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New capabilities emerge at scale

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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Total Compute Used During Training
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Language Models are Few-Shot Learners (Brown et al. 2020) 5



How does LLM performance scale
as we increase model and data size!?
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Scaling Laws for LLMs

Power laws

For LLMs, we are interested in how the test performance scales with relation to
 Model size: number of model parameters N (excluding subword embeddings)

e Data size: number of tokens trained on D

. Amount of compute (MFLOPs) C (1 PetaFLOP-day (PF-day) is 8.64 X 10'° FLOPS)
Findings
* Model performance scales as power law of model size and data size

 Power law: relation between two quantities where one quantity increases as a power of another

e f(x) = (a/x)k e.g. model performance vs. model size

N, D, C are dominant. Other choices in hyperparameters like width vs. depth are less relevant

https://openai.com/research/ai-and-compute



https://openai.com/research/ai-and-compute

Model size: computing the number of parameters

Operation Parameters FLOPs per Token

Embed (Mvocab + Mectx) @model 4dmodel

Attention: QKV Nayer@model3@attn 2Nayerdmodel3dattn

Attention: Mask = 2NayerNetxBattn

Attention: Project Nayer@attnCmodel 2N1ayer dattn embd

Feedforward Nlayer 28 model AfF 2N1ayer 2dmodel Aft

De-embed — 2dmodelMvocab

Total (Non-Embedding) | N = 2dnodelMayer (2dattn + di) | Crorward = 2N + 2njayerNctx@attn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.



Test performance

e Power law relationship to compute, dataset size, and number of parameters
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.



Excluding embeddings from parameter count

e Power law relationship not so clear when embeddings are included
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Power laws for test loss

« Let L( - ) represent the test loss dependent on either parameters N, or dataset size D or
compute C

 For models with limited number of parameters:
L(N) = (N_./N)™

* For models with limited dataset size:
L(D) = (D./D)"

 For models trained with limited compute:

L(C)=(C™"/C

)ag}m
n



Scaling laws for LLMs

Test loss L as function Test loss L after transient period as function
of model size N and dataset size D of model size N and number of update steps S
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N is number of model parameters (not including vocabulary and positional embeddings)

D 1s the number of tokens
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Loss Increase
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Scaling laws for LLMs

e Keeping model size N fixed, architecture shape doesn’t matter that much
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Comparing LSTM vs Transformers

e LSTM cannot take advantage of long context (>100 tokens)

Transformers asymptotically outperform LSTMs LSTM plateaus after <100 tokens
due to improved use of long contexts Transformer improves through the whole context
Test Loss 5.4 Per-token
Test Loss 6 .
4.8 -
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Given a compute budget, what size model
and amount of data should we train on?

16



Large models are more sample-efficient than small models

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
| ———— Line color indicates
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8 8
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Compute-efficient
training stops far
short of convergence
4 4
107 100 1011 10-9 10-6 10-3 100
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Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10”
parameters (excluding embeddings).



How to allocate increasing compute!

For compute-efficient training

¢ Increase model size more than data (increase data sublinearly).
e Increase batch size as data size increases
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Excess Compute (C/Cefficient)

Optimal Allocation of Compute Budget

Training at fixed batch size (should increase batch size with more data)

4.0 101 -
< ‘ Smaller models require
3.5 L more steps to train, while
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Models larger than the optimal-size
can train faster (with less steps)



Critical batch size

Number of training examples e “\ ;
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An Empirical Model of Large-Batch Training [MacCandlish, et al. 2018] - arXiv:1812.061



https://arxiv.org/pdf/1812.06162.pdf

Critical batch size as function of test loss

Critical Batch Size vs. Performance
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Figure 10 The critical batch size B.,i; follows a power law 1n the loss as performance increase, and does
not depend directly on the model size. We find that the critical batch size approximately doubles for every
13% decrease in loss. B, is measured empirically from the data shown in Figure ISL but it 1s also roughly

dicted by th dient no1 le, as in [MKAT18]. .,.
predicted by the gradient noise scale, as 1n | S]arX|v:1812.O6162


https://arxiv.org/pdf/1812.06162.pdf

Lessons from scaling LLMs

» Number of model parameters
» Size of dataset D
- Amount of compute (MFLOPs) C

Performance depends strongly on scale, weakly on model shape

Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two

Performance improves predictably as long as we scale up N and D in tandem

Training curves follow predictable power-laws whose parameters are roughly
independent of the model size



Lessons from scaling LLMs

e [ransfer to a different distribution incurs a constant penalty but otherwise
improves roughly in line with performance on the training set.

* |Large models are more sample-efficient than small models, reaching the same
level of performance with fewer optimization steps and using fewer data points

* The ideal batch size for training these models is roughly a power of the loss
only, and continues to be determinable by measuring the gradient noise scale

* |f no constraints on data and model size, with given compute budget C

min min

NO(CQC /O!N BO(CO‘ICnin/aB SOCCQC /O.’S D:B.S



Is larger models always better!?
Can we train high-performance smaller
models with more data’

24



Is bigger always better!?
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@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

https.//arxiv.org/abs/2203.15556



https://arxiv.org/abs/2203.15556

Train longer on more tokens

Lessons from training Chinchilla

 From GPT3: large models should not be trained to lowest possible loss to be
compute optimal

* Question: Given a fixed FLOPs budget how should one trade off model
size and number of training tokens?

* Pre-training loss L(N, D) for N parameters and D training tokens. Find the
optimal N and D values for a given compute budget.

 Empirical study on training 400 models from 70M to 16B parameters, trained
on 5B to 400B tokens.

 Answer: Train smaller models for (a lot) more training steps.



e Better to scale model size and number of tokens linearly!
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e For different model sizes, choose number of training tokens to keep FLOPs constant

[soFLOP Model size Data size
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bel N
1lel9 . - c
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.
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Model

Size (# Parameters) Training Tokens

LaMDA (Thoppilan et al., 2022)
GPT-3 (Brown et al., 2020)
Jurassic (Lieber et al., 2021)
Gopher (Rae et al., 2021)

MT-NLG 530B (Smith et al., 2022)

137 Billion
175 Billion
178 Billion
280 Billion
530 Billion

168 Billion
300 Billion
300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion



Is larger models always better?
Can we go to even smaller models?

31



Small language models

=. Microsoft Go g|e =. Microsoft GO gle 0 Meta w~  Hugging Face
Phi3 1B Gemma 7B Phi3-mini 3.8B Gemmaz2 2, 9B Llama 3.2, 1, 3B SmolLM v2 1.7B
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% ) — :
RMeta i e @ 00 Meta W i s
Llama 7B Mistral 7B OpenELM 1, 3B Llama 3, 8B Qwen2.5 1, 3B Ministral 3, 8B
02/2023 09/2023 04/2024 04/2024 09/2024 10/2023

e SLM: language models <10B

e Fierce competition in small model
regime

e Mostly open-weight

Slide Credit: Mengzhou Xia
https://princeton-cos597r.github.io/lectures/lec16.pdf 30



Small language models are
getting better and better

® MMLU >= 65 ® MMLU < 65
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. 60
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Slide Credit: Mengzhou Xia 2020-05 2020-09 2023-01 2023-05 2023-09 2024-01 2024-05 2024-09

https://princeton-cos597r.github.io/lectures/lec16.pdf Released Date



How to obtain such small models?

* Train on high quality data

e “If we have a small dataset is focused on text-book quality educational

content, we can learn the task better, even with a smaller model.”

 Phi-2: The surprising power of small language models

 Model pruning and distillation

 Pruning: Sheared-Llama, Llama 3.2, Minitron

e Distillation: GemmaZ2, Llama 3.2, Minitron

s
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https://nips.cc/media/neurips-2023/Slides/83968_5GxuY2z.pdf#page=13.00
https://arxiv.org/pdf/2310.06694
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/pdf/2408.11796
https://arxiv.org/pdf/2408.00118
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/pdf/2408.11796
https://arxiv.org/pdf/2408.11796

_ U T /' Params MNLI
Iypes of prunlng BERTy.. (teacher) X X 10x  S5M 848
Distillation
DistillBERT X 2.0x 43M  82.2
TinyBERTj  / 2.0x 43M  84.0
MobileBERT* v X 23X 20M  83.9
DynaBERT X v  6.3x 11IM  76.3
_ AutoTinyBERT* v v 91x 33M 782
e Unstructured pruning TinyBERT, V / 114x 47TM 788
Pruning
: : Movement Pruning X v 1.0x M 81.2
®
MagnltUde prunlng Block Pruning X v 27X 256M 83.7
CoFi Pruning (ours) X v 2.7X 26M 84.9
CoFi Pruning (ours) X v 12.1x 4.4M 80.6

* Weights and activations

Table 1: A comparison of state-of-the-art distilla-

° ' tion and pruning methods. U and T denote whether
StrUCtured prunlng Unlabeled and Task-specific are used for distillation

or pruning. The inference speedups (') are reported

® Pru ne enti fe blOC kS / com pOﬂentS against a BERT},,. model and we evaluate all the mod-
els on an NVIDIA V100 GPU (§4.1). The models la-
beled as * use a different teacher model and are not a
direct comparison. Models are one order of magni-
tude faster.’

Structured Pruning Learns Compact and Accurate Models [Xia et al. ACL 2022]



https://arxiv.org/abs/2204.00408

Different ways to distill

e Phi: Transformation functions to
map features to the same shape

 Response-based

* Try to match output (either predictions / \

or logits) — J e Ly \ |
1t L.ayers I
\ I

e Feature-based Lren(fi(z),fs(z)) = Lr(P:(fi(2)), Ps(fs(z)))

00

* Try to match feature activation

_——-J

» Can be at different hidden layers L i I —— J

isti
o R e I at i O n — b aS e d ; Feature-Based Knowledge Response-Based Knowledge

Gou et al. 2020

* Relationship between different features
Lrap(fi, fs) = L (T fe, £1), @ (fs, f5)) » Distillation losses can be L_2, CE, MMD, KL


https://lilianweng.github.io/posts/2023-01-10-inference-optimization/%E2%80%9Dhttps://arxiv.org/abs/2006.05525%E2%80%9D

Distillation of DeepSeek-R1

Training recipe
Generated / Filtered using DeepSeek-R1*
Reasoning (600K)

General (200K)

Reasoning LLM Self-curated data
(DeepSeek-R1*) (800k)

l Small Reasoning

Small LLM S —
(Qwen/Llama) LLM

(SFT Qwen/Llama)

DeepSeek-R1 [DeepSeek 2025] - https://arxiv.org/pdf/2501.12948



https://arxiv.org/pdf/2501.12948

Distillation

GPQA LiveCode

Model AIME 2024 MATH-500 Diamond  Bench CodeForces
pass@l cons@64 pass@1 pass@1 pass@] rating
GPT-40-0513 9.3 13.4 74.6 49.9 32.9 759
Claude-3.5-Sonnet-1022 16.0 26.7 78.3 65.0 38.9 717
OpenAl-0l-mini 63.6 80.0 90.0 60.0 53.8 1820
QwQ-32B-Preview 50.0 60.0 90.6 54.5 41.9 1316
DeepSeek-R1-Distill-Qwen-1.5B 289 52.7 83.9 33.8 16.9 954
DeepSeek-R1-Distill-Qwen-7B 55.5 83.3 92.8 49.1 37.6 1189
DeepSeek-R1-Distill-Qwen-14B 69.7 80.0 93.9 59.1 53.1 1481
DeepSeek-R1-Distill-Qwen-32B 72.6 83.3 94.3 62.1 57.2 1691
DeepSeek-R1-Distill-Llama-8B 50.4 80.0 89.1 49.0 39.6 1205
DeepSeek-R1-Distill-Llama-70B 70.0 86.7 94.5 65.2 57.5 1633

Table 5 | Comparison of DeepSeek-R1 distilled models and other comparable models on
reasoning-related benchmarks.

https://arxiv.org/pdf/2501.12948



Combined pruning and distillation

1B & 3B Pruning & Distillation

One-shot pruning

Pre Training Data Mix

Synthetic Data Prompts

4 N

Llama 3.1 8B Pretrained Llama 3.1 70B Pretrained Inference Llama 3.1 4058B Instruct
Stack

Legend

Logit Data Collected Fine Tuning Data Synthetic Data

Collected Data

Derived Data il e ] """"""" N
yd Llama 3.2 1B/3B Instruct

el I

Pretrained Modlel \_ \_

Pruning-based
Instruct Model initialization

Slide Credit: Mengzhou Xia
https://princeton-cos597r.github.io/lectures/lec16.pdf https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/



Combined pruning and distillation

1B & 3B Pruning & Distillation  OYyNnthetic data generation

( A

Pre Training Data Mix

Synthetic Data Prompts

Llama 3.1 8B Pretrained Llama 3.1 70B Pretrained Inference Llama 3.1 405B Instruct
Stack

N
—
hd

Legend
Logit Data Collected Fine Tuning Data Synthetic Data

Collected Data

Derived Data

Pretrained Model \_ \_

Pruning-based
Instruct Model initialization

- - e -
7

Slide Credit: Mengzhou Xia
https://princeton-cos597r.github.io/lectures/lec16.pdf https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/



Test time scaling

» Scaling laws for training
 What about scaling laws for inference?
* Tradeoff model size vs inference time compute
* |Large models can only be deployed on machines with large memory
 Smaller models can be deployed on smaller devices

* (Generate multiple output chains and do search to select / aggregate to form
a final output



Tree of thought

e Decision making @ @ o
by considering

multiple paths of | l
reasoning | E
e Consider different I Voo E
“thoughts” J o
expressed in O l
language aortywis |

different typeS of (a) Input-Output (c) Chain of Thought  (c) Self Consistency
prOblemS Prompting (10) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Tree of Thoughts: Deliberate Problem Solving with Large Language Models [Yao et al, 2023]
Large Language Model Guided Tree-of-Thought [Long 2023]



Best-of-N Beam Search Lookahead Search

Beam search, but st vach step

|
l Gonerate N full solutions, Select the top-N samples l rollout k-steps In advance, using l
uh;:ngmobntmommo l l #t sach step using the l "\T‘:‘:tmﬂ::’:ndd"z I
veri PRM ro represe value for

\ Propagate ‘
PRM value
v -

Continue Search from

" the top-N options
S ~
< S
Select the best final answer using the verifier es s s s sesssssessssesssssesnENsEe e e
Key: ( - -I
I | = Apply Verifier = Full Solution = |ntermediate solution step = Selected by verifier = Rejected by verifier
| I

Figure 2 | Comparing different PRM search methods. Left: Best-of-N samples N full answers and then selects the best
answer according to the PRM final score. Center: Beam search samples N candidates at each step, and selects the top M
according to the PRM to continue the search from. Right: lookahead-search extends each step in beam-search to utilize a k-step
lookahead while assessing which steps to retain and continue the search from. Thus lookahead-search needs more compute.

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters [Snell et al. 2024] - https://arxiv.org/pdf/2408.03314



https://arxiv.org/pdf/2408.03314

[ 1 CoT BE& Llama-3.2-3B-Instruct [EE Llama-3.1-405B-Instruct ol-mini DeepSeek-R1 [ ol

TTS [EE GPT-4o0 BZA DeepSeek-R1-Distill-1.56B [T ol-preview EZZ DeepSeek-R1-Distill-7B
MATH-500 AIME?24
100 100 100 90
97.3
95.2
o5 || @] 94.8 80
.
00 [
60
SH 50
80 _________ 40
75 [
Of

65

65 65 0 0 0
3B unk 405B 1.0B unk unk 671B 7B  unk 3B 405B unk unk 1.5B unk B 671B unk

(a) (b) (c) (d) (e) (f)

Can 1B LLM Surpass 405B LLM? Rethinking Compute-Optimal Test-Time Scaling [Liu et al. 2025] - https://arxiv.org/pdf/2502.06703
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Closer look at some recent
model architectures
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Pa LM PalLM: Scaling Language Modeling with Pathways, Chowdhery et al, Google, 2022

Architecture

e SwiGLU activation: Swish(xW) ® xV

e Parallel layers
e Serial: ¥ = « + MLP(LayerNorm(z + Attention(LayerNorm(x)))

o Parallel: v = ¢ + MLP(LayerNorm(x)) + Attention(LayerNorm(x))

e 15% faster training speed (degradation for small models 8B, but no degradation at 62B)
e Attention: Shared key-value across heads, query is still separately projected per head
e ROPE (rotary position) embeddings
e Shared input-output embeddings
e No biases: increased training stability
e Vocabulary: SentencePiece with 256k tokens

Training data
e 780 billion tokens of natural language + source code from github



PaLM: model architecture

e SwWiGLU Activation — We use SwiGLU activations (Swish(zW) - V') for the MLP intermediate
activations because they have been shown to significantly increase quality compared to standard ReLU,
GeLU, or Swish activations (Shazeer, 2020). Note that this does require three matrix multiplications in
the MLP rather than two, but Shazeer (2020) demonstrated an improvement in quality in compute-
equivalent experiments (i.e., where the standard ReLU variant had proportionally larger dimensions).

e Parallel Layers — We use a “parallel” formulation in each Transformer block (Wang & Komatsuzaki,

2021), rather than the standard “serialized” formulation. Specifically, the standard formulation can be
written as:

y = ¢ + MLP(LayerNorm(z + Attention(LayerNorm(z)))

Whereas the parallel formulation can be written as:
y = ¢ + MLP(LayerNorm(z)) 4+ Attention(LayerNorm(x))

The parallel formulation results in roughly 15% faster training speed at large scales, since the MLP
and Attention input matrix multiplications can be fused. Ablation experiments showed a small quality
degradation at 8B scale but no quality degradation at 62B scale, so we extrapolated that the eflect of
parallel layers should be quality neutral at the 540B scale.



PaLM: model architecture

e Multi-Query Attention — The standard Transformer formulation uses k£ attention heads, where the
input vector for each timestep is linearly projected into “query”, “key”, and “value” tensors of shape
|k, h|, where h is the attention head size. Here, the key/value projections are shared for each head, i.e.
“key” and “value” are projected to [1, h|, but “query” is still projected to shape |k, h]. We have found that
this has a neutral effect on model quality and training speed (Shazeer, 2019), but results in a significant
cost savings at autoregressive decoding time. This is because standard multi-headed attention has low
efficiency on accelerator hardware during auto-regressive decoding, because the key/value tensors are
not shared between examples, and only a single token is decoded at a time.

¢ RoPE Embeddings — We use RoPE embeddings (Su et al., 2021) rather than absolute or relative
position embeddings, since RoPE embeddings have been shown to have better performance on long
sequence lengths.

¢ Shared Input-Output Embeddings — We share the input and output embedding matrices, which
is done frequently (but not universally) in past work.



PaLM: model architecture

e No Biases — No biases were used in any of the dense kernels or layer norms. We found this to result
in increased training stability for large models.

e Vocabulary — We use a SentencePiece (Kudo & Richardson, 2018a) vocabulary with 256k tokens, which
was chosen to support the large number of languages in the training corpus without excess tokenization.
The vocabulary was generated from the training data, which we found improves training efficiency. The
vocabulary is completely lossless and reversible, which means that whitespace is completely preserved
in the vocabulary (especially important for code) and out-of-vocabulary Unicode characters are split
into UTF-8 bytes, with a vocabulary token for each byte. Numbers are always split into individual

digit tokens (e.g., “123.5 —+ 123 . 57).



PaLLM: model hyperparameters

# of Parameters

Model Layers # of Heads dmodel (in billions) Batch Size
PaLM 8B 32 16 4096 8.63 256 — 512
PaLM 62B 64 32 8192 62.50 512 — 1024
PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048

Table 1: Model architecture details. We list the number of layers, d.,o4¢1, the number of attention heads and
attention head size. The feed-forward size dg is always 4 X dmodel and attention head size is always 256.



PaLM: training data

Total dataset size = 780 billion tokens

Data source Proportion of data
Social media conversations (multilingual) 50%
Filtered webpages (multilingual) 27%
Books (English) 13%
GitHub (code) 57
Wikipedia (multilingual) 4%
News (English) 1%

Table 2: Proportion of data from each source in the training dataset. The multilingual corpus contains text
from over 100 languages, with the distribution given in Appendix Table 29.



PalLM: Pathways data parallelism

e Trained on two TPU v4 pods
e Each pod had 3072 TPU chips attached to 768 hosts (total 6144 chips)
e Each pod had full copy of model parameters

e Model + data parallelism, no pipeline parallelism
e 12-way model parallelism, 256-way data sharing

< Datacenter Network >
IR SN NN

TPU chips
| “\connected by
I || fast private
(@ P Cross-pod transfer /lnterconnects
gradients | I
A Compute gradients " "
(Forward+backward pass) Pod 1 Pod 2
B Apply gradients _ [} _ N,
Pod 1 \ / : Host (many per Pod)
Pod 2 Model Components ®) Scheduler (per Pod)

Figure 2: The Pathways system (Barham et al., 2022) scales training across two TPU v4 pods using two-way
data parallelism at the pod level.
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Toward multimodal agents

Mobile Manipulation PaLM-E: An Embodied Multimodal Language Model Task and Motion Planning

Given <emb> Q: How
to grasp blue block?
A: First grasp yellow

Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block

? ViT
block and place it on
the table, then grasp
the blue block.
B e Langt e Model (PaLM)

Human: Bring me the rice chips from the Tabletop Manipulation

drawer. Robot: 1. (jpo to the c.jravvers, 2. Opén Given <img> Task: Sort

top drawer. | see <img>. 3. Pick the greenrice colors into comers
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Describe the following Language Only Tasks circle to the green star.
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Halku about embodied LLMs. A: Embodied language. Models learn to understand.
The world around them.

) Image? Answer in emojis.
ra - - JT_

A dog jumping over a
hurdle at a dog show.

Pal M-E: An Embodied Multimodal Language Model [Dreiss et al, Google, 2023]
57 https://palm-e.github.io/
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LLaMA

e 65B model trained on 1.4T tokens for ~21 days on 2048 A100 GPU
with 80GB RAM.

params dimension 7 heads mn layers learningrate batch size n tokens

6.7B 4096 32 32 3.0e4 4AM 1.0T
13.0B 5120 40 40 3.0e 4 AM 1.0T
32.5B 6656 52 60 1.5 4 4M 1.4T
65.2B 8192 64 80 1.5 4 AM 1.4T

LLaMA: Open ang) Efficient Foundation Language Models [Touvron et al. FAIR, 2023]
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LLaMA

Architecture Training data

Pre-normalization [GPT3]. To improve the
training stability, we normalize the input of each

transformer sub-layer, instead of normalizing the Dataset Sampling prop. Epochs Disk size
output. We use the RMSNorm normalizing func-

tion, introduced by Zhang and Sennrich (2019). CommonCrawl 67.0% 1.10 3.3TB
SwiGLU activation function [PaLM]. We re- C4 15.0% 1.06 7183 GB
place the ReLU non-linearity by the SwiGLU ac-  (Github 4 59 0.64 328 GB
Flvatlon function, introduced by Shaze.er (2020) to Wikip edia 4.5% 7 45 83 GB
improve the performance. We use a dimension of

24d instead of 4d as in PaLM. Books 4.5% 2.23 85 GB
Rotary Embeddings [GPTNeo]. We remove the ArX1v 2.5% 1.06 92 GB
absolute positional embeddings, and instead, add StaCkEXChange 2.0% 1.03 78 GB

rotary positional embeddings (RoPE), introduced
by Su et al. (2021), at each layer of the network.

LLaMA: Open ang1 Efficient Foundation Language Models [Touvron et al. FAIR, 2023]
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Grouped multi-query attention

 Reduce number of heads used for keys and values

 Shared values and keys across heads

Multi-head Grouped-query Multi-query
Values
Keys
1 —— S——’ W,-‘-‘ . ,va .
Queries

Fast Transformer Decoding: One Write-Head is All You Need [Shazeer 2019]
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints [Ainslie et al. 2023]
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LLaMA: Open ang{3 Efficient Foundation Language Models [Touvron et al. FAIR, 2023]
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LLaMA

BoolQ PIQA SIQA HellaSwag WinoGrande ARC-¢e ARC-c OBQA

GPT-3 175B  60.5 81.0 - 78.9 70.2 68.8 51.4 57.6

Gopher 280B 79.3 81.8 50.6 79.2 70.1 - - -
Chinchilla 70B  83.7 81.8 51.3 80.8 74.9 - - -
Pal.M 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 50.4
PaLM-cont 62B 83.9 81.4 - 80.6 77.0 - - -
Pal.M 540B 88.0 823 - 83.4 31.1 76.6 53.0 53.4
B 765 79.8 48.9 76.1 70.1 72.8 47.6 57.2
I1.aMA 13B  78.1 80.1 504 79.2 73.0 74.8 52.7 56.4
33B 83.1 82.3 504 82.8 76.0 80.0 57.8 58.6
65B 853 828 523 34.2 77.0 78.9 56.0 60.2

LLaMA: Open angL Efficient Foundation Language Models [Touvron et al. FAIR, 2023]
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GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
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Mixture of Experts (MoE) for LLMs
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Larger models with less activated parameters per input token
More performant with similar amount of compute

Model Name

BERT

TS5

GPT-3

Jurassic-1
Gopher
Megatron-530B
GShard-M4
Switch-C

GLaM (64B/64E)

Model Type

Dense Encoder-only
Dense Encoder-decoder
Dense Decoder-only
Dense Decoder-only
Dense Decoder-only
Dense Decoder-only

MoE Encoder-decoder

MoE Encoder-decoder
MoE Decoder-only

Tlparams

340M
13B
175B
178B
2808
530B
600B
1.5T
1.2T

Tlact-params

340M
13B
175B
178B
2380B
530B
1.5B
1.5B
96.6B



Mixture of Experts (MoE) for LLMs

Better effective FLOPs per token prediction in causal LMs
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