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Causal Language Models

https://huggingface.co/docs/transformers/llm_tutorial

https://huggingface.co/docs/transformers/llm_tutorial


Causal Language Models

"Autoregressive generation iteratively selects the next token from a 
probability distribution to generate text"



Causal LMs: Common Pitfalls
• Generated output is too short/long: LM may require further tuning, also 

asking for more tokens can help


• Incorrect generation mode: greedy decoding or sampling? Which is better 
depends on your task


• Wrong padding side: you may need to pad the prompt text on the left to 
ensure that the input is the same size as the training phase of the LM.


• Wrong prompt: this is tricky and has produced a whole industry of "prompt 
engineering"

https://huggingface.co/docs/transformers/llm_tutorial c.f. for code 
samples

https://huggingface.co/docs/transformers/llm_tutorial


Decoding methods

•  is the initial context word sequence (aka the "prompt")


• The length  of the word sequence is determined on-the-fly


•  is determined by the generation of the end-of-sentence EOS also known as 
the <|endoftext|> token


• The EOS token is produced like the other tokens from 

W0

T

T

P(wt ∣ w1:t−1, W0)

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate


Greedy Decoding

("The","nice","woman") 
having an overall 

probability of 
0.5 × 0.4 = 0.2



Beam Search
Let us assume a beam size 
of 2

Keep the 2 best outcomes 
at each time step

In this example:

("The", "nice") 0.5

("The", "dog") 0.4

Next time step:

("The", "dog", "has") 0.5*0.9=0.36 

("The", "nice", "woman") 0.5*0.4=0.2



Ari Holtzman et al. (2019) plot probability that a model gives versus an estimate 
of the probability that a human would give. As humans we want generated text 
to surprise us and not be boring/predictable (depends on the task).



Beam Search Pitfalls
• Beam search can still be very repetitive. 


• Heuristic is to penalize repeated n-grams in the output. 


• Manually set the probability of next words that could create an already seen 
n-gram to 0


• n should be greater than 2 or 3


• The choices in beam search may not be very diverse.


• Similar continuations can happen due to common sub-trees in different 
branches


• These issues are referred to as model degeneration



Sampling
• Sampling is represented by the operator 


• We pick the next word 


• Generation is no longer deterministic. 

• Sampling can generate gibberish. Solution: use temperature 

∼

wt ∼ P(w ∣ w1:t−1) =
exp(logits(w ∣ w1:t−1))

∑w′ 
exp(logits(w′ ∣ w1:t−1))

exp(logits(w ∣ w1:t−1)/T)
∑w′ 

exp(logits(w′ ∣ w1:t−1)/T)



Top-k Sampling
• K most likely next words are filtered and we re-normalize over the K words


• GPT2 showed that this worked better than beam search

K=6



Top-p Nucleus Sampling
• Choose the smallest set of words whose cumulative probability exceeds a threshold 

probability . The probability mass is redistributed among this set of words.


• The size of the set being sampled from grows and shrinks depending on the 
probability distribution.

p



Contrastive Search
• Given a prefix text  select the output next token 


•  is the set of top-k predictions from the LM's probability distribution  
called the model confidence


•  is the cosine similarity between two token representations is used to 
compute the degeneration penalty


• The more similar  is to the context the more we see model degeneration.


• Combine the two terms using a linear mixture.

x<t xt

V(k) pθ(v ∣ x<t)

s( ⋅ , ⋅ )

v



Contrastive Search

Greedy Search Constrastive Search

Comparison of Similarity Scores



Other problems
• Unreachable subword problem: there are some subwords for which under 

no circumstances is it possible to produce a subword (given any context). 


• Mode collapse:  tuning the LM might cause the model parameters to reach a 
state where Greedy and Sampling based generation produce the same 
output.


• Softmax over very large vocabulary sizes: Vocabulary sizes have reduced 
since subword segmentation has become the standard way to set up the 
vocabulary for LMs; However for very large vocabulary sizes, the compute 
efficiency for softmax might need careful consideration, e.g. use hierarchical 
softmax.


