
Instruction tuning

Spring 2024

2024-03-11

CMPT 413/713: Natural Language Processing

SFUNatLangLab

1

Slides adapted from Anoop Sarkar

From LLMs to Helpful Assistants

https://www.youtube.com/watch?v=bZQun8Y4L2A

How to build chatGPT from an LLM base model

https://www.youtube.com/watch?v=bZQun8Y4L2A

https://openai.com/research/instruction-following

https://openai.com/research/instruction-following

https://arxiv.org/abs/2203.02155

https://arxiv.org/abs/2203.02155

GPT models (after GPT-3)

InstructGPT and GPT-3.5 [2022]
• Align responses to human feedback
• Instruction fine-tuning
• Reinforcement learning from human feedback
• Used in initial ChatGPT

GPT-4 [March 2023]
• Multimodal with images and text (GPT-4V)
• Larger, better model

5

• Supervised fine-tuning on human
conversations

• Data where human will pretend to
be user or AI assistant

• Human rank generated output

• Use reinforcement learning to

improve generation

https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2303.08774.pdf

https://openai.com/research/instruction-following

Supervised Fine-Tuning
(instruction tuning without human data)

• Use templates to make them into instruction based dataset
• Text based format makes it natural for humans

9
Mul$task prompted training enables zero-shot task generaliza$on, Sahn et al. Google, ICLR 2022

Instruction tuning

Instruction tuning

10Finetuned language models are zero-shot learners, Wei et al. Google, ICLR 2022

11

Instruction tuning

• Use templates to make them into instruction based dataset
• Text based format makes it natural for humans

Finetuned language models are zero-shot learners, Wei et al. Google, ICLR 2022

12Finetuned language models are zero-shot learners, Wei et al. Google, ICLR 2022

Instruction tuning

• Can be used on an unseen task type

13

Instruction tuning

• Can be used on an unseen task type

Finetuned language models are zero-shot learners, Wei et al. Google, ICLR 2022

Supervised Fine-Tuning
(instruction tuning with human data)

Collect prompts from those submitted to OpenAI API (Playground Interface)

To bootstrap process, initial prompts from human labelers to train initial InstructGPT

Instructions to evaluate output text outputs for prompts

Supervised Fine-tuning
• Data collected from human experts on Mechanical Turk or equivalent

• Detailed instructions are provided to obtain a high quality dataset

• Fine-tune GPT model on this data to maximize next token prediction loss

Reward Model Dataset
https://github.com/openai/following-instructions-human-feedback

Reward Model Training

Reward Model Training
• Let be the parameters for the <reward> token which is appended at the end of each completion

• Data: Prompt | Completion | <reward>

• K is the number of responses ranked by humans (K={4,9}). is the dataset of human comparisons

• This produces comparisons for each prompt

•
Loss function:

• is the scalar reward for prompt and completion . is preferred to

• Train all comparisons in a single batch.

• Training the 175B model does not work, instead fine-tune a smaller 6B model to predict reward.

θ

D

(K
2)

loss(θ) = −
1

(K
2)

E(x,yw,yl)∼D[log(σ(rθ(x, yw) − rθ(x, yl)))]

rθ(x, y) x y yw yl

(K
2)

Difference in reward between two outputs

(Log-odds that is preferred to)yw yl

Bradley-Terry ranking
• The BT model is a probability model for the outcome of pairwise comparisons.

• Given a pair of individual responses and

• The probability of preferring is given by

•

• The Bradley–Terry model can be used in the forward direction to predict
outcomes,

• But is more commonly used in reverse to infer the scores given an observed
set of outcomes (preferences from humans)

• More general models exist: e.g. Plackett-Luce models (but not used for RLHF)

i j

i > j

P(i > j) =
pi

pi + pj

pi

Bradley-Terry ranking

• Binary classification problem: given prompt and responses and ,
predict the probability that is preferred to

• Let and be scores given to and

x yw yl
yw yl

pw pl yw yl

pw = exp(rθ(x, yw))P(w > l) =
pw

pw + pl
=

1
1 + pl

pw

pl = exp(rθ(x, yl))

=
1

1 + exp(− (rθ(x, yw) − rθ(x, yl)))
= σ(rθ(x, yw) − rθ(x, yl))

=
1

1 + exp(rθ(x, yl) − rθ(x, yw)))

Reinforcement Learning

• Let be the parameters for the language model.

• Parameters for the <reward> token are kept frozen.

• is the learned RL policy

• is the learned supervised fine-tuning model

• is the KL reward coefficient

• Training for chatGPT (probably) uses an actor-critic algorithm similar to
proximal policy optimization (PPO) for training the parameters

ϕ

πRL
ϕ

πSFT

β

ϕ

Initialize RL policy with SFT

Keep RL policy from drifting too far

Reinforcement learning
Determine policy to maximize expected accumulated reward.

Typically modelled as POMDP (sequence of states with partial observations)

• Actions: What token to output?

• Policy: What action(s) to take given sequence of observations and actions?

• Policy models the probability of action given state

• For text generation, what sequence of tokens to generate given input
tokens:

• Reward: Provided by reward model trained on human preferences

π(a, s) = P(y |x)

Actor-Critic RL
• Standard methods to apply RL in LMs involve producing the expected reward

of generating a token and generating a per-token loss for each position

• The REINFORCE algorithm is the standard way to do this for language models

• However, REINFORCE only uses a single sample token to compare against
(compare with where)

• Instead the actor-critic approach uses two LMs: one is the critic and one is the
actor

• The critic model is trained against the reward model to produce <|reward|>
at the end

• The actor model is trained against the critic and produces <|endoftext|> at
the end and is trained against the critic output for each time step

yw yl pyw
> pyl

https://arxiv.org/pdf/1607.07086v2.pdf

https://arxiv.org/pdf/1607.07086v2.pdf

Direct preference optimization
https://arxiv.org/pdf/2305.18290.pdf

aka, Your Language Model is Secretly a Reward Model

You can use maximum likelihood estimation to directly train for preference optimization

https://arxiv.org/pdf/2305.18290.pdf

Direct preference optimization
https://arxiv.org/pdf/2305.18290.pdf

aka, Your Language Model is Secretly a Reward Model

Optimal policy is given by

Rewrite to get

BT model

Maximum likelihood estimate

https://arxiv.org/pdf/2305.18290.pdf

Why RLHF?

https://openai.com/research/instruction-following

https://openai.com/research/instruction-following

Why RLHF?
• It is often easier to discriminate than generate

• Simple example: It is much easier to spot a bad haiku than generate one

• Writing a haiku or writing a summary or writing a story from scratch is a
difficult task for humans.

• Humans are better at picking a good example by comparing to other
examples.

Problems with RLHF
• Mode Collapse

• Fine-tuned models lose entropy compared to original LLM (base model)

• RLHF models confidently output very few variations

• Base models can be better at tasks that require diverse outputs

https://www.lesswrong.com/posts/t9svvNPNmFf5Qa3TA/mysteries-of-mode-collapse

RLHF vs. Base LM
• Labelers significantly prefer InstructGPT outputs over outputs from GPT-3

• InstructGPT models show improvements in truthfulness over GPT-3 (on the
Truthful QA task)

• InstructGPT shows small improvements in toxicity over GPT-3, but not bias
(on the RealToxicityPrompts dataset)

• Can minimize performance regressions on public NLP datasets by modifying
our RLHF fine-tuning procedure (by mixing in the pretrained distribution)

RLHF vs. Base LM

• Our models generalize to the preferences of “held-out” labelers that did not
produce any training data

• Public NLP datasets are not reflective of how our language models are used

• InstructGPT models show promising generalization to instructions outside of
the RLHF fine- tuning distribution

• InstructGPT still makes simple mistakes

Self-Instruct

• Generate task instructions using LLMs to train/fine-tune LLMs!

45
SELF-INSTRUCT: Aligning Language Model with Self Generated Instructions, Wang et al. 2022

Self-Instruct

• Generate task instructions using LLMs to train/fine-tune LLMs!

46
SELF-INSTRUCT: Aligning Language Model with Self Generated Instructions, Wang et al. 2022

Self-Instruct

47https://crfm.stanford.edu/2023/03/13/alpaca.html

