CMPT 4I3/7I3: Natural Language Processing

Word Embeddings

Spring 2024
2024-01-22

Adapted from slides from Dan Jurafsky, Chris Manning, Danqi Chen and Karthik Narasimhan

Neural Networks: Brief history

NN "dark ages"

- Rosenblatt's Perceptron (1958)
- Minsky and Papert (1969) - perceptrons are severely limited
- Neural network algorithms (including backpropagation) date from the 8os
- ConvNets: applied to MNIST by LeCun in 1998

- Long Short-term Memory Networks (LSTMs): Hochreiter and Schmidhuber 1997
- Henderson 2003: neural shift-reduce parser, not SOTA

2008-20 I 3: A glimmer of light

- Collobert and Weston 2011: "NLP (almost) from Scratch"
- Feedforward NNs can replace "feature engineering"

- 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al, 2012: AlexNet for ImageNet Classification
- Socher 2011-2014: tree-structured RNNs working okay

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al, 2014: sentence classification
- ConvNets work for NLP!
- Sutskever et al, 2014: sequence-to-sequence for neural MT
- LSTMs work for NLP!
- Chen and Manning 2014: dependency parsing
- Even feedforward networks work well for NLP!
- 2015: explosion of neural networks for everything under the sun

Why didn't they work before?

- Datasets too small: for MT, not really better until you have $1 \mathrm{M}+$ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad/Adam) work best out-of-the-box
- Regularization: dropout is pretty helpful
- Computers not big enough: can't run for enough iterations
- Inputs: need word embeddings to represent continuous semantics

Representation learning

- Most NLP works in the past focused on human-designed representations and input features

Var	Definition	Value in Fig. 5.2
x_{1}	count $($ positive lexicon) \in doc)	3
x_{2}	count $($ negative lexicon $) \in$ doc $)$	2
x_{3}	$\left\{\begin{array}{l}1 \text { if "no" } \in \text { doc } \\ 0 \text { otherwise }\end{array}\right.$	1
x_{4}	count $(1$ st and 2nd pronouns \in doc $)$	3
x_{5}	$\left\{\begin{array}{l}1 \text { if " "! } \in \text { doc } \\ 0 \text { otherwise }\end{array}\right.$	0
x_{6}	$\log ($ word count of doc $)$	$\ln (64)=4.15$

- Representation learning attempts to automatically learn good features and representations
- Deep learning attempts to learn multiple levels of representation on increasing complexity/abstraction

One example:
word embeddings

How to represent words?

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel - a localist representation

```
one 1 , the rest o's
```

Words can be represented by one-hot vectors:

Each word is one dimension!

Vector dimension $=$ number of words in vocabulary (e.g., 500,000)

There is no way to encode similarity of words in these vectors!

Word vectors

Neural Networks with Word Embeddings

Feedforward Neural LMs

- N-gram models: $\quad P$ (mat|the cat sat on the)

(Bengio et 2003): A Neural Probabilistic Language Model

Feedforward Neural LMs

- $P($ mat \mid the cat sat on the $)=$?
- Input layer (context size $\mathrm{n}=5$):

$$
\begin{aligned}
& \mathbf{x}=\left[\mathbf{e}_{\text {the }} ; \mathbf{e}_{\text {cat }} ; \mathbf{e}_{\text {sat }} ; \mathbf{e}_{\text {on }} ; \mathbf{e}_{\text {the }}\right] \in \mathbb{R}^{d n} \\
& \text { concatenate word embeddings }
\end{aligned}
$$

- Hidden layer

$$
\mathbf{h}=\tanh (\mathbf{W} \mathbf{x}+\mathbf{b}) \in \mathbb{R}^{h}
$$

- Output layer (softmax)

$$
\begin{gathered}
\mathbf{z}=\mathbf{U h} \in \mathbb{R}^{|V|} \\
P(w=i \mid \text { context })=\operatorname{softmax}_{i}(\mathbf{z})
\end{gathered}
$$

(Bengio et 2003): A Neural Probabilistic Language Model

Neural Bag-of-Words (NBOW)

- Deep Averaging Networks (DAN) for Text Classification

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification

Where do these word embeddings come from?

Task specific training

- Assume you have annotated data specific to a task
- Initialize with random vectors
- Lookup table from word to vector
- Train your classifier
- Classifier parameters are updated during training
- These parameters include the word vectors!
- After training, you get word vectors that are good for your task!

Pretraining and task-specific fine-tuning

Pretraining

- Big pile of unlabeled text data!
- Lots of resources to train!

Task-specific fine-tuning

- Annotated data specific to a task (usually small)
- Initialize with pre-trained model

Summary of three options

- Random + train - Initialize with random embeddings and learn them when you train your classifier.
- Pretrain + fixed - Initialize with pretrained embeddings + keep them fixed
- Pretrain + fine-tune - Initialize with pretrained embeddings and then allow embedding weights to change as
 classifier is trained

How does this pretraining work?

Big pile of unlabeled text data!

Representing words by their context

Distributional hypothesis: words that occur in similar contexts tend to have similar meanings

J.R.Firth 1957

- "You shall know a word by the company it keeps"
- One of the most successful ideas of modern statistical NLP!

```
.government debt problems turning into banking crises as happened in 2009.
...saying that Europe needs unified banking regulation to replace the hodgepodge.. ..India has just given its banking system a shot in the arm...
```

These context words will represent banking.

Distributional hypothesis

C 1 : A bottle of ___ is on the table.
C2: Everybody likes \qquad .

C3: Don't have ___ before you drive.

C4: We make \qquad out of corn.

Distributional hypothesis

"words that occur in similar contexts tend to have similar meanings"

C1: A bottle of \qquad is on the table.

C2: Everybody likes \qquad .

	C 1	C 2	C 3	C 4
tejuino	1	1	1	1
loud	o	o	o	o
motor-oil	1	0	0	o
tortillas	0	1	0	1
choices	o	1	o	o
wine	1	1	1	o

Use as context: other words that appear in a span around the target word

How are these embeddings learned?

Get embeddings by counting or by predicting (i.e. training a classifier)!

C1: A bottle of \qquad is on the table.

C2: Everybody likes \qquad .
\qquad before you drive.
C3: Don't have
C4: We make \qquad out of corn.

	C 1	C 2	C 3	C 4
tejuino	1	1	1	1
loud	0	0	0	0
motor-oil	1	0	0	0
tortillas	0	1	0	1
choices	0	1	0	0
wine	1	1	1	0

Use as context: other words that appear in a span around the target word "words that occur in similar contexts tend to have similar meanings"

How are these embeddings learned?

Get embeddings by counting or by predicting (i.e. training a classifier)!

C1: A bottle of \qquad is on the table.

C2: Everybody likes \qquad .
\qquad before you drive.
C3: Don't have
C4: We make \qquad out of corn.

	C 1	C 2	C 3	C 4
tejuino	1	1	1	1
loud	0	0	0	0
motor-oil	1	0	0	0
tortillas	0	1	0	1
choices	0	1	0	0
wine	$\mathbf{1}$	1	1	0

Use as context: other words that appear in a span around the target word "words that occur in similar contexts tend to have similar meanings"

Representing words as vectors

- What we are aiming for:
- Each word is a vector
- Similar words are "nearby in space"
- Our first solution: use context vectors to represent the meaning of words
word-word (term-context) co-occurrence matrix
sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital computer.
jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	aardvark		computer	data	pinch	result	sugar	\ldots
apricot	0	0	0	1	0	1		
pineapple	0	0	0	1	0	1		
digital	0	2	1	0	1	0		
information	0	1	6	0	4	0		

Can measure similarity of words

$$
\begin{gathered}
3 \\
1
\end{gathered}
$$

Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

- if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context

Solution: let's weight the counts!

- TF-IDF = Traditional method used in document retrieval
- PPMI = Positive Pointwise Mutual Information

Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

- if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context

Solution: let's weight the counts!

- TF-IDF = Traditional method used in document retrieval
- PPMI = Positive Pointwise Mutual Information

Tf-idf

Term-document matrix
count $(t, d)=$ count of times term t occurred in document d

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Documents are represented by the column vectors

Tf-idf

Term-document matrix

count $(t, d)=$ count of times term t occurred in document d

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool	1	0	7	13
wit	114	80	62	89
	36	58	1	4

- Documents are represented by the column vectors
- Words are represented by row vectors

Tf-idf: re-weighing scheme for information retrieval

- Down-weighs frequent words such as this, that, the

Tf-idf combine two factors

tf: term frequency. frequency count (usually log-transformed):

$$
\mathrm{tf}_{t, d}= \begin{cases}1+\log _{10} \operatorname{count}(t, d) & \text { if } \operatorname{count}(t, d)>0 \\ 0 & \text { otherwise }\end{cases}
$$

idf: inverse document frequency:

$$
\operatorname{idf}_{i}=\log \left(\frac{N}{\mathrm{df}_{i}}\right)
$$

Total \# of docs in collection
There are variations on the exact formulation of tf and idf

Words like "the" or "it" will have very low idf
+1 (avoid o in denominator)
tf -idf value for word t in document d

$$
w_{t, d}=\mathrm{tf}_{t, d} \times \mathrm{idf}_{t}
$$

Raw counts vs tf-idf

Tf-idf summary

- Tf-idf: term-frequency inverse-document frequency
- Re-weighing scheme originally designed for information retrieval
- Down-weighs frequent words such as this, that, the
- Can be used to
- measure the similarity between words
- measure the similarity between documents
- measure the similarity between a query (mini-document) and a document
- as features for classifiers
- Useful to know about (good baseline method)
- But not typically used for word embeddings

Problem with raw frequencies

Problem: using raw frequency counts is not always very good..

- if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context

Solution: let's weight the counts!

- TF-IDF = Traditional method used in document retrieval
- PPMI = Positive Pointwise Mutual Information

PPMI

Do two events co-occur more than if they were independent?
PPMI = Positive Pointwise Mutual Information

> Joint probability
$\operatorname{PPMI}(w, c)=\max \left(\log _{2} \frac{P(w, c)}{P(w) P(c)}, 0\right)$
Marginals

PMI ranges from
$-\infty$ to $+\infty$

Negative values are problematic so cap bottom to o

Computing PPMI on a term-context matrix

- Matrix F with W rows (words) and C columns (contexts)
- $f_{i j}$ is \# of times w_{i} occurs in context c_{j}

							aardvark
computer	data	pinch	result	sugar			
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Joint probability
Marginals

$$
p^{0} m i_{i j}=\left\{\begin{array}{cc}
p m i_{i j} & \text { if } p m i_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

$$
p_{i^{*}}=\frac{\sum_{j=1}^{C} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

$$
p_{*_{j}}=\frac{\sum_{i=1}^{W} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

$$
p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{*_{j}}}
$$

Computing PPMI on a term-context matrix

$p(w=$ information, $c=$ data $)=6 / 19=0.32$

		p(w,context)					p(w)	
		computer	data	pinch	result	sugar		C
	apricot	0.00	0.00	0.05	0.00	0.05	0.11	P
	pineapple	0.00	0.00	0.05	0.00	0.05	0.11	$\sum f_{i j}$
\sum^{W}	digital	0.11	0.05	0.00	0.05	0.00	0.21	
$\sum f_{i j}$	information	0.05	0.32	0.00	0.21	0.00	0.58	$p\left(w_{i}\right)=\frac{j=1}{N}$
$p\left(c_{j}\right)=\frac{i=1}{N}$	p(context)	0.16	0.37	0.11	0.26	0.11		
N								$p(w=$ information $)=11 / 19=0.58$

$$
p(c=\text { data })=7 / 19=0.37
$$

$$
\begin{aligned}
& \text { PPMI(w,context) }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{pmi}(w=\text { information, } c=\text { data })=\log _{2} \frac{0.32}{0.37 \times 0.58}=0.58 \\
& \text { Actually } 0.57 \text { using full } \\
& \text { precision } \\
& \text { ppmi }_{i j}=\left\{\begin{array}{cc}
p m i_{i j} & \text { if } p m i_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Issues with PMI

PMI is biased toward infrequent events

- Very rare words have very high PMI values

Two solutions:

- Weighted PMI: Give rare words slightly higher probabilities
- Use add-one smoothing (which has a similar effect)

Weighting PMI

Give rare context words slightly higher probability
Raise the context probabilities to $\alpha=0.75$:

$$
\begin{aligned}
& \operatorname{PPMI}_{\alpha}(w, c)=\max \left(\log _{2} \frac{P(w, c)}{P(w) P_{\alpha}(c)}, 0\right) \\
& P_{\alpha}(c)=\frac{\operatorname{count}(c)^{\alpha}}{\sum_{c} \operatorname{count}(c)^{\alpha}} \quad \\
& P(c) \text { is low, so PPMI is high } \\
& \text { Higher } P_{\alpha}(c) \rightarrow \text { lower PPMI }_{\alpha}
\end{aligned}
$$

This helps because $P_{\alpha}(c)>P(c)$ for rare c
Consider two events, $P(a)=.99$ and $P(b)=.01$

$$
\begin{aligned}
& P_{\alpha}(a)=\frac{.99 .75}{.99 \cdot 75+.011^{.75}}=.97 \\
& P_{\alpha}(b)=\frac{.01 .75}{.999^{75}+.01^{.75}}=.03
\end{aligned}
$$

Smoothed PPMI (add-2)

-Use Laplace smoothing
-Alternative to using weighted PPMI

	Add-2 Smoothed Count(w,context ${ }_{\text {I }}$				
	computer	data	pinch	result	sugar
apricot	2	2	3	2	3
pineapple	2	2	3	2	3
digital	4	3	2	3	2
information	3	8	2	6	2

	$\mathbf{p (w , c o n t e x t)}$ [add-2]					
	$\mathbf{p}(\mathbf{w})$					
	computer	data	pinch	result	sugar	
apricot	0.03	0.03	0.05	0.03	0.05	0.20
pineapple	0.03	0.03	0.05	0.03	0.05	0.20
digital	0.07	0.05	0.03	0.05	0.03	0.24
information	0.05	0.14	0.03	0.10	0.03	0.36
p(context)	0.19	0.25	0.17	0.22	0.17	

PPMI versus add-2 smoothed PPMI

	PPMI(w,context)				
	computer	data	pinch	result	sugar
apricot	-		2.25		2.25
pineapple	-	-	2.25	-	2.25
digital	1.66	0.00	-	0.00	
information	0.00	0.57		0.47	
	PPMII(w,context) [add-2]				
	computer	data	pinch	result	sugar
apricot	0.00	0.00	0.56	0.00	0.56
pineapple	0.00	0.00	0.56	0.00	0.56
digital	0.62	0.00	0.00	0.00	0.00
information	0.00	0.58	0.00	0.37	0.00

Building word vectors by counting

- Build word-word (term-context) co-occurrence matrix

	computer	data	result	pie	sugar
cherry	2	8	9	442	25
strawberry	0	0	1	60	19
digital	1670	1683	85	5	4
information	3325	3982	378	5	13

Raw counts

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

> Positive pointwise mutual information

Practically, use smoothed/weighted PPMI to help with rare words having very high PMI values
Vectors are very long, sparse. How to get short

$$
\operatorname{PPMI}(w, c)=\max \left(\log _{2} \frac{P(w, c)}{P(w) P(c)}, 0\right)
$$

dense vectors?

Sparse vs dense vectors

Vectors we get from word-word (term-context) co-occurrence matrix are

- long (length $|\mathrm{V}|=20,000$ to 50,000)
- sparse (most elements are zero)

True for both one-hot and PPMI vectors
Distributed representation
Alternative: we want to represent words as

- short (50-300 dimensional)
- dense (real-valued) vectors

More memory efficient and easier to work with Capture similarity between words better

Why dense vectors?

- Short vectors are easier to use as features in ML systems
- Dense vectors may generalize better than storing explicit counts
- They do better at capturing synonymy
- w_{1} co-occurs with "car", w_{2} co-occurs with "automobile"
- Different methods for getting dense vectors:
- Singular value decomposition (SVD)
- word2vec and friends: "learn" the vectors!

Using SVD for obtaining dense vectors

SVD = Singular value decomposition
$\boldsymbol{\Sigma}$ is a diagonal matrix with singular values:
$\sigma_{1}, \ldots, \sigma_{i}, \ldots, \sigma_{m} \quad$ where m is the rank of the matrix \mathbf{X}
$\mathbf{U}=\mathbf{W}$ has orthonormal columns, $\mathbf{V}^{\top}=\mathbf{C}$ has orthonormal rows

In our case, \mathbf{X} is a $|V| \times|V|$ matrix. Assume $m=|V|$

Truncation:

- Select the first k columns of \mathbf{W} to get k-dimensional row vectors
- Note that the singular values are ordered from largest to smallest, which each singular value representing the variance captured by that dimension
- So the first k dimensions are the dimensions with the most variance

Finally, we take i th row of \mathbf{W}_{k} as the embedding of word i
Note there are variants where the word embedding matrix is taken to be $\mathbf{W}_{k} \boldsymbol{\Sigma}^{\lambda}$ (with common values being $\underset{\uparrow}{\lambda=1}, 0.5$, or 0)

What is wrong with using SVD?

- Computational complexity is high: $O\left(|V|^{3}\right)$
- Cannot be trained as part of a larger model
- Not a component that can be part of a larger neural network
- Cannot be trained discriminatively for a particular task

Why dense vectors?

- Short vectors are easier to use as features in ML systems
- Dense vectors may generalize better than storing explicit counts
- They do better at capturing synonymy
- w_{1} co-occurs with "car", w_{2} co-occurs with "automobile"
- Different methods for getting dense vectors:
- Singular value decomposition (SVD)
- word2vec and friends: "learn" the vectors!

How are these embeddings learned?

Learn predictor to fill in the blank!

C1: A bottle of \qquad is on the table.

- Represent each word as a vector
- Train classifier to predict word using context words.
- During training, the word vector is updated so that it is possible to predict the center word using the context words

	bottle	likes	before	make	corn
tejuino	$\mathbf{1}$	$\mathbf{1}$	1	1	1
loud	$\mathbf{0}$	0	0	0	0
motor-oil	$\mathbf{1}$	0	0	0	0
tortillas	$\mathbf{0}$	1	0	1	1
choices	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	0
wine	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	0

Use as context: other words that appear in a span around the target word "words that occur in similar contexts tend to have similar meanings"

Summary

- Representing words as vectors
- One-hot vectors vs vectors built using context
- Cosine similarity for measuring similarity between words
- Using context to represent words
- Distributional hypothesis:
words that occur in similar contexts tend to have similar meanings
- Co-occurrence matrix
- Raw counts
- TF-IDF (term-frequency inverse-document-frequency)
- PPMI (positive pointwise mutual information)
- Dense vectors via SVD or learned by predicting the missing word

