
Scaling laws for LLMs

Spring 2024

2024-03-20

CMPT 413/713: Natural Language Processing

SFUNatLangLab

1

Slides adapted from Anoop Sarkar 




New capabilities emerge at scale

2

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html



Larger and larger language models

3

https://huggingface.co/blog/large-language-models

PaLM (540B, Google)

Llama (65B, FAIR)Chinchilla (70B, 
DeepMind)

2023

                                  

Megatron-Turing NLG (530B, 

MS+NVidia)

Bloom (176B, 
HuggingFace+BigScience)

LaMDA (137B, 
Google)

2024

GPTv4 (1.7T?, OpenAI)



4



5Language Models are Few-Shot Learners (Brown et al. 2020)

1024 V100 GPUs for ~1 day

256 TPU days  

3584 TPU days  



How does LLM performance scale 
as we increase model and data size?

6



Jan 2020https://arxiv.org/abs/2001.08361 

https://arxiv.org/abs/2001.08361


Scaling Laws for LLMs
Power laws

For LLMs, we are interested in how the test performance scales with relation to


• Model size: number of model parameters N (excluding subword embeddings)


• Data size: number of tokens trained on D


• Amount of compute (MFLOPs) C  (1 PetaFLOP-day (PF-day) is  FLOPS) 

Findings 

• Model performance scales as power law of model size and data size


• Power law: relation between two quantities where one quantity increases as a power of another 


•  e.g. model performance vs. model size


• N, D, C are dominant. Other choices in hyperparameters like width vs. depth are less relevant

8.64 × 1019

f(x) = (a/x)k

https://openai.com/research/ai-and-compute

https://openai.com/research/ai-and-compute


Model size: computing the number of parameters



Test performance
• Power law relationship to compute, dataset size, and number of parameters



Excluding embeddings from parameter count

• Power law relationship not so clear when embeddings are included



Power laws for test loss
• Let  represent the test loss dependent on either parameters N, or dataset size D or 

compute C


• For models with limited number of parameters: 


     


• For models with limited dataset size: 


     


• For models trained with limited compute: 


    

L( ⋅ )

L(N) = (Nc/N)αN αN ≈ 0.076, Nc ≈ 8.8 × 1013 (non-embd params)

L(D) = (Dc/D)αD αD ≈ 0.095, Dc ≈ 5.4 × 1013 (tokens)

L(C) = (Cmin
c /Cmin)αmin

C αmin
c ≈ 0.050, Cmin

c ≈ 3.1 × 108 (PF-days)



Test loss L as function  
of model size N and dataset size D 

13

Scaling laws for LLMs

<latexit sha1_base64="t2latotaPCB+P9Dli/mODEtRToE=">AAACenicbVFbixMxGE3H21pvVR99CVuElpUyI0V9ERbtgw9SVrC7C5PZIZPJtHFzGZLMSgn5j776RwRB0ExnRN31QMjhfOeQj5Oi5szYOP46iK5dv3Hz1t7t4Z279+4/GD18dGxUowldEcWVPi2woZxJurLMcnpaa4pFwelJcf62nZ9cUG2Ykh/ttqaZwGvJKkawDVI++vR+sny2mMLXEHFa2bS7JhBVGhO3zIl3Sw+RZuuNnZ65TkaY1xucL/1vtvAeHvSZRZtZ+C6Snf2x5KNxPIt3gFdJ0pMx6HGUj76jUpFGUGkJx8akSVzbzGFtGeHUD1FjaI3JOV7TNFCJBTWZ23Xi4dOglLBSOhxp4U79O+GwMGYriuAU2G7M5Vkr/m+WNrZ6lTkm68ZSSbqHqoZDq2BbMCyZpsTybSCYaBZ2hWSDQzM2fMMQSfqZKCGwLB26CEafJplDheJlu43ibpx4PwxdJZebuUqOn8+SF7P5h/n48E3f2h54AvbBBCTgJTgE78ARWAECvoBv4OcADH5E+9E0Ouis0aDPPAb/IJr/Asr1wu8=</latexit>

L(N,D) =

"✓
Nc

N

◆↵N
↵D

+
Dc

D

#↵D

Test loss L after transient period as function 
of model size N and number of update steps S

N is number of model parameters (not including vocabulary and positional embeddings) 
D is the number of tokens

<latexit sha1_base64="+JK1MFdAi8lFERDCxQjkpMMpNUs=">AAACenicbVFbixMxGE3H21pvXX30JWwRWlbKjBTdF2HRFx+krNTuLjTjkMlk2rhJZki+WS0h/9FX/4ggCJrpDuLu+kHgcC7Jx0leS2Ehjr/3ohs3b92+s3O3f+/+g4ePBruPj23VGMYXrJKVOc2p5VJovgABkp/WhlOVS36Sn71t9ZNzbqyo9EfY1DxVdKVFKRiFQGWDz+9Hs+fzMX6NieQljDApDWVuljHvZh4TI1ZrGH9yhMp6TbNA7V92zlvnPCPAv4JTQns8Ctf5Loj/Juc+GwzjSbwdfB0kHRiibo6ywU9SVKxRXAOT1NplEteQOmpAMMl9nzSW15Sd0RVfBqip4jZ12048fhaYApeVCUcD3rL/JhxV1m5UHpyKwtpe1Vryf9qygfIgdULXDXDNLh4qG4mhwm3BuBCGM5CbACgzIuyK2ZqGqiB8Q59o/oVVSlFdOHIejH6ZpI7klSzabSrphon3/dBVcrWZ6+D4xSR5OZl+mA4P33St7aCnaA+NUIJeoUP0Dh2hBWLoG/qBfvdQ71e0F42j/Qtr1OsyT9CliaZ/AGVfwZc=</latexit>

L(N,S) =

✓
Nc

N

◆↵N

+

✓
Sc

Smin(S)

◆↵S



Scaling laws for LLMs

• Keeping model size N fixed, architecture shape doesn’t matter that much

14
Scaling Laws for Neural Language Models, Kaplan et al, OpenAI, 2020



Comparing LSTM vs Transformers

• LSTM cannot take advantage of long context (>100 tokens)

15



Given a compute budget, what size model 
and amount of data should we train on?

16



Large models are more sample-efficient than small models



How to allocate increasing compute?

• Increase model size more than data (increase data sublinearly). 
• Increase batch size as data size increases   

18

Billion-fold ( ) increase in compute time109

For compute-efficient training



Optimal Allocation of Compute Budget

Models larger than the optimal-size 
can train faster (with less steps)

Training at fixed batch size (should increase batch size with more data)



An Empirical Model of Large-Batch Training [MacCandlish, et al. 2018] - arXiv:1812.06162

For compute efficient training, train with   

- Larger B: more stable gradient, less training steps 
- Critical batch size: above which scaling efficiency decreases significantly

Bcrit =
Emin
Smin

- Optimal learning rate scales linearly with batch size

Critical batch size
Number of training examples

Number of training steps

to reach a given performance

https://arxiv.org/pdf/1812.06162.pdf


arXiv:1812.06162

Critical batch size as function of test loss

https://arxiv.org/pdf/1812.06162.pdf


Lessons from scaling LLMs

• Performance depends strongly on scale, weakly on model shape 

• Performance has a power-law relationship with each of the three scale factors 
N, D, C when not bottlenecked by the other two


• Performance improves predictably as long as we scale up N and D in tandem 

• Training curves follow predictable power-laws whose parameters are roughly 
independent of the model size

• Number of model parameters

• Size of dataset D

• Amount of compute (MFLOPs) C



Lessons from scaling LLMs

• Transfer to a different distribution incurs a constant penalty but otherwise 
improves roughly in line with performance on the training set.


• Large models are more sample-efficient than small models, reaching the same 
level of performance with fewer optimization steps and using fewer data points


• The ideal batch size for training these models is roughly a power of the loss 
only, and continues to be determinable by measuring the gradient noise scale


• If no constraints on data and model size, with given compute budget C



Is larger models always better?
Can we train high-performance smaller 

models with more data?

24



Is bigger always better?

25

https://huggingface.co/blog/large-language-models

PaLM (540B, Google)

Llama (65B, FAIR)Chinchilla (70B, 
DeepMind)

2023

                                  

Megatron-Turing NLG (530B, 

MS+NVidia)

Bloom (176B, 
HuggingFace+BigScience)

LaMDA (137B, 
Google)



https://arxiv.org/abs/2203.15556

https://arxiv.org/abs/2203.15556


Train longer on more tokens
Lessons from training Chinchilla

• From GPT3: large models should not be trained to lowest possible loss to be 
compute optimal


• Question: Given a fixed FLOPs budget how should one trade off model 
size and number of training tokens?


• Pre-training loss L(N, D) for N parameters and D training tokens. Find the 
optimal N and D values for a given compute budget.


• Empirical study on training 400 models from 70M to 16B parameters, trained 
on 5B to 400B tokens.


• Answer: Train smaller models for (a lot) more training steps.



• Better to scale model size and number of tokens linearly!



29

• For different model sizes, choose number of training tokens to keep FLOPs constant

Model size Data sizeIsoFLOP





31
https://arxiv.org/abs/2302.13971

https://arxiv.org/abs/2302.13971


LLaMA

• 65B model trained on 1.4T tokens for ~21 days on 2048 A100 GPU 
with 80GB RAM. 

32
LLaMA: Open and Efficient Foundation Language Models [Touvron et al. FAIR, 2023]

https://arxiv.org/abs/2302.13971


LLaMA

33
LLaMA: Open and Efficient Foundation Language Models [Touvron et al. FAIR, 2023]

Architecture Training data

https://arxiv.org/abs/2302.13971


LLaMA

34
LLaMA: Open and Efficient Foundation Language Models [Touvron et al. FAIR, 2023]

https://arxiv.org/abs/2302.13971


LLaMA

35
LLaMA: Open and Efficient Foundation Language Models [Touvron et al. FAIR, 2023]

https://arxiv.org/abs/2302.13971


https://arxiv.org/abs/2112.06905

https://arxiv.org/abs/2112.06905


Mixture of Experts (MoE) for LLMs

MoE

Transformer

Interleaved transformer and MoE layers

Sparse activation of experts

For each input token (e.g. ‘roses’), the 
Gating module selects the two most 
relevant experts out of 64.  Two different 
experts selected for each token.

Weighted average of outputs from 
selected experts is passed to the 
transformer layer

Experts: each expert is a FFN



Larger models with less activated parameters per input token

More performant with similar amount of compute



Mixture of Experts (MoE) for LLMs
Better effective FLOPs per token prediction in causal LMs



https://arxiv.org/abs/2204.02311

https://arxiv.org/abs/2204.02311


PaLM
Architecture 

• SwiGLU activation:   
• Parallel layers 

• Serial:  

• Parallel:  
• 15% faster training speed (degradation for small models 8B, but no degradation at 62B) 

• Attention: Shared key-value across heads, query is still separately projected per head  
• RoPE (rotary position) embeddings 
• Shared input-output embeddings 
• No biases: increased training stability 
• Vocabulary: SentencePiece with 256k tokens 

Training data 
• 780 billion tokens of natural language + source code from github

Swish(xW) ⊗ xV

<latexit sha1_base64="FkThhG+Q5D0eE3zITYleKdVXpDw=">AAACYHicbVBdSxtBFJ1sa01TW6N9qy+DoZBQCLtFqi+CbV/6oCUFo0J2CbOzNzo4H8vMXXVZ9m/1vxT6VGj/Q986mwS06oGBw7nn3rn3pLkUDsPwRyt48nTl2Wr7eefF2stX692NzRNnCsthzI009ixlDqTQMEaBEs5yC0ylEk7Ty89N/fQKrBNGH2OZQ6LYuRYzwRl6adodlXSf3tB3NEa4werocFT3F/SQlWC/Gqtq2r81fEQE3bQ+ahsMBtNuLxyGc9CHJFqSHlliNO3+jTPDC+XHcsmcm0RhjknFLAouoe7EhYOc8Ut2DhNPNVPgkmp+eU3feiWjM2P900jn6t2OiinnSpV6p2J44e7XGvGx2qTA2V5SCZ0X/l6++GhWSIqGNjHSTFjgKEtPGLfC70r5BbOMow+7E2u45kYpprMqvvLGehIlVZwamTXbGFn1orru+Kyi+8k8JCfvh9GH4c63nd7Bp2VqbbJFtkmfRGSXHJAvZETGhJPv5Cf5Tf60fgXtYD3YWFiD1rLnNfkPwZt/IC642w==</latexit>

y = x+MLP(LayerNorm(x+Attention(LayerNorm(x)))
<latexit sha1_base64="+J4KLE2c9wSayU4KUaZ+MD2A7Ok=">AAACYXicdVBNSxxBEO2dxEQ3H07M0UuTJbAiLDMixotg4iUHlRWyKuwMS09PrTb2x9BdY3YY5nflt3jIKZD8htzSs7uERJMHDY9Xr6qrXlZI4TCK7jrBo8crT56urnWfPX/xcj18tXHuTGk5jLiRxl5mzIEUGkYoUMJlYYGpTMJFdnPU1i9uwTph9CesCkgVu9JiKjhDL03Cs4oe0BndpgnCDOuT42HTX9BjVoE9NVY1tD/b2vpteY8Ium3+j3ES9qJBNAd9SOIl6ZElhpPwZ5IbXio/lUvm3DiOCkxrZlFwCU03KR0UjN+wKxh7qpkCl9bz0xv61is5nRrrn0Y6V//sqJlyrlKZdyqG1+5+rRX/VRuXON1Pa6GL0p/LFx9NS0nR0DZHmgsLHGXlCeNW+F0pv2aWcfRpdxMNn7lRium8Tm69sRnHaZ1kRubtNkbWvbhpuj6r+H4yD8n5ziDeG+ye7fYOPyxTWyWb5A3pk5i8I4fkIxmSEeHkC/lKvpMfnW/BWhAGGwtr0Fn2vCZ/Idj8BZXzuQ4=</latexit>

y = x+MLP(LayerNorm(x)) + Attention(LayerNorm(x))

PaLM: Scaling Language Modeling with Pathways, Chowdhery et al, Google, 2022



PaLM: model architecture



PaLM: model architecture



PaLM: model architecture



PaLM: model hyperparameters



PaLM: training data



PaLM: Pathways data parallelism
• Trained on two TPU v4 pods  

• Each pod had 3072 TPU chips attached to 768 hosts (total 6144 chips) 
• Each pod had full copy of model parameters  

• Model + data parallelism, no pipeline parallelism 
• 12-way model parallelism, 256-way data sharing



PaLM

48
PaLM: Scaling Language Modeling with Pathways, Chowdhery et al, Google, 2022

Chinchilla: 70B 
GPT-3: 175B

Gopher: 280B 
PaLM: 540B



PaLM

49
PaLM: Scaling Language Modeling with Pathways, Chowdhery et al, Google, 2022



PaLM

50
PaLM: Scaling Language Modeling with Pathways, Chowdhery et al, Google, 2022



Toward multimodal agents

51

PaLM-E: An Embodied Multimodal Language Model [Dreiss et al, Google, 2023] 
https://palm-e.github.io/

https://palm-e.github.io/assets/palm-e.pdf

