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Scaling Laws for LLMs

Power laws

. A power law is a relation between two quantities: f(x) = (a/x)* e.g. model
performance vs. model size.

 Number of model parameters N (excluding subword embeddings)
» Size of dataset D
 Amount of compute (MFLOPs) C

N, D, C are dominant. Other choices in hyperparameters like width vs. depth are
less relevant

+ 1 PetaFLOP-day (PF-day) is 8.64 x 10'° FLOPS

https://openai.com/research/ai-and-compute
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Operation Parameters FLOPs per Token

Embed (Mvocab + Mectx) @model 4dmodel

Attention: QKV Nayer@model3@attn 2Nayerdmodel3dattn

Attention: Mask = 2NayerNetxBattn

Attention: Project Nayer@attndmodel 2Nayer@attndembd

Feedforward Nlayer 28 model AfF 2N1ayer 2dmodel Aft

De-embed — 2dmodelMvocab

Total (Non-Embedding) | N = 2dnodelMayer (2dattn + di) | Crorward = 2N + 2njayerNctx@attn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.



Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget

Test Loss 10 \\\\\

Line color indicates
number of parameters

B
103 106 109

8

6 ..

. Compute-efficient
10° Params — training stops far

short of convergence

4

107 109 101 109 106 103 100
Tokens Processed Compute (PF-days)

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10”
parameters (excluding embeddings).
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Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We 1illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase 1n data 1s needed to avoid reuse. Of the increase 1n data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase 1n serial training time required.



Power laws for test loss

» Let L( - ) represent the test loss dependent on either parameters N, or
dataset size D or compute C

 For models with limited number of parameters:
L(N) = (N./N)*™; ay ~ 0.076,N,. ~ 8.8 X 103 (non-embd params)

e For models with limited dataset size:
L(D) = (D./D)*r;ap ~ 0.095,D,. ~ 5.4 X 103 (tokens)

 For models trained with limited compute:

L(C) = (C™Mn/C, . " a™" 2 0.050,C™" =~ 3.1 x 103(PF-days)

min



L.oss vs Model and Dataset Size
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Critical Batch Size vs. Performance
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Figure 10 The critical batch size B.,i; follows a power law 1n the loss as performance increase, and does
not depend directly on the model size. We find that the critical batch size approximately doubles for every
13% decrease in loss. B, is measured empirically from the data shown in Figure W but it 1s also roughly
predicted by the gradient noise scale, as in [MKAT18]. 5/xiy-1812 06162



Lessons from scaling LLMs

*Number of model parameters N

Size of dataset D

* Amount of compute (MFLOPs) C

Performance depends strongly on scale, weakly on model shape

Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two

Performance improves predictably as long as we scale up N and D in tandem

Training curves follow predictable power-laws whose parameters are roughly
independent of the model size



Lessons from scaling LLMs

* [ransfer to a different distribution incurs a constant penalty but otherwise
iImproves roughly in line with performance on the training set.

* |Large models are more sample-efficient than small models, reaching the
same level of performance with fewer optimization steps and using fewer data

points

 The ideal batch size for training these models is roughly a power of the loss
only, and continues to be determinable by measuring the gradient noise scale
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Train longer on more tokens

Lessons from training Chinchilla

 From GPT3: large models should not be trained to lowest possible loss to be
compute optimal

* Question: Given a fixed FLOPs budget how should one trade off model
size and number of training tokens?

* Pre-training loss L(N, D) for N parameters and D training tokens. Find the
optimal N and D values for a given compute budget.

 Empirical study on training 400 models from 70M to 16B parameters, trained
on 5B to 400B tokens.

 Answer: Train smaller models for (a lot) more training steps.
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Model

Size (# Parameters) Training Tokens

LaMDA (Thoppilan et al., 2022)
GPT-3 (Brown et al., 2020)
Jurassic (Lieber et al., 2021)
Gopher (Rae et al., 2021)

MT-NLG 530B (Smith et al., 2022)

137 Billion
175 Billion
178 Billion
280 Billion
530 Billion

168 Billion
300 Billion
300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion



The GPT3 paper

Language Models are Few-Shot Learners
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SuperGLUE Score
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Performance on SuperGLUE increases with number of examples in context. We find the differ-
ence 1n performance between the BERT-Large and BERT++ to be roughly equivalent to the difference
between GPT-3 with one example per context versus eight examples per context.
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Figure 7.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural
Language Models [KMH20] we train much larger models on many fewer tokens than is typical.
As a consequence, although GPT-3 3B is almost 10x larger than RoOBERTa-Large (355M params),

both models took roughly 50 petafiop/s-days of compute during pre-training. Methodology for these
calculations can be found in the Appendix.



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
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Mixture of Experts (MoE) for LLMs
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“ N
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| (__Mukti-Head Attention block) 1s interleaved with a Transformer layer (the upper block).
‘{ For each input token, e.g., ‘roses’, the Gating module dynamically
— Add & Norm selects two most relevant experts out of 64, which is represented
== —— by the blue grid in the MoE layer. The weighted average of the
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Mixture of Experts (MoE) for LLMs

Better effective FLOPs per token prediction in causal LMs
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PaLM: Scaling Language Modeling with Pathways
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PaLM: model architecture

e SwWiGLU Activation — We use SwiGLU activations (Swish(zW) - V') for the MLP intermediate
activations because they have been shown to significantly increase quality compared to standard ReLU,
GeLU, or Swish activations (Shazeer, 2020). Note that this does require three matrix multiplications in
the MLP rather than two, but Shazeer (2020) demonstrated an improvement in quality in compute-
equivalent experiments (i.e., where the standard ReLU variant had proportionally larger dimensions).

e Parallel Layers — We use a “parallel” formulation in each Transformer block (Wang & Komatsuzaki,

2021), rather than the standard “serialized” formulation. Specifically, the standard formulation can be
written as:

y = ¢ + MLP(LayerNorm(z + Attention(LayerNorm(z)))

Whereas the parallel formulation can be written as:
y = ¢ + MLP(LayerNorm(z)) 4+ Attention(LayerNorm(x))

The parallel formulation results in roughly 15% faster training speed at large scales, since the MLP
and Attention input matrix multiplications can be fused. Ablation experiments showed a small quality
degradation at 8B scale but no quality degradation at 62B scale, so we extrapolated that the eflect of
parallel layers should be quality neutral at the 540B scale.



PaLM: model architecture

e Multi-Query Attention — The standard Transformer formulation uses k£ attention heads, where the
input vector for each timestep is linearly projected into “query”, “key”, and “value” tensors of shape
|k, h|, where h is the attention head size. Here, the key/value projections are shared for each head, i.e.
“key” and “value” are projected to [1, h|, but “query” is still projected to shape |k, h]. We have found that
this has a neutral effect on model quality and training speed (Shazeer, 2019), but results in a significant
cost savings at autoregressive decoding time. This is because standard multi-headed attention has low
efficiency on accelerator hardware during auto-regressive decoding, because the key/value tensors are
not shared between examples, and only a single token is decoded at a time.

¢ RoPE Embeddings — We use RoPE embeddings (Su et al., 2021) rather than absolute or relative
position embeddings, since RoPE embeddings have been shown to have better performance on long
sequence lengths.

¢ Shared Input-Output Embeddings — We share the input and output embedding matrices, which
is done frequently (but not universally) in past work.



PaLM: model architecture

e No Biases — No biases were used in any of the dense kernels or layer norms. We found this to result
in increased training stability for large models.

e Vocabulary — We use a SentencePiece (Kudo & Richardson, 2018a) vocabulary with 256k tokens, which
was chosen to support the large number of languages in the training corpus without excess tokenization.
The vocabulary was generated from the training data, which we found improves training efficiency. The
vocabulary is completely lossless and reversible, which means that whitespace is completely preserved
in the vocabulary (especially important for code) and out-of-vocabulary Unicode characters are split
into UTF-8 bytes, with a vocabulary token for each byte. Numbers are always split into individual

digit tokens (e.g., “123.5 —+ 123 . 57).



PaLLM: model hyperparameters

# of Parameters

Model Layers # of Heads dmodel (in billions) Batch Size
PaLM 8B 32 16 4096 8.63 256 — 512
PaLM 62B 64 32 8192 62.50 512 — 1024
PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048

Table 1: Model architecture details. We list the number of layers, d.,o4¢1, the number of attention heads and
attention head size. The feed-forward size dg is always 4 X dmodel and attention head size is always 256.



PaLM: training data

Total dataset size = 780 billion tokens

Data source Proportion of data
Social media conversations (multilingual) 50%
Filtered webpages (multilingual) 27%
Books (English) 13%
GitHub (code) 57
Wikipedia (multilingual) 4%
News (English) 1%

Table 2: Proportion of data from each source in the training dataset. The multilingual corpus contains text
from over 100 languages, with the distribution given in Appendix Table 29.



PaLM: Pathways data parallelism
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Figure 2: The Pathways system (Barham et al., 2022) scales training across two TPU v4 pods using two-way
data parallelism at the pod level.



