
Anoop Sarkar

Decoding
NLP: Fall 2023

Causal Language Models

https://huggingface.co/docs/transformers/llm_tutorial

https://huggingface.co/docs/transformers/llm_tutorial

Causal Language Models

"Autoregressive generation iteratively selects the next token from a
probability distribution to generate text"

Causal LMs: Common Pitfalls
• Generated output is too short/long: LM may require further tuning, also

asking for more tokens can help

• Incorrect generation mode: greedy decoding or sampling? Which is better
depends on your task

• Wrong padding side: you may need to pad the prompt text on the left to
ensure that the input is the same size as the training phase of the LM.

• Wrong prompt: this is tricky and has produced a whole industry of "prompt
engineering"

https://huggingface.co/docs/transformers/llm_tutorial c.f. for code
samples

https://huggingface.co/docs/transformers/llm_tutorial

Decoding methods

• is the initial context word sequence (aka the "prompt")

• The length of the word sequence is determined on-the-fly

• is determined by the generation of the end-of-sentence EOS also known as
the <|endoftext|> token

• The EOS token is produced like the other tokens from

W0

T

T

P(wt ∣ w1:t−1, W0)

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate

Greedy Decoding

("The","nice","woman")
having an overall

probability of
0.5 × 0.4 = 0.2

Beam Search
Let us assume a beam size
of 2

Keep the 2 best outcomes
at each time step

In this example:

("The", "nice") 0.5

("The", "dog") 0.4

Next time step:

("The", "dog", "has") 0.5*0.9=0.36

("The", "nice", "woman") 0.5*0.4=0.2

Ari Holtzman et al. (2019) plot probability that a model gives versus an estimate
of the probability that a human would give. As humans we want generated text
to surprise us and not be boring/predictable (depends on the task).

Beam Search Pitfalls
• Beam search can still be very repetitive.

• Heuristic is to penalize repeated n-grams in the output.

• Manually set the probability of next words that could create an already seen
n-gram to 0

• n should be greater than 2 or 3

• The choices in beam search may not be very diverse.

• Similar continuations can happen due to common sub-trees in different
branches

• These issues are referred to as model degeneration

Sampling
• Sampling is represented by the operator

• We pick the next word

• Generation is no longer deterministic.

• Sampling can generate gibberish. Solution: use temperature

∼

wt ∼ P(w ∣ w1:t−1) =
exp(logits(w ∣ w1:t−1))

∑w′
exp(logits(w′ ∣ w1:t−1))

exp(logits(w ∣ w1:t−1)/T)
∑w′

exp(logits(w′ ∣ w1:t−1)/T)

Top-k Sampling
• K most likely next words are filtered and we re-normalize over the K words

• GPT2 showed that this worked better than beam search

K=6

Top-p Nucleus Sampling
• Choose the smallest set of words whose cumulative probability exceeds a threshold

probability . The probability mass is redistributed among this set of words.

• The size of the set being sampled from grows and shrinks depending on the
probability distribution.

p

Contrastive Search
• Given a prefix text select the output next token

• is the set of top-k predictions from the LM's probability distribution
called the model confidence

• is the cosine similarity between two token representations is used to
compute the degeneration penalty

• The more similar is to the context the more we see model degeneration.

• Combine the two terms using a linear mixture.

x<t xt

V(k) pθ(v ∣ x<t)

s(⋅ , ⋅)

v

Contrastive Search

Greedy Search Constrastive Search

Comparison of Similarity Scores

Other problems
• Unreachable subword problem: there are some subwords for which under

no circumstances is it possible to produce a subword (given any context).

• Mode collapse: tuning the LM might cause the model parameters to reach a
state where Greedy and Sampling based generation produce the same
output.

• Softmax over very large vocabulary sizes: Vocabulary sizes have reduced
since subword segmentation has become the standard way to set up the
vocabulary for LMs; However for very large vocabulary sizes, the compute
efficiency for softmax might need careful consideration, e.g. use hierarchical
softmax.

