finding the optimal R-stage policy from
information necessary for the study authorized in the

data pinch result sugar

0

0

0 1 0 1

0
0
0

0
2
1

0 1 0 1
1 0 1 0
6 0 4 0

result

Can measure similarity of words

information u-Vv

[6,4] cos(u,Vv) =
| [uff{v]
digital
[1,1]
cos(2i= 1uzvz
T T T T 1
1 2 3 4 5 6 \/Z’Llu\/lez

Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

® if sugar appears a lot near apricot, that's useful information.

® But overly frequent words like the, it, or they are not very
informative about the context

Solution: let’s weight the counts!
e TF-IDF = Traditional method used in document retrieval
e PPMI = Positive Pointwise Mutual Information

Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

® if sugar appears a lot near apricot, that's useful information.

® But overly frequent words like the, it, or they are not very
informative about the context

Solution: let’s weight the counts!
e TF-IDF = Traditional method used in document retrieval
e PPMI = Positive Pointwise Mutual Information

Tt-idf

Term-document matrix
count(?, d) = count of times term ¢ occurred in document d

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 30 62 89
fool 36 58 1 4
wit 20 15 2 3

 Documents are represented by the column vectors

Tt-idf

Term-document matrix
count(?, d) = count of times term ¢ occurred in document d

 Documents are represented by the column vectors
 Words are represented by row vectors

Tf-idf: re-weighing scheme for information retrieval
 Down-weighs frequent words such as this, that, the

Tf-idf combine two factors

tf: term frequency. frequency count (usually log-transformed):

tf, | — 1 +log,ycount(t,d) if count(t,d) >0
L0 otherwise

idf: inverse document frequency:

Total # of docs in collection

. N o

idf; = log (d_f There are variations on the exact
I

\ formulation of tf and i1df

of docs that have word i

Words like “the” or “it” will have very low idf +1 (avoid 0 in denominator)

tt-1df value for word t in document d

Wud — tft,d X 1dft

Raw counts vs tf-idf

Word df idf
Romeo | 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

37 plays total

Raw Counts
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 30 62 89
fool 36 58 1 4
wit 20 15 2 3
Tf-idf
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083 \
wit 0.049 0.044 0.018 0.022

Common words
are down weighted

Tt-idf summary

e Tif-idf: term-frequency inverse-document frequency

e Re-weighing scheme originally designed for information retrieval
 Down-weighs frequent words such as this, that, the

e Can be used to
e measure the similarity between words
 measure the similarity between documents
 measure the similarity between a query (mini-document) and a document
o as features for classifiers
e Usetful to know about (good baseline method)
e But not typically used for word embeddings

Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

® if sugar appears a lot near apricot, that's useful information.

® But overly frequent words like the, it, or they are not very
informative about the context

Solution: let’s weight the counts!
e TF-IDF = Traditional method used in document retrieval
e PPMI = Positive Pointwise Mutual Information

PPMI

Do two events co-occur more than if they were independent?

PPMI = Positive Pointwise Mutual Information

Joint probability
P(w,c)
P(w)P(c)

Marginals

PPMI(w,c) = max(log, ,0)

Negative values are
problematic so cap
bottom to O

PMI ranges from
— 00 10 + 0

Negative if co-occurs
less than if independent

Computing PPMI on a term-context matrix

e Matrix F with W rows (words) and C columns (contexts)

e f;;1s # of times w; occurs in context ¢;

I

aardvark computer data pinch result sugar
apricot 0 0 0 1 0 1
pineapple IO 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0 [: : :
, pmi; 1t pmi; >0
ppmlij = 0 h .
: - . Ootnerwisc
Joint probability Marginals
C W
D = fij Eflj Efq D
lj W C]=1 . l=1 ; — l:j
§5, g mei pmi, = log:
lj f EE]C pl*p*]
=] j= i)

Computing PPMI on a term-context matrix

count(wi, context;)

Count(w,context)
computer data pinch result sugar
D = Ji apricot 0 0 1 0 1
/ v pineapple 0 0 1 0 1
Total count N —>22flj digital 2 1 0 1 0
i=1 j=I information 1 E 0 4 0

p(w = information, ¢ = data) = 6/19 = 0.32

p(w,context) p(w)
computer data pinch result sugar
apricot 0.00 0.00 0.05 0.00 0.05 0.11 f
pineapple 0.00 0.00 0.05 0.00 0.05 0.11 1
W digital 0.11 0.05 0.00 0.05 0.00 0.21
E f;j information 0.5 0.00 021 0.00 0.58 p(wl.) = Y
=1
p(c j) = - o(context) 016 | 037! 011 026 0.11
N p(w = information) = 11/19 = 0.58

p(c = data) = 7/19 = 0.37

PPMI(w,context)

p computer data pinch result sugar
: ii : _ i _
pml.. — 10g2] aPrlcot 2.25 2.25
Y DD pineapple - - 2.25 - 2.25
L digital 1.66 0.00 - 0.00 -
o | B 039 information 0.00 - 0.47 -
pmi(w = information, ¢ = data) = log, w05 0.58 Actually 0.57 using full
p(w,context) p(w) precision
computer data pinch result sugar
apricot 0.00 0.00 0.05 0.00 0.05 0.11 [. f . O
pineapple 0.00 0.00 0.05 0.00 0.05 0.11 i = pmi; 1L pml; >
digital 0.11 0.05 0.00 0.05 0.00 0.21 pp L O th .
information 0.05 0.00 021 0.00 0.58 \ OLICTWISC

p(context) 0.16 | 037/ 0.11 0.26 0.11

Issues with PMI

PMI is biased toward infrequent events
« Very rare words have very high PMI values

Two solutions:

e Weighted PMI: Give rare words slightly higher
probabilities

« Use add-one smoothing (which has a similar effect)

Weighting PMI

Give rare context words slightly higher probability
Raise the context probabilities to o = (0.73:

P(w,c)
P(w)Py(c)
- count(c)” \ P(c) 1s low, so PPMI is high
> count(c)® Higher P, (c) — lower PPMI,,
This helps because P, (c¢) > P(c) forrare ¢
Consider two events, P(a) = .99 and P(b) = .01

PPMI (w, c) = max(log,

,0)

Py (c)

.99.75
Pala) = Gg75 o155 =7
.01.75

9975 4+ .01-7>

Smoothed PPMI (add-2)

«Use Laplace smoothing Add-2 Smoothed Count(w,context

 Alternative to using computer data pinch result sugar
weighted PPMI aprlcot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2
p(w,context) [add-2] p(w)
computer data pinch result sugar
apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 003 003 0.05 0.03 0.05 0.20
digital 0.07 005 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36
p(context) 0.19 0.25 0.17 0.22 0.17

PPMI versus add-2 smoothed PPMI

PPMI(w,context)

computer data pinch result sugar
apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.57 - 0.47 -

PPMI(w,context) [add-2]
computer data pinch result sugar

apricot 0.00 000 0.56 0.00 0.56
pineapple 0.00 000 0.56 0.00 0.56
digital 0.62 000 0.00 0.00 0.00

information 0.00 0.58 0.00 0.37 0.00

Building word vectors by counting

e Build word-word (term-context) co-occurrence matrix

computer data result pie sugar
cherry 2 8 9 442 25
strawberry 0 0 1 60 19
digital 1670 1683 85 5 4
information 3325 3982 378 5 13
computer data result pie sugar
cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

Practically, use smoothed /weighted PPMI to help
with rare words having very high PMI values

Vectors are very long, sparse. How to get short
dense vectors?

PPMI(w, c) = max(log,

Raw counts

Positive pointwise

mutual information

P(w,c)

P(w)P(c)

,0)

Sparse vs dense vectors

Vectors we get from word-word (term-context) co-occurrence matrix are

e long (length |V|= 20,000 to 50,000)
e sparse (most elements are zero)
True for both one-hot and PPMI vectors

Alternative: we want to represent words as
e short (50-300 dimensional)
e dense (real-valued) vectors employees =

More memory efficient and easier to work with
Capture similarity between words better

43

(0.286 \

0.792
—0.177
—0.107
10.109
—0.542

0.349

0.271

\ 0.487

Distributed representation

SPONsOfharketing industry

companies

advertising

outiets entertair

media

Why dense vectors!

e Short vectors are easier to use as features in ML systems
e Dense vectors may generalize better than storing explicit counts
e They do better at capturing synonymy

e W co-occurs with “car”, w, co-occurs with “automobile”

e Different methods for getting dense vectors: PPl matr

e Singular value decomposition (SVD) SVD W | mxm mxec

e word2vec and friends: “learn” the vectors!

W XC wXm

Count based method
(known since the 1990s)

44

Using SVD for obtaining dense vectors

SVD = Singular value decomposition

_ T
X =UxV 2. 1s a diagonal matrix with singular values:
wword-word . - Ciy ..., 0, where m is the rank of the matrix X
1) SVD X — U W has orthonormal columns, V' = C has orthonormal rows

In our case, Xisa | V| X | V| matrix. Assumem = | V|

Truncation:
e Select the first k columns of W to get k-dimensional row vectors

2) Truncation ~ 17(xyﬁ e Note that the singular values are ordered from largest to smallest, which
each singular value representing the variance captured by that dimension

W X €

e So the first £k dimensions are the dimensions with the most variance

k
JZIZI Finally, we take ith row of W, as the embedding of word i
Note there are variants where the word embedding matrix is taken to be

W,CZ'/1 (with common values being B = 1\, 0.5, or 0)

3) Embeddings

embedding for word |

traditional
45

What is wrong with using SVD!?

e Computational complexity is high: O(| V)
e Cannot be trained as part of a larger model
e Not a component that can be part of a larger neural network

e Cannot be trained discriminatively for a particular task

46

Why dense vectors!

e Short vectors are easier to use as features in ML systems
e Dense vectors may generalize better than storing explicit counts
e They do better at capturing synonymy

e W co-occurs with “car”, w, co-occurs with “automobile”

e Different methods for getting dense vectors:
e Singular value decomposition (SVD)
e word2vec and friends: “learn” the vectors!

47

How are these embeddings learned?

Learn predictor to fill in the blank!
bottle likes before make corn

tejuino

C1: A bottle of 1s on the table.

® Represent each word as a vector
® Train classifier to predict word using
context words.

® During training, the word vector is
updated so that it is possible to predict
the center word using the context words

Use as context: other words that appear in a span around the target word

“words that occur 1n similar contexts tend to have similar meanings”

Summary

Representing words as vectors
¢ One-hot vectors vs vectors built using context
e Cosine similarity for measuring similarity between words
Using context to represent words
e Distributional hypothesis:
words that occur in similar contexts tend to have similar meanings
Co-occurrence matrix
e Raw counts
e TF-IDF (term-frequency inverse-document-frequency)
e PPMI (positive pointwise mutual information)

Dense vectors via SVD or learned by predicting the missing word

