Pre-Training NLP: Fall 2023

Anoop Sarkar

Preliminaries

Word structure and subword models

- NLP used to model the vocabulary in simplistic ways based on English
- Tokenize based on spaces into a sequence of "words"
- All novel words at test time were mapped to [UNK] (unknown token)

cs224n-2023-lecture9-pretraining.pdf

cs224n-2023-lecture9-pretraining.pdf Byte Pair Encoding algorithm

- Learn a vocabulary of parts of words (subwords)
- Vocabulary of subwords is produced before training a model on the training dataset (larger the better)
- At training and test time the vocabulary is split up into a sequence of known subwords
- Byte Pair Encoding (BPE) algorithm (takes max merges as input)
 - Init subwords with individual characters/bytes and "end of word" token.
 - Using the training data find most common adjacent subwords, merge and add to list of subwords
 - Replace all pairs of characters with new subword token; iterate until max merges https://arxiv.org/abs/1508.07909

See bpe.ipynb

Word structure and subword models

- Common words are kept as part of the vocabulary (ignore morphology)
- Rarer words are split up into subword tokens
- In the worst case, words are split up into characters (or bytes)

cs224n-2023-lecture9-pretraining.pdf

Pre-training Transformers Representation Learning

Brief History of Pre-training 1960 to 2015

- Singular Value Decomposition (1960s):
 - Take matrix $M \in |V| \times |V|$ of word co-occurrence counts
 - Use SVD to map $M = USV^T$ truncate to $|V| \times k$ initial singular values Use truncated U use as word embeddings.
- Word2Vec/GloVe (2010):
 - Continuous Bag of Words (CBOW) context words predict target word Skip-gram - target word predicts each context word

Semi-supervised Sequence Learning

Andrew M. Dai Google Inc. adai@google.com

Train LSTM Language Model

Fig from J. Devlin BERT slides

Quoc V. Le Google Inc. qvl@google.com

Fine-tune on Classification Task

ELMO **Deep contextualized word representations**

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp,markn,mohiti,mattg}@allenai.org

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared,kentonl,lsz}@cs.washington.edu

https://arxiv.org/abs/1802.05365 **Oct 2017**

Right-to-Left LMs

Fig from J. Devlin BERT slides

https://arxiv.org/abs/1802.05365

Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI

alec@openai.com

Karthik NarasimhanTim SalimansOpenAIOpenAIkarthikn@openai.comtim@openai.com

https://openai.com/research/language-unsupervised Jun 2018

Ilya Sutskever OpenAI ilyasu@openai.com

Train Deep (12-layer) **Transformer LM**

Fig from J. Devlin BERT slides

Fine-tune on

See also ULMFit: <u>https://arxiv.org/abs/1801.06146</u>

GPT1 **Pre-training an autoregressive language model**

- Start with a large amount of unlabeled data $\mathcal{U} = \{u_1, \dots, u_n\}$
- Pre-training objective: Maximize the likelihood of predicting the next token

$$L_i(\mathcal{U}) = \sum_i \log P(u_i \mid u_{i-k}, \dots, u_{i-1})$$

• This is equivalent to training a Transformer decoder *n* is the number of Transformer layers

•
$$h_0 = UW_e + W_p$$

• $h_{\ell} = \text{transformer_block}(h_{\ell-1}) \forall \ell \in [1,n]$

- $P(u) = \operatorname{softmax}(h_n W_e^T)$
- Directionality is needed to generate a well-formed probability distribution

BooksCorpus: 7K unpublished books (1B words)

 $U = (u_{-k}, ..., u_{-1})$ is the context ; (9) vector of tokens

 W_{ρ} is the token embedding matrix

 W_p is the position embedding matrix

Dataset	Task	SOTA	GPT1
SNLI	Textual entailment	89.3	89.9
MNLI matched	Textual entailment	80.6	82.1
MNLI mismatched	Textual entailment	80.1	81.4
SciTail	Textual entailment	83.3	88.3
QNLI	Textual entailment	82.3	88.1
RTE	Textual entailment	61.7	56.0
STS-B	Semantic similarity	81.0	82.0
QQP	Semantic similarity	66.1	70.3
MRPC	Semantic similarity	86.0	82.3
RACE	Reading comprehension	53.3	59.0
ROCStories	Commonsense reasoning	77.6	86.5
COPA	Commonsense reasoning	71.2	78.6
SST-2	Sentiment analysis	93.2	91.3
CoLA	Linguistic acceptability	35.0	45.4
GLUE	Multi task benchmark	68.9	72.8

https://openai.com/research/language-unsupervised

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang

Kenton Lee Kristina Toutanova Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

Pre-training

Fig from J. Devlin BERT slides

Fine-Tuning

Transformer encoder BERT model architecture

- Multi-headed self attention (models context)
- Feed-forward layers (non-linear hierarchical feature representation learning)
- LayerNorm and residuals (allows training of deep networks)
- Positional embeddings (allows model to learn relative position representation)

Fig from J. Devlin BERT slides

Directionality Unidirectional context (GPT) vs Bidirectional context (ELMO)

Unidirectional context Build representation incrementally

Fig from J. Devlin BERT slides

Bidirectional context Words can "see themselves"

Bidirectional representation learning without probabilities

- Use the entire sentence context
- Don't worry about probabilities just solve a task and learn parameters
- Solution: use two loss functions
 - 1. Language model but masking a single arbitrary token at a time.
 - Called the cloze task (Taylor 1953) aka Masked language modeling
 - 2. Next sentence prediction (based on the Skip-Thought Vectors paper)

https://psycnet.apa.org/record/1955-00850-001 https://arxiv.org/abs/1506.06726

Masked LM

- Loss function to train a Transformer
- Predict the masked tokens
- Too little masking: too many epochs needed to train a good representation Too much masking: not enough context to predict the token

sto

the man went to the [MAS

Keep most of the sentences intact. Mask out k% of the input tokens (k=15)

Masked LM Problem: Mask token is never used for any fine-tuning task

- Predict 15% of the tokens but do not replace tokens with [MASK] 100% of the time (for those 15% of tokens)
- Instead:
 - 1.80% of the time replace with [MASK] and predict the right token
 - 2.10% of the time replace with a random word and predict the right token
 - 3. 10% of the time keep the token unchanged and predict

Next Sentence Prediction (NSP) Learning sentence representations

- BERT is always provided with two sentences at a time during training separated by a [SEP] token: [CLS] Sentence A [SEP] Sentence B
- Replace 50% of Sentence B with a random sentence
- Otherwise use the Sentence B that follows Sentence A
- Loss function: Predict if Sentence B follows Sentence A or not

Sentence A = The man went to the store. Sentence B = He bought a gallon of milk. Label = IsNextSentence

Sentence A = The man went to the store. Sentence B = Penguins are flightless. Label = NotNextSentence

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Fig from J. Devlin BERT slides

30K subword vocabulary

(a) Reference: typical BERT self-attention patterns by Kovaleva et al. (2019).

Model and Training

- **Data:** Wikipedia (2.5B tokens) + BooksCorpus (800M tokens)
- Batch size: 131,072 tokens
 - 1024 sequences × 128 length
 - 256 sequences × 512 length
- **Training time**: 1M steps (~40 epochs)
- **Optimizer**: AdamW, 1e-4 learning rate, linear decay
- **BERT-large**: 24 layer, 1024 hidden, 16 attention heads. 340M parameters

• **BERT-base**: 12 layer, 768 hidden, 12 attention heads. 110M parameters (=GPT1)

Fine-tuning procedure

Pre-training

Fig from J. Devlin BERT slides

Fine-Tuning

Fine-tuning for sentence pair classification

Sentence 1

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

Fig from J. Devlin BERT slides

Fine-tuning for single sentence classification

Single Sentence

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fig from J. Devlin BERT slides

r ₂		T _N
BER	 T	- A
2		E _N
ok 2		Tok N

Fine-tuning for question answering tasks

(c) Question Answering Tasks: SQuAD v1.1

Fig from J. Devlin BERT slides

Start/End Span

Fine-tuning for single sentence tagging tasks

Single Sentence

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Fig from J. Devlin BERT slides

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Aver
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81

MultiNLI

<u>Premise</u>: Hills and mountains are especially sanctified in Jainism. <u>Hypothesis</u>: Jainism hates nature. <u>Label</u>: Contradiction

Fig from J. Devlin BERT slides

CoLa

<u>Sentence</u>: The wagon rumbled down the road. <u>Label</u>: Acceptable

<u>Sentence</u>: The car honked down the road. <u>Label</u>: Unacceptable

Directionality and training time

Fig from J. Devlin BERT slides

Effect of Model Size

Fig from J. Devlin BERT slides

Effect of Model Size

MNLI (400k) – MRPC (3.6 k)

Transformer Params (Millions)

Open Source Release BERT was successful due to full open-source release

- BERT-base and BERT-large released under a permissive license (Apache 2.0)
- Model-only release (not part of a larger codebase): open source DL toolkits
- No dependencies except TensorFlow or PyTorch
- Abstracted so all you had to do was import a single module
- End-to-end examples to train SoTA models on many tasks
- Comprehensive README and readable, well-documented code
- Good support (for first few months)

Environmental Impac

CO2 emissions for a variety of human activities

;t	Model name	Number of parameters	Power consumption	CO ₂ e emissie
	GPT-3	175B	$1,\!287 \mathrm{~MWh}$	502 t
	Gopher	280B	1,066 MWh	352 t
	OPT	175B	324 MWh	70 t
	BLOOM	176B	$433 \mathrm{~MWh}$	25 t

CO2 emissions (kg)

BERT Extensions

RoBERTa Liu+ 2019

https://arxiv.org/abs/1907.11692

- Robustly optimized BERT pre-training: dynamic masking; train on text blocks
- Train BERT on more data and for more epochs
 - Even on same data, training for longer helps
 - More data leads to a better model
- Remove Next Sentence Prediction (NSP) loss

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0		-
XLNet LARGE	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8		27
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	

Transformer-XL Dai+ 2019

Vanilla Model

https://arxiv.org/abs/1901.02860

Segment 2

(a) Train phase.

Transformer-XL Dai+ 2019

Limited Context

Limited Context

https://arxiv.org/abs/1901.02860

Limited Context

(b) Evaluation phase.

Transformer-XL https://arxiv.org/abs/1901.02860 **Dai+ 2019**

(a) Training phase.

Transformer-XL https://arxiv.org/abs/1901.02860 Dai+ 2019

• Autoregressive LM (different from GPT)

(b) Evaluation phase.

Extended Context

XLNethttps://arxiv.org/abs/1906.08237Yang+ 2019

- Relative position embeddings (using auto-regressive <u>TransformerXL</u>)
 - Absolute attention: position 4 \rightarrow 5; position 128 \rightarrow 129
 - Relative attention: position $t \rightarrow (t 1)$
- Mask prediction over all token positions using permutation on factorization order (sample a factorization order: $3 \rightarrow 2 \rightarrow 1 \rightarrow 4$)
 - Two stream self-attention: standard and query on [MASK] token
 - Permute only factorization order, not sequence order

XLNet

XLNEt Split View of the Query Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Position-4 View

Position-2 View

Position-1 View

XLNet

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS
Single-task single	models on de	v						
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.

ALBERT Lan+ 2019

https://arxiv.org/abs/1909.11942

- Factorized embedding parameterization
 - (1024) using a parameter matrix

Use small embedding size (128) and project to Transformer hidden size

ALBERT

https://arxiv.org/abs/1909.11942

- Cross-layer parameter sharing
 - $h^{\ell+1}$ parameters are shared with h^{ℓ}

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS
Single-task single	models on	dev						
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0

ALBERT

https://arxiv.org/abs/1909.11942

Light on parameters; not necessarily faster than BERT

Mod	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speed	
	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7	
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0	
ALBERT	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6	
	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7	
	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6	
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3	

T5 Raffel+ 2019

https://arxiv.org/abs/1910.10683

- Ablation study on many aspects of pre-training and fine-tuning
 - Model size (bigger is better; 11B parameters)
 - Amount of training data (more is better)
 - Domain / cleanliness of training data [-ve]
 - Pre-training objective (e.g. span length of masked text) [-ve]
 - Ensemble models [-ve]
 - Fine-tuning recipe (e.g. only allow top k layers to fine-tune) [-ve]
 - Multi-task training [-ve]

Table I 1 \star I 1 I 1 I 2 \star I 2 I	Experiment Baseline average Baseline standard deviation No pre-training Enc/dec, denoising H	Score CoL Average MC 83.28 53.8 0.235 1.11 66.22 12.2 83.28 53.8	A SST-2 MRPC MI C Acc F1 A 4 92.68 92.07 88 1 0.569 0.729 1. 9 80.62 81.42 73 4 92.68 92.07 88	GLUE RPC STSB STSB QQP QQP QQP I acc PCC SCC F1 Acc Acc Acc 3.92 88.02 87.94 88.67 91.56 019 0.374 0.418 0.108 0.070 8.04 72.58 72.97 81.94 86.62 3.92 88.02 87.94 88.67 91.56	MNLI _m MNLI _m Acc Acc 84.24 84.57 0.291 0.231 68.02 67.98 84.24 84.57	$\begin{array}{c cccc} m & QNLI & RTE \\ \hline Acc & Acc \\ \hline 90.48 & 76.28 \\ 0.361 & 1.393 \\ 75.69 & 58.84 \\ \hline 90.48 & 76.28 \end{array}$	CNN/D R-1-F R-2-F 41.33 19.24 0.065 0.065 39.19 17.60 41.33 19.24		Score Average 71.36 0.416 53.04 71.36	BoolQCBCBCBCOPAAccF1AccAcc76.6291.2291.9666.200.3653.2372.5602.74165.3871.6176.7962.0076.6291.2291.9666.20	SuperGL MultiRC Mul F1 E 66.13 25 0.716 1. 59.10 0 66.13 25	UE ltiRC ReCoRD EM F1 5.78 69.05 .011 0.370 0.84 20.33 5.78 69.05	ReCoRD EM 68.16 0.379 17.95 68.16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WMT EnFr EnRo BLEU BLEU 39.82 27.65 0.090 0.108 39.77 24.04 39.82 27.65
2 I 2 I 2 I 2 I 2 I	E I F F		GLUI	E CoLA	L I	SST	-2	MRPO	С	MRPC	S	TS-B		STS-B	$\begin{array}{c} 26.95 \\ 25.86 \\ 27.39 \\ 26.86 \end{array}$
2 H 2 H 2 H 2 H 2 H	Model		Averag	ge Matthe	w's	Accur	acy	F1		Accuracy	Pe	earsor	1	Spearman	$\begin{array}{c} 27.05 \\ 26.89 \\ 25.38 \\ 26.76 \end{array}$
$ \begin{array}{cccc} 4 & I \\ 4 & I \\ 4 & I \\ 5 & I \end{array} $	Previous k	oest	89.4	a 69.2	b	97.	1^a	93 .6	b	91.5^{b}		92.7^{b}		92.3^b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 1 \\ 5 \\ 1 \end{array} $	T5-Small		77.4	41.0		91.	8	89.7		86.6		85.6		85.0	27.55 27.65 27.82
$\begin{array}{c} 6 \\ 6 \\ 6 \end{array} \\ \begin{array}{c} \bullet \\ \bullet \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \bullet \\ \bullet \end{array} \\ \end{array}$	T5-Base		82.7	51.1		95.	2	90.7		87.5		89.4		88.6	27.44 27.65 27.47
$\begin{array}{c} 6 \\ \hline 7 \\ 7 \\ \hline 7 \\ \end{array} $	T5-Large		86.4	61.2		96.	3	92.4		89.9		89.9		89.2	27.49 27.65 27.63
7 1 7 1 7 1	T5-3B		88.5	67.1		97.	4	92.5		90.0		90.6		89.8	27.62 27.53 27.69
8 * (8 (8 1 8 1	$\frac{1}{2}$ T5-11B		90.3	71.6		97 .	5	92.8		90.4	9	93.1		92 .8	$\begin{array}{c} 27.65 \\ 27.21 \\ 27.48 \\ 27.59 \end{array}$
8 1 8 1 9 ★1 9 2			QQP	QQP	MN	ILI-m	M	NLI-mn	n	QNLI		RTE		WNLI	27.67 27.57 27.65 27.63
$\begin{array}{c}9\\9\\2\\9\\2\end{array}$	² Model		F1	Accuracy	Acc	euracy	Α	ccuracy		Accuracy	Ac	curac	сy	Accuracy	27.33 26.80 25.81 27.65
10 A 10 A 10 A 10 A	Previous k	oest	74.8^{c}	90.7^{b}	9	01.3^{a}		91.0^{a}		${f 99.2}^{a}$		89.2^{a}		91.8^{a}	$\begin{array}{c} 15.54 \\ 22.63 \\ 25.81 \\ 26.93 \end{array}$
$ \begin{array}{c c} 10 & 0 \\ \hline 11 & \bigstar I \\ 11 & I \end{array} $	T5-Small		70.0	88.0	8	32.4		82.3		90.3		69.9		69.2	26.93 27.65 26.78
11 H 11 H 11 H	T5-Base		72.6	89.4	8	37.1		86.2		93.7		80.1		78.8	27.10 27.25 27.39
11 I 11 I 11 I 11 I	T5-Large		73.9	89.9	8	39.9		89.6		94.8		87.2		85.6	27.76 27.68 27.13 27.20
$\begin{array}{c} 11 \\ 11 \\ 11 \\ 12 \\ \end{array}$	T5-3B		74.4	89.7	9	01.4		91.2		96.3		91.1		89.7	27.45 27.17 27.65
12 I 12 I 12 I 12 I 12 I 12 I 12 S	T5-11B	19.90 00.0	75.1	90.6	9	2.2	41.12 10.70	91.9	00.00	96.9	04.01 21	92.8	04.01	94.5	27.03 27.76 28.07 27.87 40.13 28.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Baseline $1 \times \text{size}, 4 \times \text{training steps}$ $1 \times \text{size}, 4 \times \text{batch size}$ $2 \times \text{size}, 2 \times \text{training steps}$ $4 \times \text{size}, 1 \times \text{training steps}$ $4 \times \text{ensembled}$ $4 \times \text{ensembled}, \text{fine-tune only}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.92 88.02 87.94 88.67 91.56 67 89.42 89.25 89.15 91.87 0.22 88.85 88.84 89.35 92.07 0.69 89.18 89.23 89.35 92.05 0.95 89.60 89.60 89.44 92.14 0.67 89.71 89.60 89.62 92.24 0.44 88.34 88.12 89.27 91.97	84.24 84.57 86.01 85.70 85.98 86.13 87.23 87.05 87.05 87.12 86.22 86.53 85.33 85.88	$\begin{array}{cccc} 90.48 & 76.28 \\ 91.63 & 78.34 \\ 91.07 & 80.14 \\ 92.68 & 81.95 \\ 93.12 & 83.39 \\ 91.60 & 77.98 \\ 90.98 & 77.62 \end{array}$	$\begin{array}{ccccccc} 41.33 & 19.24 \\ 41.52 & 19.33 \\ 41.70 & 19.42 \\ 41.74 & 19.66 \\ 41.60 & 19.73 \\ 42.10 & 20.10 \\ 41.66 & 19.57 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71.3674.7274.6477.1878.0471.7471.56	76.6291.2291.9666.2079.1794.7592.8671.0078.7893.6994.6472.0080.9897.3696.4374.0081.3889.0994.6473.0077.5889.8591.0766.0077.4390.0792.8669.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 68.16 \\ 71.59 \\ 73.90 \\ 76.34 \\ 77.40 \\ 71.94 \\ 69.64 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ELECTRA https://arxiv.org/abs/2003.10555 **Clark+ 2020**

Train model to discriminate locally plausible text from real text

ELECTRA https://arxiv.org/abs/2003.10555

ECTRA <u>https://arxiv.org/abs/2003.10555</u>

Model	Train FLOPs	Params	CoLA	SST	MRPC	STS	QQP	MNLI	QNLI	RTE	A
BERT	1.9e20 (0.27x)	335M	60.6	93.2	88.0	90.0	91.3	86.6	92.3	70.4	82
RoBERTa-100K	6.4e20 (0.90x)	356M	66.1	95.6	91.4	92.2	92.0	89.3	94.0	82.7	87
RoBERTa-500K	3.2e21 (4.5x)	356M	68.0	96.4	90.9	92.1	92.2	90.2	94.7	86.6	88
XLNet	3.9e21 (5.4x)	360M	69.0	97.0	90.8	92.2	92.3	90.8	94.9	85.9	89
BERT (ours)	7.1e20 (1x)	335M	67.0	95.9	89.1	91.2	91.5	89.6	93.5	79.5	87
ELECTRA-400K	7.1e20 (1x)	335M	69.3	96.0	90.6	92.1	92.4	90.5	94.5	86.8	89
ELECTRA-1.75M	3.1e21 (4.4x)	335M	69.1	96.9	90.8	92.6	92.4	90.9	95.0	88.0	8

Other BERT Extensions

- Many many extensions to BERT; too many to cover here; mostly pre-training
 - Auto-regressive BERT variants (BART; XLM; etc.)
 - SpanBERT; Entity-based BERT (LUKE; SpanLinkBERT)
 - Mainly training on more data, or different data, slight variants (Megatron)
- Efficient fine-tuning (covered separately)
- Efficient inference
 - Distillation of BERT models (covered separately)