Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

September 5, 2019

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Ambiguity

Context Free Grammars and Ambiguity

$$
\begin{array}{clc}
S & \rightarrow & N P V P \\
V P & \rightarrow & V N P \\
V P & \rightarrow & V P P P \\
P P & \rightarrow P N P \\
N P & \rightarrow & N P P P \\
N P & \rightarrow & \text { Calvin } \\
N P & \rightarrow & \text { monsters } \\
N P & \rightarrow & \text { school } \\
V & \rightarrow & \text { imagined } \\
P & \rightarrow & \text { in }
\end{array}
$$

What is the analysis using the above grammar for:
Calvin imagined monsters in school

Context Free Grammars and Ambiguity

Calvin imagined monsters in school

```
(S (NP Calvin)
    (VP (V imagined)
            (NP (NP monsters)
            (PP (P in)
                (NP school)))))
```

(S (NP Calvin)
(VP (VP (V imagined)
(NP monsters))
(PP (P in)
(NP school))))

Which one is more plausible?

Context Free Grammars and Ambiguity

Calvin imagined monsters in school

Calvin imagined monsters in school

Ambiguity Kills (your parser)

```
natural language learning course
(run demos/parsing-ambiguity.py)
((natural language) (learning course))
(((natural language) learning) course)
((natural (language learning)) course)
(natural (language (learning course)))
(natural ((language learning) course))
```

- Some difficult issues:
- Which one is more plausible?
- How many analyses for a given input?
- Computational complexity of parsing language

Number of derivations

CFG rules $\{\mathrm{N} \rightarrow \mathrm{NN}, \mathrm{N} \rightarrow \mathrm{a}\}$

$n: a^{n}$	number of parses
1	1
2	1
3	2
4	5
5	14
6	42
7	132
8	429
9	1430
10	4862
11	16796

CFG Ambiguity

- Number of parses in previous table is an integer series, known as the Catalan numbers
- Catalan numbers have a closed form:

$$
\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

- $\binom{a}{b}$ is the binomial coefficient

$$
\binom{a}{b}=\frac{a!}{(b!(a-b)!)}
$$

Catalan numbers

- Why Catalan numbers? Cat (n) is the number of ways to parenthesize an expression of length n with two conditions:

1. there must be equal numbers of open and close parens
2. they must be properly nested so that an open precedes a close

- ($(\mathrm{ab}) \mathrm{c}) \mathrm{d}(\mathrm{a}(\mathrm{bc})) \mathrm{d}(\mathrm{ab})(\mathrm{cd}) \mathrm{a}((\mathrm{bc}) \mathrm{d}) \mathrm{a}(\mathrm{b}(\mathrm{cd}))$
- For an expression of with n ways to form constituents there are a total of $2 n$ choose n parenthesis pairs. Then divide by $n+1$ to remove invalid parenthesis pairs.
- For more details see (Church and Patil, CL Journal, 1982)

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 2: Context Free Grammars

Context-Free Grammars

- A CFG is a 4-tuple: (N, T, R, S), where
- N is a set of non-terminal symbols,
- T is a set of terminal symbols which can include the empty string ϵ. T is analogous to Σ the alphabet in FSAs.
- R is a set of rules of the form $A \rightarrow \alpha$, where $A \in N$ and $\alpha \in\{N \cup T\}^{*}$
- S is a set of start symbols, $S \in N$

Context-Free Grammars

- Here's an example of a CFG, let's call this one G :

1. $S \rightarrow a S b$
2. $S \rightarrow \epsilon$

- What is the language of this grammar, which we will call $L(G)$, the set of strings generated by this grammar How? Notice that there cannot be any FSA that corresponds exactly to this set of strings $L(G)$ Why?
- What is the tree set or derivations produced by this grammar?

Context-Free Grammars

- This notion of generating both the strings and the trees is an important one for Computational Linguistics
- Consider the trees for the grammar G^{\prime} :
$P=\{S \rightarrow A A, A \rightarrow a A, A \rightarrow A b, A \rightarrow \epsilon\}$,
$\Sigma=\{a, b\}, N=\{S, A\}, T=\{a, b, \epsilon\}, S=\{S\}$
- Why is it called context-free grammar?

Context-Free Grammars

- Can the grammar G^{\prime} produce only trees with equal height subtrees on the left and right?

Parse Trees

Consider the grammar with rules:

$$
\begin{aligned}
S & \rightarrow N P V P \\
N P & \rightarrow P R P \\
N P & \rightarrow D T N P B \\
V P & \rightarrow V B P N P \\
N P B & \rightarrow N N N N \\
P R P & \rightarrow I \\
V B P & \rightarrow \text { prefer } \\
D T & \rightarrow a \\
N N & \rightarrow \text { morning } \\
N N & \rightarrow \text { flight }
\end{aligned}
$$

Parse Trees

Parse Trees: Equivalent Representations

- (S (NP (PRP I)) (VP (VBP prefer) (NP (DT a) (NPB (NN morning) (NN flight)))))
- [s [NP [PRP I]] [VP [VBP prefer] [NP [DT a] [NPB [NN morning] [NN flight]]]]]

Ambiguous Grammars

- $S \rightarrow S S$
- $S \rightarrow a$
- Given the above rules, consider the input aaa, what are the valid parse trees?
- Now consider the input aaaa

Inherently Ambiguous Languages

- Consider the following context-free grammar:
- $S \rightarrow S 1 \mid S 2$
- $S 1 \rightarrow a X d \mid \epsilon$
- $X \rightarrow b X c \mid \epsilon$
- $S 2 \rightarrow Y Z \mid \epsilon$
- $Y \rightarrow a Y b \mid \epsilon$
- $Z \rightarrow c Z d \mid \epsilon$
- Now parse the input string abcd with this grammar
- Notice that we get two parse trees (one with the S1 sub-grammar and another with the $S 2$ subgrammar).

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 3: Structural Ambiguity

Ambiguity

- Part of Speech ambiguity
saw \rightarrow noun
saw \rightarrow verb
- Structural ambiguity: Prepositional Phrases

I saw (the man) with the telescope
I saw (the man with the telescope)

- Structural ambiguity: Coordination
a program to promote safety in ((trucks) and (minivans))
a program to promote ((safety in trucks) and (minivans))
((a program to promote safety in trucks) and (minivans))

Ambiguity \leftarrow attachment choice in alternative parses

Ambiguity in Prepositional Phrases

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence - needs world knowledge, etc.
- Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment
- Consider the grammar:

$$
\begin{align*}
& V P \rightarrow V N P P P \tag{1}\\
& N P \rightarrow N P P P \tag{2}
\end{align*}
$$

for input: I [VP saw [NP the man ... [PP with the telescope], RA predicts that the PP attaches to the NP, i.e. use rule (2), and MA predicts V attachment, i.e. use rule (1)

Structure Based Ambiguity Resolution

- Garden-paths look structural: The emergency crews hate most is domestic violence
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are caused by a combination of lexical and structural effects:
The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

- Learning Prepositional Phrase Attachment: Annotated Data

v	n 1	p	n 2	Attachment
join	board	as	director	V
is	chairman	of	N.V.	N
using	crocidolite	in	filters	V
bring	attention	to	problem	V
is	asbestos	in	products	N
making	paper	for	filters	N
including	three	with	cancer	N
\vdots	\vdots	\vdots	\vdots	\vdots

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Some other studies

- Toutanova, Manning, and Ng, 2004: 87.54\% using some external knowledge (word classes)
- Merlo, Crocker and Berthouzoz, 1997: test on multiple PPs
- generalize disambiguation of 1 PP to 2-3 PPs
- 14 structures possible for 3PPs assuming a single verb
- all 14 are attested in the Penn WSJ Treebank
- 1PP: 84.3\% 2PP: 69.6\% 3PP: 43.6\%
- Belinkov+ TACL 2014: Neural networks for PP attachment (multiple candidate heads)
- NN model (no extra data): 86.6\%
- NN model (lots of raw data for word vectors): 88.7%
- NN model with parser and lots of raw data: 90.1%
- This experiment is still only part of the real problem faced in parsing English. Plus other sources of ambiguity in other languages

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 4: Weighted Context Free Grammars

Treebanks

- What is the CFG that can be extracted from this single tree:
(S (NP (Det the) (NP man))
(VP (VP (V played)
(NP (Det a) (NP game)))
(PP (P with)
(NP (Det the) (NP dog)))))

PCFG

S	\rightarrow	$N P V P$	$c=1$
$N P$	\rightarrow	$\operatorname{Det~} N P$	$c=3$
$N P$	\rightarrow	man	$c=1$
$N P$	\rightarrow	game	$c=1$
$N P$	\rightarrow	dog	$c=1$
$V P$	\rightarrow	$V P P P$	$c=1$
$V P$	\rightarrow	$V N P$	$c=1$
$P P$	\rightarrow	$P N P$	$c=1$
$D e t$	\rightarrow	the	$c=2$
Det	\rightarrow	a	$c=1$
V	\rightarrow	played	$c=1$
P	\rightarrow	with	$c=1$

- We can do this with multiple trees. Simply count occurrences of CFG rules over all the trees.
- A repository of such trees labelled by a human is called a TreeBank.

Probabilistic CFG (PCFG)

$$
\begin{array}{clcc}
S & \rightarrow & N P V P & 1 \\
V P & \rightarrow & V N P & 0.9 \\
V P & \rightarrow & V P P P & 0.1 \\
P P & \rightarrow & P N P & 1 \\
N P & \rightarrow & N P P P & 0.25 \\
N P & \rightarrow & \text { Calvin } & 0.25 \\
N P & \rightarrow & \text { monsters } & 0.25 \\
N P & \rightarrow & \text { school } & 0.25 \\
V & \rightarrow & \text { imagined } & 1 \\
P & \rightarrow & \text { in } & 1
\end{array}
$$

$$
P(\text { input })=\sum_{\text {tree }} P(\text { tree } \mid \text { input })
$$

$P($ Calvin imagined monsters in school $)=$?
Notice that $P(V P \rightarrow V N P)+P(V P \rightarrow V P P P)=1.0$

Probabilistic CFG (PCFG)

$P($ Calvin imagined monsters in school $)=$?

(S (NP Calvin)
(VP (VP (V imagined)
(NP monsters))
(PP (P in)
(NP school))))

Probabilistic CFG (PCFG)

```
(S (NP Calvin)
    (VP (V imagined)
        (NP (NP monsters)
        (PP (P in)
                                (NP school)))))
```

$$
\begin{aligned}
P\left(\text { tree }_{1}\right)= & P(S \rightarrow N P V P) \times P(N P \rightarrow \text { Calvin }) \times P(V P \rightarrow V N P) \times \\
& P(V \rightarrow \text { imagined }) \times P(N P \rightarrow N P P P) \times P(N P \rightarrow \text { monsters }) \times \\
& P(P P \rightarrow P N P) \times P(P \rightarrow \text { in }) \times P(N P \rightarrow \text { school }) \\
= & 1 \times 0.25 \times 0.9 \times 1 \times 0.25 \times 0.25 \times 1 \times 1 \times 0.25=.003515625
\end{aligned}
$$

Probabilistic CFG (PCFG)

```
(S (NP Calvin)
    (VP (VP (V imagined)
        (NP monsters))
        (PP (P in)
        (NP school))))
\[
\begin{aligned}
P\left(\text { tree }_{2}\right)= & P(S \rightarrow N P V P) \times P(N P \rightarrow \text { Calvin }) \times P(V P \rightarrow V P P P) \times \\
& P(V P \rightarrow V N P) \times P(V \rightarrow \text { imagined }) \times P(N P \rightarrow \text { monsters }) \times \\
& P(P P \rightarrow P N P) \times P(P \rightarrow \text { in }) \times P(N P \rightarrow \text { school }) \\
= & 1 \times 0.25 \times 0.1 \times 0.9 \times 1 \times 0.25 \times 1 \times 1 \times 0.25=.00140625
\end{aligned}
\]
```


Probabilistic CFG (PCFG)

$P($ Calvin imagined monsters in school $)=P\left(\right.$ tree $\left._{1}\right)+P\left(\right.$ tree $\left._{2}\right)$

$$
\begin{aligned}
& =.003515625+.00140625 \\
& =.004921875
\end{aligned}
$$

$$
\text { Most likely tree is tree } 1=\underset{\text { tree }}{\arg \max } P(\text { tree } \mid \text { input })
$$

(S (NP Calvin)
(VP (V imagined)
(NP (NP monsters)
(PP (P in)
(NP school)))))
(S (NP Calvin)
(VP (VP (V imagined)
(NP monsters))
(PP (P in)
(NP school))))

Probabilistic Context-Free Grammars (PCFG)

- A PCFG is a 4-tuple: (N, T, R, S), where
- N is a set of non-terminal symbols,
- T is a set of terminal symbols which can include the empty string ϵ. T is analogous to Σ the alphabet in FSAs.
- R is a set of rules of the form $A \rightarrow \alpha$, where $A \in N$ and $\alpha \in\{N \cup T\}^{*}$
- $P(R)$ is the probability of rule $R: A \rightarrow \alpha$ such that $\sum_{\alpha} P(A \rightarrow \alpha)=1.0$
- S is a set of start symbols, $S \in N$

PCFG

- Central condition: $\sum_{\alpha} P(A \rightarrow \alpha)=1$
- Called a proper PCFG if this condition holds
- Note that this means $P(A \rightarrow \alpha)=P(\alpha \mid A)=\frac{f(A, \alpha)}{f(A)}$
- $P(T \mid S)=\frac{P(T, S)}{P(S)}=P(T, S)=\prod_{i} P\left(R H S_{i} \mid L H S_{i}\right)$

PCFG

- What is the PCFG that can be extracted from this single tree:
(S (NP (Det the) (NP man))
(VP (VP (V played)
(NP (Det a) (NP game)))
(PP (P with)
(NP (Det the) (NP dog)))))
- How many different rhs α exist for $A \rightarrow \alpha$ where A can be S, NP, VP, PP, Det, N, V, P

PCFG

| S | \rightarrow | $N P V P$ | $c=1$ | $p=1 / 1=1.0$ |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $N P$ | \rightarrow | $\operatorname{Det~NP}$ | $c=3$ | $p=3 / 6=0.5$ |
| $N P$ | \rightarrow | man | $c=1$ | $p=1 / 6=0.1667$ |
| $N P$ | \rightarrow | game | $c=1$ | $p=1 / 6=0.1667$ |
| $N P$ | \rightarrow | dog | $c=1$ | $p=1 / 6=0.1667$ |
| $V P$ | \rightarrow | $V P P P$ | $c=1$ | $p=1 / 2=0.5$ |
| $V P$ | \rightarrow | $V N P$ | $c=1$ | $p=1 / 2=0.5$ |
| $P P$ | \rightarrow | $P N P$ | $c=1$ | $p=1 / 1=1.0$ |
| Det | \rightarrow | the | $c=2$ | $p=2 / 3=0.67$ |
| Det | \rightarrow | a | $c=1$ | $p=1 / 3=0.33$ |
| V | \rightarrow | played | $c=1$ | $p=1 / 1=1.0$ |
| P | \rightarrow | with | $c=1$ | $p=1 / 1=1.0$ |

- We can do this with multiple trees. Simply count occurrences of CFG rules over all the trees.
- A repository of such trees labelled by a human is called a TreeBank.

