
Anoop Sarkar

Pre-Training
NLP: Fall 2023

Preliminaries

Word structure and subword models
• NLP used to model the vocabulary in simplistic ways based on English

• Tokenize based on spaces into a sequence of "words"

• All novel words at test time were mapped to [UNK] (unknown token)

hat
learn
laern
taaasty
Transformerify

cs224n-2023-lecture9-pretraining.pdf

word

variations

spell errors

neologisms

index embedding

hat
learn
[UNK]
[UNK]
[UNK]

Byte Pair Encoding algorithm
• Learn a vocabulary of parts of words (subwords)

• Vocabulary of subwords is produced before training a model on the training dataset
(larger the better)

• At training and test time the vocabulary is split up into a sequence of known
subwords

• Byte Pair Encoding (BPE) algorithm (takes max merges as input)

• Init subwords with individual characters/bytes and "end of word" token.

• Using the training data find most common adjacent subwords, merge and add to
list of subwords

• Replace all pairs of characters with new subword token; iterate until max merges

See bpe.ipynb https://arxiv.org/abs/1508.07909

cs224n-2023-lecture9-pretraining.pdf

Word structure and subword models
• Common words are kept as part of the vocabulary (ignore morphology)

• Rarer words are split up into subword tokens

• In the worst case, words are split up into characters (or bytes)

hat
learn
laern
taaasty
Transformerify

cs224n-2023-lecture9-pretraining.pdf

word

variations

spell errors

neologisms

index embedding

hat
learn
la## ##ern
ta## #aa #sty
Transformer## ##ify

Pre-training Transformers
Representation Learning

Brief History of Pre-training
1960 to 2015

• Singular Value Decomposition (1960s):

• Take matrix of word co-occurrence counts

• Use SVD to map truncate to initial singular values

• Use truncated use as word embeddings.

• Word2Vec/GloVe (2010):

• Continuous Bag of Words (CBOW) - context words predict target word

• Skip-gram - target word predicts each context word

M ∈ |V | × |V |

M = USVT |V | × k

U

https://arxiv.org/abs/1511.01432 Nov 2015Fig from J. Devlin BERT slides

https://arxiv.org/abs/1511.01432

https://arxiv.org/abs/1802.05365 Oct 2017

ELMO

https://arxiv.org/abs/1802.05365

https://arxiv.org/abs/1802.05365Fig from J. Devlin BERT slides

ELMO

https://arxiv.org/abs/1802.05365

https://openai.com/research/language-unsupervised Jun 2018

GPT1

https://openai.com/research/language-unsupervised

GPT1

Fig from J. Devlin BERT slides See also ULMFit: https://arxiv.org/abs/1801.06146

https://arxiv.org/abs/1801.06146

GPT1
Pre-training an autoregressive language model
• Start with a large amount of unlabeled data

• Pre-training objective: Maximize the likelihood of predicting the next token

•

• This is equivalent to training a Transformer decoder

•

•

•

• Directionality is needed to generate a well-formed probability distribution

𝒰 = {u1, …, un}

Li(𝒰) = ∑
i

log P(ui ∣ ui−k, …, ui−1; Θ)

h0 = UWe + Wp

hℓ = transformer_block(hℓ−1)∀ℓ ∈ [1,n]

P(u) = softmax(hnWT
e)

 is the context
vector of tokens
U = (u−k, …, u−1)

 is the number of Transformer
layers
n

 is the token embedding matrixWe

 is the position embedding matrixWp

BooksCorpus: 7K
unpublished books
(1B words)

https://openai.com/research/language-unsupervised

GPT1

Fig from J. Devlin BERT slides

Transformer encoder
BERT model architecture

• Multi-headed self attention (models context)

• Feed-forward layers (non-linear hierarchical
feature representation learning)

• LayerNorm and residuals (allows training of
deep networks)

• Positional embeddings (allows model to learn
relative position representation)

Fig from J. Devlin BERT slides

Directionality
Unidirectional context (GPT) vs Bidirectional context (ELMO)

Fig from J. Devlin BERT slides

Bidirectional representation learning
without probabilities

• Use the entire sentence context

• Don't worry about probabilities just solve a task and learn parameters

• Solution: use two loss functions

1. Language model but masking a single arbitrary token at a time.

• Called the cloze task (Taylor 1953) aka Masked language modeling

2. Next sentence prediction (based on the Skip-Thought Vectors paper)

https://psycnet.apa.org/record/1955-00850-001
https://arxiv.org/abs/1506.06726

https://psycnet.apa.org/record/1955-00850-001
https://arxiv.org/abs/1506.06726

Masked LM
• Loss function to train a Transformer

• Keep most of the sentences intact. Mask out k% of the input tokens (k=15)

• Predict the masked tokens

• Too little masking: too many epochs needed to train a good representation

• Too much masking: not enough context to predict the token

Masked LM
Problem: Mask token is never used for any fine-tuning task

• Predict 15% of the tokens but do not replace
tokens with [MASK] 100% of the time (for
those 15% of tokens)

• Instead:

1. 80% of the time replace with [MASK] and
predict the right token

2. 10% of the time replace with a random word
and predict the right token

3. 10% of the time keep the token unchanged
and predict

Next Sentence Prediction (NSP)
Learning sentence representations

• BERT is always provided with two sentences at a time during training
separated by a [SEP] token: [CLS] Sentence A [SEP] Sentence B

• Replace 50% of Sentence B with a random sentence

• Otherwise use the Sentence B that follows Sentence A

• Loss function: Predict if Sentence B follows Sentence A or not

Fig from J. Devlin BERT slides

30K subword vocabulary

Model and Training
• Data: Wikipedia (2.5B tokens) + BooksCorpus (800M tokens)

• Batch size: 131,072 tokens

• 1024 sequences 128 length

• 256 sequences 512 length

• Training time: 1M steps (~40 epochs)

• Optimizer: AdamW, 1e-4 learning rate, linear decay

• BERT-base: 12 layer, 768 hidden, 12 attention heads. 110M parameters (=GPT1)

• BERT-large: 24 layer, 1024 hidden, 16 attention heads. 340M parameters

×

×

Fine-tuning procedure

Fig from J. Devlin BERT slides

Fine-tuning for sentence pair classification

Fig from J. Devlin BERT slides

Fine-tuning for single sentence classification

Fig from J. Devlin BERT slides

Fine-tuning for question answering tasks

Fig from J. Devlin BERT slides

Fine-tuning for single sentence tagging tasks

Fig from J. Devlin BERT slides

Fig from J. Devlin BERT slides

Directionality and training time

Fig from J. Devlin BERT slides

Effect of Model Size

Fig from J. Devlin BERT slides

Open Source Release
BERT was successful due to full open-source release

• BERT-base and BERT-large released under a permissive license (Apache 2.0)

• Model-only release (not part of a larger codebase): open source DL toolkits

• No dependencies except TensorFlow or PyTorch

• Abstracted so all you had to do was import a single module

• End-to-end examples to train SoTA models on many tasks

• Comprehensive README and readable, well-documented code

• Good support (for first few months)

Environmental Impact

BERT Extensions

RoBERTa
Liu+ 2019

• Robustly optimized BERT pre-training: dynamic masking; train on text blocks

• Train BERT on more data and for more epochs

• Even on same data, training for longer helps

• More data leads to a better model

• Remove Next Sentence Prediction (NSP) loss

https://arxiv.org/abs/1907.11692

https://arxiv.org/abs/1907.11692

Transformer-XL
Dai+ 2019

• Vanilla Model

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

Transformer-XL
Dai+ 2019

• Vanilla Model

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

Transformer-XL
Dai+ 2019

• Autoregressive LM (different from GPT)

• segment level recurrence (reuse states) + relative positional embeddings

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

Transformer-XL
Dai+ 2019

• Autoregressive LM (different from GPT)

https://arxiv.org/abs/1901.02860

https://arxiv.org/abs/1901.02860

XLNet
Yang+ 2019

• Relative position embeddings (using auto-regressive TransformerXL)

• Absolute attention: position 4 5; position 128 129

• Relative attention: position

• Mask prediction over all token positions using permutation on factorization
order (sample a factorization order: 3 2 1 4)

• Two stream self-attention: standard and query on [MASK] token

• Permute only factorization order, not sequence order

→ →

t → (t − 1)

→ → →

https://arxiv.org/abs/1906.08237

https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1906.08237

XLNet

XLNet

XLNet

ALBERT
Lan+ 2019

• Factorized embedding parameterization

• Use small embedding size (128) and project to Transformer hidden size
(1024) using a parameter matrix

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942

ALBERT
• Cross-layer parameter sharing

• parameters are shared with hℓ+1 hℓ

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942

ALBERT
• Light on parameters; not necessarily faster than BERT

https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/1909.11942

T5
Raffel+ 2019
• Ablation study on many aspects of pre-training and fine-tuning

• Model size (bigger is better; 11B parameters)

• Amount of training data (more is better)

• Domain / cleanliness of training data [-ve]

• Pre-training objective (e.g. span length of masked text) [-ve]

• Ensemble models [-ve]

• Fine-tuning recipe (e.g. only allow top k layers to fine-tune) [-ve]

• Multi-task training [-ve]

https://arxiv.org/abs/1910.10683

https://arxiv.org/abs/1910.10683

ELECTRA
Clark+ 2020

• Train model to discriminate locally plausible text from real text

https://arxiv.org/abs/2003.10555

https://arxiv.org/abs/2003.10555

ELECTRA https://arxiv.org/abs/2003.10555

https://arxiv.org/abs/2003.10555

ELECTRA https://arxiv.org/abs/2003.10555

https://arxiv.org/abs/2003.10555

Other BERT Extensions
• Many many extensions to BERT; too many to cover here; mostly pre-training

• Auto-regressive BERT variants (BART; XLM; etc.)

• SpanBERT; Entity-based BERT (LUKE; SpanLinkBERT)

• Mainly training on more data, or different data, slight variants (Megatron)

• Efficient fine-tuning (covered separately)

• Efficient inference

• Distillation of BERT models (covered separately)

