Scaling Laws for LLMs

NLP: Fall 2023

Anoop Sarkar

Scaling Laws for Neural Language Models

Jared Kaplan * Sam McCandlish*
Johns Hopkins University, OpenAl OpenAl
jaredk@jhu.edu sam@Qopenai.com
Tom Henighan Tom B. Brown Benjamin Chess Rewon Child
OpenAl OpenAl OpenAl OpenAl
henighan@openai.com tomQ@openai.com bchessQopenai.com rewon@Qopenai.com
Scott Gray Alec Radford Jeffrey Wu Dario Amodei
OpenAl OpenAl OpenAl OpenAl
scott@openai.com alec@openai.com jeffwuQopenai.com damodei@openai.com

https://arxiv.org/abs/2001.08361 Jan 2020

https://arxiv.org/abs/2001.08361

Scaling Laws for LLMs

Power laws

. A power law is a relation between two quantities: f(x) = (a/x)* e.g. model
performance vs. model size.

 Number of model parameters N (excluding subword embeddings)
» Size of dataset D
 Amount of compute (MFLOPs) C

N, D, C are dominant. Other choices in hyperparameters like width vs. depth are
less relevant

+ 1 PetaFLOP-day (PF-day) is 8.64 x 10'° FLOPS

https://openai.com/research/ai-and-compute

https://openai.com/research/ai-and-compute

Operation Parameters FLOPs per Token

Embed (Mvocab + Mectx) @model 4dmodel

Attention: QKV Nayer@model3@attn 2Nayerdmodel3dattn

Attention: Mask = 2NayerNetxBattn

Attention: Project Nayer@attndmodel 2Nayer@attndembd

Feedforward Nlayer 28 model AfF 2N1ayer 2dmodel Aft

De-embed — 2dmodelMvocab

Total (Non-Embedding) | N = 2dnodelMayer (2dattn + di) | Crorward = 2N + 2njayerNctx@attn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.

Test Loss 5.4

4.8 1

4.2 1

3.6 1

3.0

2.4 -

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

LSTMs

1 Layer

2 Layers

Transformers 4 Layers

105 108 107 108 109

Parameters (hon-embedding)

LSTM plateaus after <100 tokens

Transformer improves through the whole context

Per-token
Test Loss 6 _

4 1 Parameters:
400K
400K

S 1 oM
3M

3 200M
300M

2 ‘ LN L B | s ¥ ' v ¥ LN L | ' s L B B |

10 102 103

Token Index in Context

/ 4.2
6 - —— L =(D/5.4-1013)7009 | 5.6] —— L=(N/8.8-1013)-0076
3.9
4.8
n °
3 3.6 ‘0.
4
= _
@ 3.3 3.2
= 3.
3.0
| 2.4
L = (Cnin/2.3-108) 70920
109 107 107> 1073 107! 10! 108 109 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget

Test Loss 10 \\\\\

Line color indicates
number of parameters

B
103 106 109

8

6 ..

. Compute-efficient
10° Params — training stops far

short of convergence

4

107 109 101 109 106 103 100
Tokens Processed Compute (PF-days)

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10”
parameters (excluding embeddings).

E 108 Minimum serial steps 696 Data requirements
= Increases negligibly — —~ . 0\5\' grow relatively slowly
Q \
= 7 -
2108 A\Q*F% “g\‘l«e :
S ALY
O *6
© QO
> 104 i \ : :
3 P Optimal model size
© \3\7» . o
O N\ode iIncreases very quickly
2, 2 00*
.='10 00‘0
= A 0
- AL
>

10Y . . , | -

10-8 107° 10~* 102 10°

Compute (PF-days)

Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We 1illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase 1n data 1s needed to avoid reuse. Of the increase 1n data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase 1n serial training time required.

Power laws for test loss

» Let L(-) represent the test loss dependent on either parameters N, or
dataset size D or compute C

 For models with limited number of parameters:
L(N) = (N./N)*™; ay ~ 0.076,N,. ~ 8.8 X 103 (non-embd params)

e For models with limited dataset size:
L(D) = (D./D)*r;ap ~ 0.095,D,. ~ 5.4 X 103 (tokens)

 For models trained with limited compute:

L(C) = (C™Mn/C, . " a™" 2 0.050,C™" =~ 3.1 x 103(PF-days)

min

L.oss vs Model and Dataset Size

... ©
4.5 e,
-y TR @it o
4.0 e
T O e e ...
2 3.5 b
o ' ®--
— R R T R "..
3.0 A T o..
2.5"

Tokens in Dataset

N
Ne\ oo D
LIN,D)= | =) " 4

N

D

Params

& D

708M
302M
85M
3M
20M
393.2K

Loss vs Model Size and Training Steps

L(N, S) =

104
Estimated Snin

Ne

N

|

Sc

Smin(S)

S = parameter update steps

p—
o
(@)
Parameters (non-embed)

Excess Compute (C/Cefficient)

Optimal Allocation of Compute Budget

4.0 101

> Smaller models require
3.9° 2 more steps to train, while

= larger models require fewer
3.0 - 2

)
2.0 1 Models between 0.6x and 2.2x the 2

.) . : Q.
optimal size can be trained with a 3 100 -

2.0 1 20% larger compute budget ﬁ

N
1.5- S

‘s Our framework does not
1.0 - capture early training dynamics

100 T - 100 10!
Deviation from Optimal Model (N/Nefficient) Deviation from Optimal Model (N/Negfficient)

Critical Batch Size vs. Performance

Ay +243" —— Embpirical Ber, N = 3M

o —o— Empirical Bqit, N =85M

~—-- Bgit=2.1x 108 tokens - L =48
Noise Scale Measurement

" 6x10° 4x10° 3x10°
WebText2 Train Loss

Critical Batch Size (Tokens)

Figure 10 The critical batch size B.,i; follows a power law 1n the loss as performance increase, and does
not depend directly on the model size. We find that the critical batch size approximately doubles for every
13% decrease in loss. B, is measured empirically from the data shown in Figure W but it 1s also roughly
predicted by the gradient noise scale, as in [MKAT18]. 5/xiy-1812 06162

Lessons from scaling LLMs

*Number of model parameters N

Size of dataset D

* Amount of compute (MFLOPs) C

Performance depends strongly on scale, weakly on model shape

Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two

Performance improves predictably as long as we scale up N and D in tandem

Training curves follow predictable power-laws whose parameters are roughly
independent of the model size

Lessons from scaling LLMs

* [ransfer to a different distribution incurs a constant penalty but otherwise
iImproves roughly in line with performance on the training set.

* |Large models are more sample-efficient than small models, reaching the
same level of performance with fewer optimization steps and using fewer data

points

 The ideal batch size for training these models is roughly a power of the loss
only, and continues to be determinable by measuring the gradient noise scale

@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

https.//arxiv.org/abs/2203.15556

https://arxiv.org/abs/2203.15556

Train longer on more tokens

Lessons from training Chinchilla

 From GPT3: large models should not be trained to lowest possible loss to be
compute optimal

* Question: Given a fixed FLOPs budget how should one trade off model
size and number of training tokens?

* Pre-training loss L(N, D) for N parameters and D training tokens. Find the
optimal N and D values for a given compute budget.

 Empirical study on training 400 models from 70M to 16B parameters, trained
on 5B to 400B tokens.

 Answer: Train smaller models for (a lot) more training steps.

1T

1008 —— Approach 1
—— Approach 2
o —— Approach 3
% 10B -—-— Kaplan et al (2020)
E Y% Chinchilla (70B)
& 1.0B ¥ Gopher (280B)
Y% GPT-3 (175B)
Y Megatron-Turing NLG (530B)
100M
/
10I\1/I017'

FLOPsS

Model

Size (# Parameters) Training Tokens

LaMDA (Thoppilan et al., 2022)
GPT-3 (Brown et al., 2020)
Jurassic (Lieber et al., 2021)
Gopher (Rae et al., 2021)

MT-NLG 530B (Smith et al., 2022)

137 Billion
175 Billion
178 Billion
280 Billion
530 Billion

168 Billion
300 Billion
300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion

The GPT3 paper

Language Models are Few-Shot Learners

Tom B. Brown” Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam
Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss

Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh
Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner

Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
https.//arxiv.org/abs/2005.14165 NeurlPS 2020, Vancouver, BC

https://arxiv.org/abs/2005.14165

Accuracy (%)

Zero-shot

l

60
50

40

30

One-shot Few-shot

“/\
\L /
Natural Language ST
Prompt | 4

10 10
Number of Examples in Context (K)

175B Params

-~ 13B Params

SuperGLUE Score

90

80

SuperGLUE Performance

-8 Zero-shot

Fine-tuned SOTA ~~~~~~~~~~° —@— One-shot

—®— Few-shot (K=32)

Fine-tuned BERT++

0.4

0.8 1.3 2.6 6.7 13
Billions of Parameters in LM

175

In-Context Learning on SuperGLUE

~&— Few-shot GPT-3 175B
90 Human

80

50

40
01234 8 16 32

Number of Examples in Context (K)

Performance on SuperGLUE increases with number of examples in context. We find the differ-
ence 1n performance between the BERT-Large and BERT++ to be roughly equivalent to the difference
between GPT-3 with one example per context versus eight examples per context.

Accuracy

70

S

S

S

S

20

10

Wordscramble (few-shot)

cycle letters

mid word 1 anagrams
mid word 2 anagrams
random insertion
reversed words

——

7

o —

0.1B

04B 08B 1.3B 26B 6.7B 13B
Parameters in LM (Billions)

175B

Accuracy

0.5

reversed words

—eo— /Zero-Shot
—e— One-Shot
04 —*— Few-Shot (K=100)

0.3

0.2

0.1

—

0.0
0.1B

0.4B

=N — B

08B 1.3B 26B 6.7B 13B
Parameters in LM (Billions)

175B

Accuracy

mid word 1 anagrams random insertion

—e— Zero-Shot —e— Zero-Shot
14 —e— One-Shot 60 —* One-Shot
—e— Few-Shot (K=100) —e— Few-Shot (K=100)
12
50
10
> 40
8 o
3 30
6 <
4 20
0 0> — —e—

0.1B 04B 08B 1.3B 26B 6.7B 13B 175B 0.1B 0.4B 0.8B 1.3B 2.6B 6.7B 13B 175B
Parameters in LM (Billions) Parameters in LM (Billions)

10000

1000

100
| I I I I
. l B I
g & ¢ & £ & K X
Q° \ ?» \fb\ o QP \,‘ <& ,{o’\

Training Petaflop/s-days

9
>

>
PN P <

N% Q> o

N\
Q v A’ o) o)

&
R B B P Nt

Q
S S

Figure 7.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural
Language Models [KMH20] we train much larger models on many fewer tokens than is typical.
As a consequence, although GPT-3 3B is almost 10x larger than RoOBERTa-Large (355M params),

both models took roughly 50 petafiop/s-days of compute during pre-training. Methodology for these
calculations can be found in the Appendix.

GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

1 1

Nan Du”®! Yanping Huang“' Andrew M.Dai”! Simon Tong' Dmitry Lepikhin' Yuanzhong Xu'
Maxim Krikun' Yanqi Zhou' Adams Wei Yau! Orhan Firat! Barret Zoph' Liam Fedus' Maarten Bosma '
Zongwei Zhou'! Tao Wang! Yu Emma Wang'! Kellie Webster | Marie Pellat! Kevin Robinson !
Kathleen Meier-Hellstern' Toju Duke! Lucas Dixon!' Kun Zhang' Quoc VLe! Yonghui Wu'
Zhifeng Chen! Claire Cui!

https://arxiv.org/abs/2112.06905

https://arxiv.org/abs/2112.06905

Mixture of Experts (MoE) for LLMs

[Encoder output]
— Add &TNorm
Feed For:/vard FFN
“ N
— Add &I Norm Figure 2. GLaM model architecture. Each MoE layer (the bottom
| (__Mukti-Head Attention block) 1s interleaved with a Transformer layer (the upper block).
‘{ For each input token, e.g., ‘roses’, the Gating module dynamically
— Add & Norm selects two most relevant experts out of 64, which is represented
== —— by the blue grid in the MoE layer. The weighted average of the
) outputs from these two experts will then be passed to the upper
k [Gaj"g) Transformer layer. For the next token in the input sequence, two
— Add & Norm different experts will be selected.

I
Multi-Head Attention
‘)
Input & Positional embeddings

I
roses are red violets are blue

Mixture of Experts (MoE) for LLMs

Better effective FLOPs per token prediction in causal LMs

60-

Score

20+

64B/64E
o

s 2

® GPT3 (few-shot)
88/645/
E/: GPT3 (one-shot)

8B
0.1B/64 / 1.78
o/
O

0.1B

1.7B/64

GPT3 (zero-shot)
1378

@ Few-shot
One-shot

Zero-shot)

Dense
Dense
Dense
MoE Few-shot;
MoE (One-shot
MoE (Zero-shot)

0.1 1‘ 10 100 1000
GFlops per token prediction

Score

70+

60+

50+

64B/64Eg

o
“ GPT3 (few-shot)
GPT3 (one-shot)

1378
GPT3 (zero-shot)

0.1B/64E

= @@ Few-shot
One-shot

Zero-shot)

Dense
Dense
Dense
MoE Few-shot;
MoE (One-shot
MoE (Zero-shot)

O
0.1B

0.1 1 10 100 1000
GFlops per token prediction

PaLM: Scaling Language Modeling with Pathways

Aakanksha Chowdhery®™ Sharan Narang®™ Jacob Devlin®
Maarten Bosma Gaurav Mishra Adam Roberts Paul Barham
Hyung Won Chung Charles Sutton Sebastian Gehrmann Parker Schuh Kensen Shi
Sasha Tsvyashchenko Joshua Maynez Abhishek Rao' Parker Barnes Yi Tay
Noam Shazeer? Vinodkumar Prabhakaran Emily Reif Nan Du Ben Hutchinson
Reiner Pope James Bradbury Jacob Austin Michael Isard Guy Gur-Ari
Pengcheng Yin Toju Duke Anselm Levskaya Sanjay Ghemawat Sunipa Dev
Henryk Michalewski Xavier Garcia Vedant Misra Kevin Robinson Liam Fedus
Denny Zhou Daphne Ippolito David Luan* Hyeontaek Lim Barret Zoph
Alexander Spiridonov Ryan Sepassi David Dohan Shivani Agrawal Mark Omernick
Andrew M. Dai Thanumalayan Sankaranarayana Pillai Marie Pellat Aitor Lewkowycz
Erica Moreira Rewon Child Oleksandr Polozov! Katherine Lee Zongwei Zhou
Xuezhi Wang Brennan Saeta Mark Diaz Orhan Firat Michele Catasta’ Jason Wei
Kathy Meier-Hellstern Douglas Eck Jeff Dean Slav Petrov Noah Fiedel

https://arxiv.org/abs/2204.02311 Google Research

https://arxiv.org/abs/2204.02311

PaLM: model architecture

e SwWiGLU Activation — We use SwiGLU activations (Swish(zW) - V') for the MLP intermediate
activations because they have been shown to significantly increase quality compared to standard ReLU,
GeLU, or Swish activations (Shazeer, 2020). Note that this does require three matrix multiplications in
the MLP rather than two, but Shazeer (2020) demonstrated an improvement in quality in compute-
equivalent experiments (i.e., where the standard ReLU variant had proportionally larger dimensions).

e Parallel Layers — We use a “parallel” formulation in each Transformer block (Wang & Komatsuzaki,

2021), rather than the standard “serialized” formulation. Specifically, the standard formulation can be
written as:

y = ¢ + MLP(LayerNorm(z + Attention(LayerNorm(z)))

Whereas the parallel formulation can be written as:
y = ¢ + MLP(LayerNorm(z)) 4+ Attention(LayerNorm(x))

The parallel formulation results in roughly 15% faster training speed at large scales, since the MLP
and Attention input matrix multiplications can be fused. Ablation experiments showed a small quality
degradation at 8B scale but no quality degradation at 62B scale, so we extrapolated that the eflect of
parallel layers should be quality neutral at the 540B scale.

PaLM: model architecture

e Multi-Query Attention — The standard Transformer formulation uses k£ attention heads, where the
input vector for each timestep is linearly projected into “query”, “key”, and “value” tensors of shape
|k, h|, where h is the attention head size. Here, the key/value projections are shared for each head, i.e.
“key” and “value” are projected to [1, h|, but “query” is still projected to shape |k, h]. We have found that
this has a neutral effect on model quality and training speed (Shazeer, 2019), but results in a significant
cost savings at autoregressive decoding time. This is because standard multi-headed attention has low
efficiency on accelerator hardware during auto-regressive decoding, because the key/value tensors are
not shared between examples, and only a single token is decoded at a time.

¢ RoPE Embeddings — We use RoPE embeddings (Su et al., 2021) rather than absolute or relative
position embeddings, since RoPE embeddings have been shown to have better performance on long
sequence lengths.

¢ Shared Input-Output Embeddings — We share the input and output embedding matrices, which
is done frequently (but not universally) in past work.

PaLM: model architecture

e No Biases — No biases were used in any of the dense kernels or layer norms. We found this to result
in increased training stability for large models.

e Vocabulary — We use a SentencePiece (Kudo & Richardson, 2018a) vocabulary with 256k tokens, which
was chosen to support the large number of languages in the training corpus without excess tokenization.
The vocabulary was generated from the training data, which we found improves training efficiency. The
vocabulary is completely lossless and reversible, which means that whitespace is completely preserved
in the vocabulary (especially important for code) and out-of-vocabulary Unicode characters are split
into UTF-8 bytes, with a vocabulary token for each byte. Numbers are always split into individual

digit tokens (e.g., “123.5 —+ 123 . 57).

PaLLM: model hyperparameters

of Parameters

Model Layers # of Heads dmodel (in billions) Batch Size
PaLM 8B 32 16 4096 8.63 256 — 512
PaLM 62B 64 32 8192 62.50 512 — 1024
PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048

Table 1: Model architecture details. We list the number of layers, d.,o4¢1, the number of attention heads and
attention head size. The feed-forward size dg is always 4 X dmodel and attention head size is always 256.

PaLM: training data

Total dataset size = 780 billion tokens

Data source Proportion of data
Social media conversations (multilingual) 50%
Filtered webpages (multilingual) 27%
Books (English) 13%
GitHub (code) 57
Wikipedia (multilingual) 4%
News (English) 1%

Table 2: Proportion of data from each source in the training dataset. The multilingual corpus contains text
from over 100 languages, with the distribution given in Appendix Table 29.

PaLM: Pathways data parallelism

< Datacenter Network >
NN N N N N N N N

TPU chips
| “\connected by
I || fast private
int t
Cross-pod transfer /'n erconnects
gradients | I
A Compute gradients " "
(Forward+backward pass) Pod 1 Pod 2
B Apply gradients _] _ N,
Pod 1 \ / : Host (many per Pod)
Pod 2 Model Components] Scheduler (per Pod)

Figure 2: The Pathways system (Barham et al., 2022) scales training across two TPU v4 pods using two-way
data parallelism at the pod level.

