
Parameter efficient fine-tuning

Spring 2025

2025-03-17

CMPT 413/713: Natural Language Processing

SFUNatLangLab

1

Slides adapted from Anoop Sarkar

Full finetuning vs parameter efficient fine-tuning
• Finetuning every parameter in a pretrained model works well, but is memory-intensive.
• Lightweight finetuning methods adapt pretrained models in a constrained way.
• Leads to less overfitting and/or more efficient finetuning and inference.

2Slide Credit: Stanford CS224n, John Hewitt [Liu et al., 2019; Joshi et al., 2020]

Prefix Tuning
https://aclanthology.org/2021.acl-long.353

Li and Liang, ACL 2021

https://aclanthology.org/2021.acl-long.353

Why not just use fine-tuning

Each task requires a full
model copy

In-context learning using prompts

• No task specific fine-tuning
• Preserves the LM

• Cannot use large training set
• Manual prompts can be suboptimal
• Cannot be used with smaller LMs like GPT-2

Prompt tuning: enabling smaller LMs
https://arxiv.org/abs/2001.07676

iPet: better prompts for each task improves accuracy for small LMs

Pattern-Exploiting Training (PET)
for sentiment analysis

(3) Classifier trained on
resulting soft-labeled dataset

(2) Ensemble of trained
models used to annotate
unlabeled data

(1) Patterns
encoding task
description used to
convert training
examples to cloze
questions

Pretrained LM is fine-
tuned for each pattern

https://arxiv.org/abs/2001.07676

Prompt tuning: enabling smaller LMs
https://arxiv.org/abs/2001.07676

iPet: better prompts for each task improves accuracy for small LMs
iPET: iterative PET - iteratively repeat to generate larger dataset

https://arxiv.org/abs/2001.07676

Prompt tuning: enabling smaller LMs
https://arxiv.org/abs/2001.07676

https://arxiv.org/abs/2001.07676

Prefix Tuning
Intuition

• Learn a good instruction that can steer the LM to produce the right output

• Optimize finding actual words

• Involves discrete optimization which is challenging and not expressive

Prefix-tuning [Li and Liang, ACL 2021]

https://aclanthology.org/2021.acl-long.353

Prefix Tuning
Intuition

• Optimize the instruction as continuous word embeddings

• More expressive

• Limits the scope of the prompt to a input embeddings

Prefix Tuning
Intuition

• Optimize the instruction as prefix activation for all layers in the instruction

• Very expressive

• All the layers of the prefix can be tuned to create the most expressive prompt

Prefix Tuning
Autoregressive Modelling

Prefix Tuning

Prefix Re-parametrization

h|Pidx|

h(1)
i

h(2)
i

h(3)
i

h(n)
i

h1 …

…

…

…

…

Pθ[i, :]

|Pidx | × dim(hi)

Pθ

|Pidx | × dim(hi)

Pθ′￼

|Pidx | × k

k is 512 for table-to-text
and 800 for summarization

MLP

dim(hi) × k

Once training is complete
we store only (throw
away the MLP)

Pθ

• Directly updating parameters is unstablePθ Train and MLP Pθ′￼

Effect of Prefix Tuning

https://docs.adapterhub.ml/methods.html#prefix-tuning

Self-Attention over the
added virtual prefix tokens

https://docs.adapterhub.ml/methods.html#prefix-tuning

Prefix Tuning
Vs. Finetuning

* The number in the parenthesis refers to the training size.

• Effective for small amount of training data, requires less
parameters than full fine-tuning

• Slightly better (more faithful) outputs than full fine tuning

Prefix Tuning
Extrapolation to unseen categories

Prefix Tuning
Extrapolation to unseen categories

Prompt tuning works well at scale

• Only using trainable
parameters at the input layer
limits capacity for adaptation

• Prompt tuning performs poorly
at smaller model sizes and on
harder tasks

The Power of Scale for Parameter-Efficient Prompt Tuning

[Lester et al., EMNLP 2021]

https://aclanthology.org/2021.emnlp-main.243/

https://aclanthology.org/2023.eacl-main.60.pdf

aka PaSTA

https://aclanthology.org/2023.eacl-main.60.pdf

https://aclanthology.org/2023.eacl-main.60.pdf

Special tokens
typically capture
information from
global text

Attention is
focused on these
special tokens

https://aclanthology.org/2023.eacl-main.60.pdf

https://aclanthology.org/2023.eacl-main.60.pdf

train a hidden
vector for every
special token

Self-attention
allows for
information to
be spread to
other tokens

https://aclanthology.org/2023.eacl-main.60.pdf

Results on GLUE with BERT-large

https://aclanthology.org/2023.eacl-main.60.pdf

https://aclanthology.org/2023.eacl-main.60.pdf

Ablation study on GLUE and CoNLL-2003

https://aclanthology.org/2023.eacl-main.60.pdf

https://aclanthology.org/2023.eacl-main.60.pdf

Adapters

Adapters

Parameter-Efficient Transfer Learning for NLP

[Houlsby et al., 2019]

https://arxiv.org/abs/1902.00751

• Insert function into model
blocks to adapt it to a
downstream task

• Adapter typically placed after
the multi-head attention and/or
after the feed-forward layer

https://arxiv.org/abs/1902.00751

Bottleneck Adapters
• Given a hidden layer for layer in a

Transformer layer (before Add & Norm)

•

• lowers the dimensionality from
 down to where <<

• raises the dimensionality from back
up to

• is a non-linear function (GeLU)

•

hℓ ℓ

hℓ ← hℓ + f(hℓ ⋅ Wdown) ⋅ Wup

Wdown
dim(hℓ) k k dim(hℓ)

Wup k
dim(hℓ)

f

hℓ+1 = Add+LN(hℓ)
https://arxiv.org/abs/2205.12410

Also see: https://www.cs.huji.ac.il/labs/learning/Papers/allerton.pdf

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2205.12410
https://www.cs.huji.ac.il/labs/learning/Papers/allerton.pdf

Bottleneck Adapters

https://docs.adapterhub.ml/

https://docs.adapterhub.ml/

Mixture of Adapters https://arxiv.org/abs/2205.12410

https://arxiv.org/abs/2205.12410

Mixture of Adapters
Regularization loss

• For each layer use different feed-forward networks for projecting down
to and for projecting up to

• and

• where

•

• Pick at random

• Pick twice for each input batch.

ℓ M
k dim(hℓ)

Aℓ = {Wℓ,j
down, Wℓ,k

down} Bℓ = {Wℓ,j
up, Wℓ,k

up}

j, k ∈ [0,M − 1]

hℓ ← hℓ + f(hℓ ⋅ Wℓ,i
down) ⋅ Wℓ,j

up

i, j

i, j

Mixture of Adapters
Regularization loss

• Fine tuning loss:

• where is 1 if the two arguments are equal

• is the right answer for input

• are the logits for the fine-tuning output softmax activation (using
adapter

ℒ = −
C

∑
c=1

δ(x, ̂x)log softmax((z𝒜(x))

δ

̂x x

z𝒜(x)
𝒜

Mixture of Adapters
Regularization loss

• Let and be the adapter modules.

• Pick twice for each input batch.

• Let where is the input to the LLM with frozen
parameters; only are trained against fine-tuning prediction loss.

• Add following consistency loss to fine-tuning a LLM

•

𝒜 = {AL
ℓ=1} ℬ = {BL

ℓ=1}

i, j

D(𝒳, 𝒴) = KL(z𝒳(x)∥z𝒴(x)) x
𝒳, 𝒴

ℒ ← ℒ +
1
2

(D(𝒜, ℬ) + D(ℬ, 𝒜))

Mixture of Adapters https://arxiv.org/abs/2205.12410

Wℓ
down =

1
M

M

∑
j=1

Wdownℓ,j Wℓ
up =

1
M

M

∑
j=1

Wupℓ,j

https://arxiv.org/abs/2205.12410

Results on GLUE with ROBERTa-large

https://arxiv.org/abs/2205.12410

https://arxiv.org/abs/2205.12410

Results on GLUE with BERT-base

https://arxiv.org/abs/2205.12410

https://arxiv.org/abs/2205.12410

Results on E2E with GPT2-medium

https://arxiv.org/abs/2205.12410

https://arxiv.org/abs/2205.12410

https://arxiv.org/abs/1909.08478

https://arxiv.org/abs/1909.08478

• Different adapters for different
language pairs

https://arxiv.org/pdf/2106.09685.pdf

LoRA
• Can be applied to any Transformer-based Large Language Model

• But specifically designed for autoregressive and causal LMs like GPTx

• Just like other Transformer adapters, LoRA adds a small set of parameters for
fine-tuning and keeps the original parameters frozen

• This can help a lot when LLM parameter sizes are as large as 175 billion.

LoRA
• Only use adapters in the attention matrices: Q, K, V

• Each matrix is called here, for pre-trained

• Adapter methods modify to be where

• Rank << min(d, k)

• Let be zero at start of training

• Scale the parameters after backpropagation by where is a

hyperparameter set to a constant value depending on (set to the first in
training)

Wp p

Wp Wp + BA B ∈ ℝd×r, A ∈ ℝr×k

r

BA
α
r

α
r r

LoRA
• Initialize B to zeroes

• Initialize A using random Gaussian initialization

Initialize to zeroes

Initialize to values from
random Gaussian

GPT-3 175B validation accuracy vs. number of trainable parameters

Extensions to LoRA

https://arxiv.org/abs/2403.14608

• DyLoRA: dynamically select rank (up to)

• AdaLoRA / SoRA: SVD decomposition (, rank controlled by pruning)

• DoRA: Decompose weight matrix into magnitude and direction

rmax

ΔW = PΛQ Λ

https://arxiv.org/abs/2403.14608

DoRA: Weight decomposed low-rank adaptation

https://arxiv.org/pdf/2402.09353

• Decompose weight matrix into
magnitude and direction

• Magnitude

• Direction

• Only perform LoRA reparameterization
on

• Separately tune magnitude

W0 = m
V

∥V∥c
= ∥W0∥c

W0

∥W0∥c

m ∈ ℝ1×k

V ∈ ℝd×k

V

Vector-wise norm across each column 
(each column is now a unit vector)

DoRA: Weight decomposed low-rank adaptation
• Decompose weight matrix into

magnitude and direction

• Magnitude

• Direction

• Only perform LoRA reparameterization
on

• Separately tune magnitude

W0 = m
V

∥V∥c
= ∥W0∥c

W0

∥W0∥c

m ∈ ℝ1×k

V ∈ ℝd×k

V

https://arxiv.org/pdf/2402.09353

Vector-wise norm across each column 
(each column is now a unit vector)

DoRA: Weight decomposed low-rank adaptation

Learned parameter adjustments () are more similar to those of full fine-tuning ΔD, ΔM

https://arxiv.org/pdf/2402.09353

https://arxiv.org/pdf/2402.09353

DoRA: Weight decomposed low-rank adaptation
• Outperforms LoRA (on 8 common sense tasks)

https://arxiv.org/pdf/2402.09353

DoRA: Weight decomposed low-rank adaptation

• Performance more robust to rank

https://arxiv.org/pdf/2402.09353

Masked / Sparse fine-tuning

Sparse fine-tuning
• Use mask to identify a sparse subset of weights and only update a subset of

weights during training

• Related to pruning (removes subset of weights)

• Can repeat for several iterations

Pruning
• Use mask to prune away weights

• Different ways to pick what weights to keep vs prune

• For fine-tuning: select weights which when updated, impact the model

performance the most

• Magnitude pruning vs Movement pruning

Movement pruning [Sanh et al. 2020] https://arxiv.org/pdf/2005.07683.pdf

https://arxiv.org/pdf/2005.07683.pdf

Sparse fine-tuning
• Use mask to determine what weights to tune

• Tune weights for specific task and language

• Keep all weights at the end

τ l

https://aclanthology.org/2022.acl-long.125.pdf

Weights are added
to pretrained model

θτ,l = θ + δτ + δl

θ

δl

δτ

θτ,l

https://aclanthology.org/2022.acl-long.125.pdf

Sparse fine-tuning
Comparison with LoRA

LoRA

Sparse fine-tuning

Scaling Sparse Fine-Tuning to Large Language Models

[Ansell et al. 2024] https://arxiv.org/pdf/2401.16405.pdf

https://arxiv.org/pdf/2401.16405.pdf

Sparse fine-tuning
Scaling to LLMs

Scaling Sparse Fine-Tuning to Large Language Models

[Ansell et al. 2024] https://arxiv.org/pdf/2401.16405.pdf

• Maintain vector
of indices vs
dense binary
mask

• Allow to
change over time

η

η

https://arxiv.org/pdf/2401.16405.pdf

Sparse fine-tuning
Scaling to LLMs

Scaling Sparse Fine-Tuning to Large Language Models

[Ansell et al. 2024] https://arxiv.org/pdf/2401.16405.pdf

https://arxiv.org/pdf/2401.16405.pdf

Sparse fine-tuning
• LT-SFT (Lottery Ticket) [Ansell et al. ACL 2022]

• All parameters are first fine-tuned (once), then parameters that changed the
most are selected for fine-tuning (multiple languages, tasks)

• FISH-Mask [Sung et al. NeurIPS 2021]

• ChildTuning [Xu et al. EMNLP 2021]

• DiffPruning [Guo et al. ACL 2021]

• BitFit [Zaken et al. ACL 2022]

https://aclanthology.org/2022.acl-long.125.pdf
https://arxiv.org/abs/2111.09839
https://arxiv.org/pdf/2109.05687.pdf
https://arxiv.org/abs/2012.07463
https://arxiv.org/abs/2106.10199

Sparse fine-tuning

• Unstructured: non-zero masks
distributed to various positions,
inefficient when considering hardware

• Structured: organized-regular patterns
for masks, better computational and
hardware efficiency

• Bitfit: Fine-tune bias parameters
(does not handle large models which
removes bias parameters)

• Xattn: Fine-tunes cross-attention
layers

https://arxiv.org/abs/2403.14608

https://arxiv.org/abs/2403.14608

Summary

• Input: Tune the input (prompt tuning)

• Function: Insert function into layers of
pre-trained model (adapters)

• Parameter: Tune subset of parameters
(sparse fine-tuning) or delta (LoRA)

Different approaches to PEFT

https://arxiv.org/abs/2403.14608

https://arxiv.org/abs/2403.14608

Types of PEFT
https://arxiv.org/abs/2403.14608

Additional

parameters

(Adapters, prefix tuning)

Subset of existing

parameters 

(masked / sparse FT)

Reparameterization 
(LoRA)

https://arxiv.org/abs/2403.14608

